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Abstract: New oscillatory properties for the oscillation of unbounded solutions to a class of third-
order neutral differential equations with several deviating arguments are established. Several
oscillation results are established by using generalized Riccati transformation and a integral average
technique under the case of unbounded neutral coefficients. Examples are given to prove the
significance of new theorems.
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1. Introduction

In this work, we investigate the oscillation properties of solutions to the third-order
neutral differential equations with several deviating arguments

(
r(ι)(z′′(ι))α

)′
+

n

∑
i=1

qi(ι)xα(φi(ι)) = 0, ι ≥ ι0 > 0, (1)

where z(ι) = x(ι) + p(ι)x($(ι)) and α is a quotient of odd positive integers.
The main results of this paper are obtained considering the following conditions:

r ∈ C([ι0, ∞), (0, ∞)) and
∫ ∞

ι0
r−1/α(s)ds = ∞;

qi(ι) ∈ C([ι0, ∞), [0, ∞)), φi(ι) ∈ C([ι0, ∞),R) and lim
ι→∞

φi(ι) = ∞, where i = 1, 2, · · · n;

$ ∈ C([ι0, ∞),R) is strictly increasing, $(ι) < ι, and lim
ι→∞

$(ι) = ∞;

p(ι) ∈ C([ι0, ∞),R) with p(ι) ≥ 1, and p(ι) 6≡ 1, eventually.

By a solution of (1), we mean a function x : [ιx, ∞)→ R such that z(ι) ∈ C2([ιx, ∞),R)
and r(ι)(z′′(ι))α ∈ C1([ιx, ∞),R), and which satisfies Equation (1) on [ιx, ∞). We only
consider those solutions x(ι)) of (1) defined on some ray [ιx, ∞), for some ιx ≥ ι0, which
satisfy sup{|x(ι)| : ι ≥ T} > 0 for every T ≥ ιx. We start with the assumption that
Equation (1) does possess a proper solution. A proper solution of (1) is called oscillatory if
it has a sequence of large zeros lending to ∞; otherwise we call nonoscillatory.
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Because of the enormous advantage of neutral differential equations in describing
several neutral phenomena, there is great scientific and academic value in studying neutral
differential equations, both theoretically and practically; see [1]. Lately, there have been
numerous articles investigating the oscillation of the solutions of third/higher order neutral
differential equations with/without deviating arguments; see [2–16].

Baculíková et al. [17], Džurina et al. [18], and Li et al. [19] investigated third-order
equations of the form:[

a(ι)[x(ι) + p(ι)x(δ(ι))′′]γ
]′
+ q(ι)xγ(τ(ι)) = 0, ι ≥ ι0.

Jiang et al. [20] obtained several oscillation results for the third-order equation[
a(ι)[x(ι) + p(ι)x(δ(ι))′′]α

]′
+ q(ι) f (x(τ(ι))) = 0, ι ≥ ι0.

Tunç [21] investigated the third-order equation(
r(ι)
(
(x(ι) + p(ι)x(τ(ι)))′′

)α
)′

+
∫ b

a
q(ι, ξ)xα(φ(ι, ξ))dξ = 0.

Soliman et al. [22] investigated a third-order delay differential equation

(
a(ι)

(
(x(ι)±

n

∑
i=1

pi(ι)x(σi(ι)))
′′)α
)′

+
m

∑
j=1

f j(ι, x(τj(ι))) = 0.

The articles listed above deal with the case when the neutral coefficient p(ι) is bounded,
i.e., the cases where 0 ≤ p(ι) ≤ p0 < 1, −1 < p0 ≤ p(ι) ≤ 0, and 0 ≤ p(ι) ≤ p0 < ∞ were
considered, and so the results established in these papers cannot be applied to the case of
p(ι)→ ∞ as ι→ ∞.

More precisely, the existing literature does not provide any criteria for the oscillation
of third-order unbounded neutral differential equations with several deviating arguments
in the case when p(ι) → ∞ as ι → ∞. With this motivation, we provide several criteria
for oscillation of the differential Equation (1) under the assumptions of $(ι) ≥ φi(ι) and
$(ι) ≤ φi(ι) for i = 1, 2, · · · , n when p(ι) ≥ 1. Furthermore, the results presented in this
paper can be simply extended to more general third-order unbounded neutral differential
equations with several deviating arguments in order to achieve more generalized oscillation
results. As a result, it is envisaged that the present paper will make a significant contribution
to the study of oscillations of solutions of (1).

