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Abstract: We study the asymptotic behavior of random time changes of dynamical systems. As
random time changes we propose three classes which exhibits different patterns of asymptotic decays.
The subordination principle may be applied to study the asymptotic behavior of the random time
dynamical systems. It turns out that for the special case of stable subordinators explicit expressions
for the subordination are known and its asymptotic behavior are derived. For more general classes of
random time changes explicit calculations are essentially more complicated and we reduce our study
to the asymptotic behavior of the corresponding Cesaro limit.

Keywords: dynamical systems; random time change; inverse subordinator; asymptotic behavior

1. Introduction

In this paper we will deal with Markov processes or dynamical systems in Rd. These
processes or dynamics starting from x ∈ Rd, denote by Xx(t), t ≥ 0, have associated
evolution equations on Rd. In the Markov case we define for suitable f : Rd −→ R the
function u(t, x) = E[ f (Xx(t))] which satisfied the Kolmogorov equation

∂

∂t
u(t, x) = Lu(t, x),

where L is the generator of the Markov process.
For a dynamical system we introduce u(t, x) = f (Xx(t)). Then this function is the

solution of the Liouville equation

∂

∂t
u(t, x) = Lu(t, x),

where now L is the Liouville operator for the dynamical system, see e.g., Kondratiev and
da Silva [1].

Let S(t), t ≥ 0 be a subordinator and E(t), t ≥ 0 denotes the inverse subordinator,
that is, for each t ≥ 0, E(t) := inf{s > 0 | S(s) > t}. This random process we consider as a
random time and assume to be independent of Xx(t). Define a random process Yx by

Yx(t, ω) := Xx(E(t, ω)).

Then as above we may introduce

uE(t, x) = E[ f (Yx(t))].
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For both Markov and dynamical system cases this function satisfies the evolution equations

DE
t uE(t, x) = LuE(t, x)

where L is the Kolmogorov or Liouville operator correspondingly. Here DE
t is a generalized

fractional time derivative corresponding to the inverse subordinator E(t), see Section 2
below for details, in particular the definition in (15). The main relation which is true for
both cases is the following subordination formula:

uE(t, x) =
∫ ∞

0
u(τ, x)Gt(τ)dτ, (1)

where Gt(τ) is the density of the inverse subordinator E(t), see, e.g., Toaldo [2], Kondratiev
and da Silva [1] and especially the book Meerschaert and Sikorskii [3]. This formula which
relates the solutions of the evolution equations with usual and fractional derivatives plays
an important role in the study of dynamics with random times. Note that there exist such
relations between random times, fractional equations and subordination in the framework
of physical models, see, e.g., Mura et al. [4].

The goal of this paper is to study and analyze the asymptotic behavior of two ele-
mentary dynamical system after the random time change, namely u(t, x) = e−at, a > 0
and u(t, x) = tn, n ≥ 0. Here the dynamical system are considered as a deterministic
Markov processes. For particular classes of random times the subordination formula (1) is
evaluated explicitly. This is true, for example, in the case of inverse stable subordinators.
For a general inverse subordinator the properties of the density Gt(τ) are unknown and
the evaluation of (1) is not possible. Actually, it is a long standing open problem in the
theory of stochastic processes.

We propose an alternative approach to study the asymptotic behavior of uE(t, x).
More precisely, we consider Cesaro limits (the asymptotic of the Cesaro mean of uE(t, x),
see (23) below) of uE(t, x) using the subordination formula representation (1) together with
the Feller–Karamata Tauberian theorem, see Theorem 1. For many classes of random times
this approach leads to a precise asymptotic behavior. In this paper we investigate three
classes of random time change, denote by (17)–(19), see Section 2, which exhibits different
patterns of decays of the Cesaro limit of uE(t, x). We would like to emphasize that for
particular classes of random times, namely inverse stable subordinators, the asymptotic
of uE(t, x) which may be computed explicitly, coincides with the Cesaro limit. For other
classes of random times the Cesaro limit gives one possible characteristic of the asymptotic
for uE(t, x). To the best of our knowledge at the present time no other information on the
asymptotic of uE(t, x) is known for a general subordinator.

The remaining of the paper is organized as follows. In Section 2 we introduce three
classes (17)–(19) of subordinator processes which serves as random times. These classes
are given in terms of their local behavior of the Laplace exponent at λ = 0. In addition, we
state the main results of the paper. Section 3 is a preparation for the more general study of
the asymptotic of the subordination in Section 4. More precisely, we investigate in detail
the special case of the inverse stable subordinator where explicit expressions are known.
Hence, the expression for the subordination (1) is derived (for the two dynamical systems
considered above) as well as their Cesaro limit. It turns out that both asymptotic for uE(t, x)
(the explicit calculations and Cesaro limit) are the same. Finally in Section 4 we study the
Cesaro limit for the general classes (17)–(19) of random time changes.

2. Random Times Processes

In this section we introduce three classes of subordinators which serves as random
times processes. More precisely, the random times corresponds to the inverse of subordinator
processes whose Laplace exponent satisfies certain conditions, see below for details. The
simplest example in class (17) below, is the well known α-stable subordinators whose inverse
processes are well studied in the literature, see for example Bingham [5] or Feller [6].
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The classes of processes to be introduced which serve as random times have a con-
nection with the concept of general fractional derivatives (see Kochubei [7] for details
and applications to fractional differential equations) associated to an admissible kernels
k ∈ L1

loc(R+) which is characterized in terms of their Laplace transforms K(λ) as λ→ 0,
see assumption (H) below.

2.1. Definitions and Main Assumptions

Let S = {S(t), t ≥ 0} be a subordinator without drift starting at zero, that is, an
increasing Lévy process starting at zero, see Bertoin [8] for more details. The Laplace
transform of S(t), t ≥ 0 is expressed in terms of a Bernstein function Φ : [0, ∞) −→ [0, ∞)
(also known as Laplace exponent) by

E(e−λS(t)) = e−tΦ(λ), λ ≥ 0.

The function Φ admits the Lévy-Khintchine representation

Φ(λ) =
∫
(0,∞)

(1− e−λτ)dσ(τ), (2)

where the measure σ (called Lévy measure) has support in [0, ∞) and fulfills∫
(0,∞)

(1∧ τ)dσ(τ) < ∞. (3)

In what follows we assume that the Lévy measure σ satisfy

σ
(
(0, ∞)

)
= ∞. (4)

Using the Lévy measure σ we define the kernel k as follows

k : (0, ∞) −→ (0, ∞), t 7→ k(t) := σ
(
(t, ∞)

)
. (5)

Its Laplace transform is denoted by K, that is, for any λ ≥ 0 one has

K(λ) :=
∫ ∞

0
e−λtk(t)dt. (6)

The relation between the function K and the Laplace exponent Φ is given by

Φ(λ) = λK(λ), ∀λ ≥ 0. (7)

We make the following assumption on the Laplace exponent Φ(λ) of the subordinator S.

(H) Φ is a complete Bernstein function (more precisely, the Lévy measure σ has a com-
pletely monotone density ρ(t) with respect to the Lebesgue measure, that is,
(−1)nρ(n)(t) ≥ 0 for all t > 0, n = 0, 1, 2, . . .) and the functions K, Φ satisfy

K(λ)→ ∞, as λ→ 0; K(λ)→ 0, as λ→ ∞; (8)

Φ(λ)→ 0, as λ→ 0; Φ(λ)→ ∞, as λ→ ∞. (9)

Example 1. A classical example of a subordinator S is the so-called α-stable process with index
α ∈ (0, 1). Specifically, a subordinator is α-stable if its Laplace exponent is

Φ(λ) = λα =
∫ ∞

0
(1− e−λτ)

ατ−1−α

Γ(1− α)
dτ.
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In this case it follows that the Lévy measure is dσα(τ) =
α

Γ(1−α)
τ−(1+α) dτ. The corresponding

kernel kα has the form kα(t) = g1−α(t) := t−α

Γ(1−α)
, t ≥ 0 and its Laplace transform is Kα(λ) =

λα−1, λ > 0.

Example 2. Sum of two stable subordinators. Let 0 < α < β < 1 be given and Sα,β(t), t ≥ 0 the
driftless subordinator with Laplace exponent given by

Φα,β(λ) = λα + λβ.

It is clear from Example 1 that the corresponding Lévy measure σα,β is the sum of two Lévy measures,
that is,

dσα,β(τ) = dσα(τ) + dσβ(τ) =
α

Γ(1− α)
τ−(1+α) dτ +

β

Γ(1− β)
τ−(1+β) dτ.

Then the associated kernel kα,β is

kα,β(t) := g1−α(t) + g1−β(t) =
t−α

Γ(1− α)
+

t−β

Γ(1− β)
, t > 0

and its Laplace transform is Kα,β(λ) = Kα(λ) +Kβ(λ) = λα−1 + λβ−1, λ > 0.

Let E be the inverse process of the subordinator S, that is,

E(t) := inf{s > 0 | S(s) > t} = sup{s ≥ 0 | S(s) ≤ t}. (10)

For any t ≥ 0 we denote by Gt(τ), τ ≥ 0 the marginal density of E(t) or, equivalently

Gt(τ)dτ =
∂

∂τ
P(E(t) ≤ τ)dτ =

∂

∂τ
P(S(τ) ≥ t)dτ = − ∂

∂τ
P(S(τ) < t)dτ.

The density Gt(τ) is the main object in our considerations below. Therefore, in what
follows, we collect the most important properties of Gt(τ) needed in the next sections.

Remark 1. If S is the α-stable process, α ∈ (0, 1), then the inverse process E(t), has Laplace
transform (cf. Prop. 1(a) in Bingham [5] or Feller [6]) given by

E(e−λE(t)) =
∫ ∞

0
e−λτGt(τ)dτ =

∞

∑
n=0

(−λtα)n

Γ(nα + 1)
= Eα(−λtα), (11)

where Eα is the Mittag-Leffler function. It follows from the asymptotic behavior of the function Eα

that E(e−λE(t)) ∼ Ct−α as t → ∞. It is possible to find explicitly the density Gt(τ) in this case
using the completely monotonic property of the Mittag-Leffler function Eα. It is given in terms of
the Wright function Wµ,ν, namely Gt(τ) = t−αW−α,1−α(τt−α), see Gorenflo et al. [9] for more
details.

For a general subordinator, the following lemma determines the t-Laplace transform
of Gt(τ), with k and K given in (5) and (6), respectively. For the proof see Kochubei [7] or
Proposition 3.2 in Toaldo [2].

Lemma 1. The t-Laplace transform of the density Gt(τ) is given by∫ ∞

0
e−λtGt(τ)dt = K(λ)e−τλK(λ). (12)
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The double (τ, t)-Laplace transform of Gt(τ) is∫ ∞

0

∫ ∞

0
e−pτe−λtGt(τ)dt dτ =

K(λ)
λK(λ) + p

. (13)

Here we would like to make the connection of the above abstract framework with
general fractional derivatives. For any α ∈ (0, 1) the Caputo-Dzhrbashyan fractional
derivative of order α of a function u is defined by (see e.g., Kilbas et al. [10] and references
therein) (

Dα
t u
)
(t) =

d
dt

∫ t

0
kα(t− τ)u(τ)dτ − kα(t)u(0), t > 0, (14)

where kα is given in Example 1, that is, kα(t) = g1−α(t) = t−α

Γ(1−α)
, t > 0. In general,

starting with a subordinator S and the kernel k ∈ L1
loc(R+) as given in (5), we may define a

differential-convolution operator by

(
D(k)

t u
)
(t) =

d
dt

∫ t

0
k(t− τ)u(τ)dτ − k(t)u(0), t > 0. (15)

The operator D(k)
t is also known as general fractional derivative and its applications to

convolution-type differential equations was investigated in Kochubei [7].

Example 3. Distributed order derivative. Consider the kernel k defined by

k(t) :=
∫ 1

0
gα(t)dα =

∫ 1

0

tα−1

Γ(α)
dα, t > 0. (16)

Then it is easy to see that

K(λ) =
∫ ∞

0
e−λtk(t)dt =

λ− 1
λ log(λ)

, λ > 0.

The corresponding differential-convolution operator D(k)
t is called distributed order derivative,

see Atanackovic et al. [11], Daftardar-Gejji and Bhalekar [12], Hanyga [13], Kochubei [14], Gorenflo
and Umarov [15], Meerschaert and Scheffler [16] for more details and applications.

We say that the functions f and g are asymptotically equivalent at infinity, and denote
f (x) ∼ g(x) as x → ∞, meaning that

lim
x→∞

f (x)
g(x)

= 1.

We say that a function L is slowly varying at infinity (see Feller [6], Seneta [17]) if

lim
x→∞

L(λx)
L(x)

= 1, for any λ > 0.

Below C is constant whose value is unimportant and may change from line to line.
In the following we consider three classes of admissible kernels k ∈ L1

loc(R+), charac-
terized in terms of their Laplace transforms K(λ) as λ→ 0 (i.e., as local conditions):

K(λ) ∼ λα−1, 0 < α < 1. (17)

K(λ) ∼ λ−1L
(

1
λ

)
, L(y) := C log(y)−1, C > 0. (18)

K(λ) ∼ λ−1L
(

1
λ

)
, L(y) := C log(y)−1−s, s > 0, C > 0. (19)
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We would like to emphasize that these three classes of kernels leads to different type of
differential-convolution operators. In particular, the Caputo-Djrbashian fractional deriva-
tive (17) and distributed order derivatives (18), (19). Moreover, it is simple to check that
the class of subordinators from Example 2 falls into the class (17) above.

Remark 2. The asymptotic behavior of the function f (t) as t → ∞ may be determined, under
certain conditions, by studying the behavior of its Laplace transform f̃ (λ) as λ→ 0, and vice versa.
An important situation where such a correspondence holds is described by the Feller–Karamata
Tauberian (FKT) theorem.

We state below a version of the FKT theorem which suffices for our purposes, see the
monographs Bingham et al. [18] (Section 1.7) and Feller [6] (XIII, Section 1.5) for a more
general version and proofs.

Theorem 1. Feller–Karamata Tauberian. Let U : [0, ∞) −→ R be a monotone non-decreasing
right-continuous function such that

w(λ) :=
∫ ∞

0
e−λt dU(t) < ∞, ∀λ > 0.

If L is a slowly varying function and C, ρ ≥ 0, then the following are equivalent

U(t) ∼ C
Γ(ρ + 1)

tρL(t) as t→ ∞, (20)

w(λ) ∼ Cλ−ρL
(

1
λ

)
as λ→ 0+. (21)

When C = 0, (20) is to be interpreted as U(t) = o(tρL(t)); similarly for (21).

2.2. Statement of the Main Results

In Section 3 and 4 we will focus our attention on deriving the asymptotic behavior
of the subordination uE(t, x) given in (1) for the inverse stable subordinator as well as
for the classes (17)–(19) given above. On one hand, the results concerning the inverse
stable subordinator as a random time are well understood, due to the fact that the Laplace
transform (in τ) of the density Gt(τ) is known (cf. Remark 1). On the other hand, for a
general subordinator much less information about Gt(τ) is known and explicit results
for the subordination uE(t, x) are not available. In order to get around this problem, and
motivated by the results of Section 3, we study the Cesaro limit of uE(t, x) for the general
classes of random times.

With the above considerations we are ready to state our main results.

Theorem 2. Let uE(t, x) be the subordination by the density Gt(τ) associated to the inverse stable
subordinator. Denote by Mt(uE(·, x)) := 1

t
∫ t

0 uE(s, x)ds the Cesaro mean of uE(t, x).

1. If u(t, x) = tn, n ≥ 0, then the asymptotic behavior of uE(t, x) coincides with the Cesaro
limit and is equal to

Ctnα as t→ ∞.

2. If u(t, x) = e−at, a > 0, then the asymptotic of uE(t, x) and its Cesaro limit are equal to

Ct−α as t→ ∞.

The proof of Theorem 2 is essentially the contents of Section 3 while the next theorem
is shown in Section 4.

Theorem 3. Let uE(t, x) be the subordination by the density Gt(τ) associated to the classes
(17)–(19) and Mt(uE(·, x)) := 1

t
∫ t

0 uE(s, x)ds the Cesaro mean of uE(t, x).
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1. Assume that u(t, x) = tn, n ≥ 0. Then the asymptotic of the Cesaro mean for the three classes
are:

(17). Mt(uE(·, x)) ∼ Ctαn as t→ ∞,
(18). Mt(uE(·, x)) ∼ C log(t)n as t→ ∞,
(19). Mt(uE(·, x)) ∼ C log(t)(1+s)n as t→ ∞.

2. If u(t, x) = e−at, a > 0, then the asymptotic of Mt(uE(·, x)) for the different classes are:

(17). Mt(uE(·, x)) ∼ Ct−α as t→ ∞,
(18). Mt(uE(·, x)) ∼ C log(t)−1 as t→ ∞,
(19). Mt(uE(·, x)) ∼ C log(t)−1−s as t→ ∞.

3. Inverse Stable Subordinators

In this section we consider two elementary solutions of dynamical systems, namely
u(t) = u(t, x) = tn, n ≥ 0 and u(t) = u(t, x) = e−at, a > 0, and investigate their
subordination by the density Gt(τ) of inverse stable subordinator.

Define the function uE(t) = uE(t, x) as the subordination of u(t) (of the above type)
by the kernel Gt(τ), that is,

uE(t) :=
∫ ∞

0
u(τ)Gt(τ)dτ, t ≥ 0. (22)

Our goal is to investigate the asymptotic behavior of uE(t). At first we compute explicitly
the function uE(t) by solving the integral (22) and obtain the time asymptotic. Second we
derive the Cesaro limit of uE(t), more precisely, the asymptotic behavior of the Cesaro
mean of uE(t) defined by

Mt(uE(·)) :=
1
t

∫ t

0
uE(s)ds. (23)

It turns out that both asymptotic behaviors for the two functions u(t) given above coincide.
Therefore, for the random time change associated to the inverse stable subordinator E(t),
t ≥ 0, the asymptotic behavior of uE(t) is the same as the Cesaro limit. On the other hand,
using the Cesaro limit we may investigate a broad class of subordinators. In Section 4 we
investigate the Cesaro limit for the classes (17)–(19) while in this section concentrate in the
spacial case of inverse stable subordinators.

3.1. Subordination of Monomials

Let us consider at first the subordination of the function u(t) = tn, n ≥ 0. Hence, uE(t)
is given by

uE(t) =
∫ ∞

0
τnGt(τ)dτ. (24)

It follows from (11) that uE(t) is explicitly evaluated as

uE(t) = (−1)n dn

dλn Eα(−λtα)
∣∣
λ=0 =

n!
Γ(αn + 1)

tαn.

The last equality follows easily from the power series of the Mittag-Leffler function

Eα(z) =
∞

∑
n=1

zn

Γ(αn + 1)
.

In addition, the asymptotic of the Mittag-Leffler function Eα that gives

uE(t) ∼ Ctnα as t→ ∞. (25)
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Now we turn to compute the asymptotic behavior of the Cesaro mean of uE(t) with
the help of the FKT theorem. To this end we define the monotone function

v(t) :=
∫ t

0
uE(s)ds. (26)

The Laplace-Stieltjes transform w(λ) of v(t) is given by

w(λ) :=
∫ ∞

0
e−λtdv(t) =

∫ ∞

0
e−λtuE(t)dt =

∫ ∞

0
e−λt

∫ ∞

0
τnGt(τ)dτ dt.

Using Fubini’s theorem and Equation (12) we obtain

w(λ) =
∫ ∞

0
τn
∫ ∞

0
e−λtGt(τ)dt dτ = K(λ)

∫ ∞

0
τne−τλK(λ) dτ.

The r.h.s. integral can be evaluated as∫ ∞

0
τne−τλK(λ) dτ = (λK(λ))−(1+n)n!

which yields
w(λ) = n!λ−(1+n)K(λ)−n. (27)

On the other hand, for the stable subordinator we have K(λ) = λα−1, cf. Example 1. Thus,
we obtain

w(λ) = n!λ−(1+αn) = λ−ρL
(

1
λ

)
,

where ρ = 1 + αn and L(x) = n! is a trivial slowly varying function. Then Theorem 1
yields

v(t) ∼ Ct1+nα as t→ ∞

and this implies the following asymptotic behavior for the Cesaro mean of uE(t)

Mt(uE(·)) = 1
t

∫ t

0
uE(s)ds ∼ Ctαn as t→ ∞. (28)

Remark 3. In conclusion, we find that the asymptotic behavior of the subordination uE(t) of
any monomial by the density Gt(τ) (of the inverse stable subordinator) as well as its Cesaro limit
coincides. Note also the slower decay of the subordination uE(t) compared to u(t) due to 0 < α < 1.

3.2. Subordination of Decaying Exponentials

Now we consider the solution u(t) = e−at, a > 0 and proceed to study the asymptotic
behavior of its subordination uE(t) by the kernel Gt(τ). Again a direct computation is
possible in that case as well as the Cesaro mean.

Hence, the subordination uE(t) is given by

uE(t) =
∫ ∞

0
u(τ)Gt(τ)dτ =

∫ ∞

0
e−aτGt(τ)dτ. (29)

It follows from Equation (11) that

uE(t) = Eα(−atα) ∼ Ct−α as t→ ∞. (30)

On the other hand, to derive the asymptotic behavior for the Cesaro mean of uE(t)
(with the help of Theorem 1) we define the monotone function

v(t) :=
∫ t

0
uE(s)ds. (31)
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The Laplace-Stieltjes transform w(λ) of v(t) is equal to

w(λ) :=
∫ ∞

0
e−λtdv(t) =

∫ ∞

0
e−λtuE(t)dt =

∫ ∞

0
e−λt

∫ ∞

0
e−aτGt(τ)dτ dt

and using Fubini’s theorem and Equation (11) we obtain

w(λ) = K(λ)
∫ ∞

0
e−τ(a+λK(λ)) dτ =

K(λ)
a + λK(λ) . (32)

As K(λ) = λα−1 for the class (17) we may write ṽ(λ) as

w(λ) = λ−(1−α) 1
a + λα

= λ−ρL
(

1
λ

)
, ρ = 1− α, L(t) :=

1
a + t−α

.

It is simple to verify that L is a slowly varying function so that we may use the FKT theorem
to obtain

v(t) ∼ Ct1−α 1
a + t−α

as t→ ∞.

Dividing both sides by t leads to the asymptotic behavior of the Cesaro mean of uE(t), that is,

Mt(uE(·)) = 1
t

∫ t

0
uE(s, x)ds ∼ C

t−α

a + t−α
∼ Ct−α as t→ ∞. (33)

Remark 4. We conclude that the asymptotic behavior uE(t) given in (30) coincides with the Cesaro
limit of uE(t, x). In addition, we notice that the starting function u(t) = e−at has an exponential
decay and its subordination has a slower decay, namely polynomial decay.

4. Cesaro Limit for General Classes of Subordinators

In this section we study the asymptotic behavior of the subordination by the density
Gt(τ) associated to the classes (17)–(19). Note that Examples 1 and 2 belong to the class (17).
As pointed out in Section 3 here we only study the Cesaro limit of the subordination
function uE(t).

As in Section 3, uE(t) is defined by

uE(t) :=
∫ ∞

0
τnGt(τ)dτ (34)

or
uE(t) :=

∫ ∞

0
e−aτGt(τ)dτ (35)

while v(t) is defined by

v(t) :=
∫ t

0
uE(s)ds.

The density Gt(τ) in (34) and (35) is associated to each class (17)–(19) described above. We
study the Cesaro limit of uE(t) for each class separately.

4.1. Subordination by the Class (17)

At first we study the asymptotic behavior of uE(t) given by (34). To this end we use
equality (27) to obtain the Laplace-Stieltjes transform w(λ) of the function v(t) as

w(λ) :=
∫ ∞

0
e−λtdv(t) = λ−(1+n)(K(λ))−nn!.

It follows from the behavior of K(λ) at λ = 0 of the class (17) that

w(λ) ∼ λ−(1+αn)n! = λ−ρL
(

1
λ

)
,
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where ρ = 1 + αn and L(x) = n! is a slowly varying function. It follows from the FKT
theorem that

v(t) ∼ CtρL(t) = Ct1+αn as t→ ∞.

This implies the Cesaro limit of uE(t) as

Mt(uE(·)) ∼ Ctαn as t→ ∞.

Note that this asymptotic is similar to the analogous for the inverse stable subordinator,
cf. (28).

Let us now study the Cesaro limit of the function uE(t) given in (35). Using the
equality (32) the Laplace-Stieltjes transform v(t) has the form

ṽ(λ) =
K(λ)

a + λK(λ) .

Replacing the local behavior of K(λ) at λ = 0 for the class (17) gives

ṽ(λ) ∼ λα−1

a + λα
= λ−ρL

(
1
λ

)
,

where ρ = 1 − α and L(x) = 1
1+ax−α . An applications of the FKT theorem yields the

asymptotic for v(t), namely v(t) ∼ CtρL(t) as t→ ∞. Finally dividing both sides by t gives
the Cesaro limit of uE(t), that is,

Mt(uE(·)) ∼ C
t−α

1 + at−α
∼ Ct−α as t→ ∞.

Again, we obtain the same asymptotic as for the inverse stable subordinator, see (33). In
any case, since 0 < α < 1, the time decaying is slower than the initial function u(t).

4.2. Subordination by the Class (18)

Assume that uE(t) is the subordination given in (34). The Laplace-Stieltjes transform
w(λ) of v(t) (cf. equality (27)) has the form

w(λ) :=
∫ ∞

0
e−λtdv(t) = λ−(1+n)(K(λ))−nn!.

Using the behavior of K(λ) near λ = 0 for the class (18) we obtain

w(λ) ∼ λ−1L
(

1
λ

)
,

where L(x) = C log(x)n, C > 0, is a slowly varying function. Then it follows from the FKT
theorem that

v(t) ∼ Ct log(t)n

and as a result the asymptotic behavior for the Cesaro mean of uE(t) follows

Mt(uE(·)) ∼ C log(t)n as t→ ∞.

A similar analysis may be applied to study the asymptotic behavior for the subordi-
nation uE(t) given in (35). The Laplace-Stieltjes transform w(λ) of the monotone function
v(t) may be evaluated using equality (32) to find the following expression

w(λ) =
K(λ)

a + λK(λ) .
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Using the local behavior of K(λ) near λ = 0 from class (18) yields

w(λ) ∼ λ−1L
(

1
λ

)
,

where L(x) = C log(x)−1

a+C log(x)−1 which is a slowly varying function. Using the FKT theorem we

obtain the longtime behavior for the Cesaro mean of uE(t) as

Mt(uE(·)) ∼ C
log(t)−1

a + C log(t)−1 ∼ C log(t)−1 as t→ ∞.

4.3. Subordination by the Class (19)

At first we study the subordination uE(t) given in (34) for the class (19). The Laplace-
Stieltjes transform w(λ) of the corresponding v(t) is computed using equality (27) and we
obtain

w(λ) :=
∫ ∞

0
e−λtdv(t) = λ−(1+n)(K(λ))−nn!.

Using the behavior of K(λ) near λ = 0 for the class (19) yields

w(λ) ∼ λ−1L
(

1
λ

)
,

where L(x) = C log(x)(1+s)n, C > 0, is a slowly varying function. Then it follows from
Theorem 1 that

v(t) ∼ Ct log(t)(1+s)n

and dividing both sides by t gives the asymptotic behavior for the Cesaro mean of uE(t),
namely

Mt(uE(·)) ∼ C log(t)(1+s)n as t→ ∞.

Let uE(t) be the subordination by u(t) = e−at, a > 0, that is, equality (35) with Gt(τ)
from the class (19). It follows from equality (32) that the Laplace-Stieltjes transform w(λ)
of v(t) has the form

w(λ) =
K(λ)

a + λK(λ) .

Using the local behavior of K(λ) near λ = 0 from class (19) yields

w(λ) ∼ λ−1L
(

1
λ

)
, L(x) = C

log(x)−1−s

a + C log(x)−1−s ,

where C, s > 0. As the function L is slowly varying at infinity, then by the FKT theorem we
obtain the asymptotic behavior for the Cesaro mean of uE(t) as

Mt(uE(·)) ∼ C
log(t)−1−s

a + C log(t)−1−s ∼ C log(t)−1−s as t→ ∞.
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