2. Main Results

We start with the following lemmas, which are required to prove our main theorems.
Through this paper, we will be using the following notations:

ζ ′+(ι) := max{0, ζ ′(ι)},

B1(ι, ι1) :=
∫ ι

ι1

ds
r1/α(s)

for ι ≥ ι1,

B2(ι, ι2) :=
∫ ι

ι2
B1(s, ι1)ds for ι ≥ ι2 > ι1.

Furthermore, throughout this paper, we assume that

ψ1(ι) :=
1

p($−1(ι))

[
1− 1

p($−1($−1(ι)))

]
> 0 (2)
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and

ψ2(ι) :=
1

p($−1(ι))

[
1− 1

p($−1($−1(ι)))

B2($
−1($−1(ι)), ι2)

B2($−1(ι), ι2)

]
> 0, (3)

for all sufficiently large ι, where $−1 is the inverse function of $, and we consider

Ω1(ι) :=
n

∑
i=1

qi(ι)(ψ1(φi(ι)))
α, Ω2(ι) :=

n

∑
i=1

qi(ι)(ψ2(φi(ι)))
α.

Lemma 1 ([23]). If X and Y are nonnegative and λ > 1, then

Xλ − λXYλ−1 + (λ− 1)Yλ ≥ 0.

Lemma 2. If x(ι) is an eventually positive solution of (1), then z(ι) satisfies either

(CI) z(ι) > 0, z′(ι) > 0, z′′(ι) > 0, and (r(ι)(z′′(ι))α)′ ≤ 0, or
(CI I) z(ι) > 0, z′(ι) < 0, z′′(ι) > 0, and (r(ι)(z′′(ι))α)′ ≤ 0.

The proof of the above lemma is standard and thus omitted.

Lemma 3. Let (2) hold, and let x(ι) be an eventually positive solution of (1) with z(ι) satisfying
(CI I) of Lemma 2. If ∫ ∞

ι0

∫ ∞

v

1
r1/α(u)

( ∫ ∞

u
Ω1(s)ds

)1/α
du dv = ∞, (4)

then limι→∞ x(ι) = 0.

Proof. Let x(ι) be an eventually positive solution of (1). Then, there exists ι1 ∈ [ι0,∞) such
that, for ι ≥ ι1, x(ι) > 0, x($(ι)) > 0, x(φi(ι)) > 0 and i = 1, 2, · · · , n. From the definition
of z, we have (see also [2] [(8.6)]):

x(ι) =
1

p($−1(ι))
(z($−1(ι))− x($−1(ι)))

=
z($−1(ι))

p($−1(ι))
− 1

p($−1(ι))p($−1($−1(ι)))

(
z($−1($−1(ι)))− x($−1($−1(ι)))

)
≥ z($−1(ι))

p($−1(ι))
− 1

p($−1(ι))p($−1($−1(ι)))
z($−1($−1(ι))). (5)

From $(ι) < ι, (iv) and the fact that z(ι) is decreasing, we have

z($−1(ι)) ≥ z($−1($−1(ι))),

using this in (5), we obtain
x(ι) ≥ ψ1(ι)z($−1(ι)),

so
x(φi(ι)) ≥ ψ1(φi(ι))z($−1(φi(ι))), i = 1, 2, · · · , n (6)

for ι ≥ ι2. Using (6) in (1) gives

(r(ι)(z′′(ι))α)′ +
n

∑
i=1

qi(ι)(ψ1(φi(ι)))
αzα($−1(φi(ι))) ≤ 0, (7)
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for ι ≥ ι2. From (iv)–(v) and the fact that z(ι) is decreasing, (7) yields

(r(ι)(z′′(ι))α)′ + zα($−1(ι)))
n

∑
i=1

qi(ι)(ψ1(φi(ι)))
α ≤ 0 for ι ≥ ι2. (8)

Since z(ι) > 0 and z′(ι) < 0, there exists a constant κ such that

lim
ι→∞

z(ι) = κ < ∞,

where κ ≥ 0. If κ > 0, then there exists ι3 ≥ ι2 such that $−1(θ1(ι)) > ι2 and

z(ι) ≥ κ for ι ≥ ι3. (9)

Integrating (8) from ι to ∞ two times we derive

−z′(ι) ≥ κ
∫ ∞

ι

1
r1/α(u)

( ∫ ∞

u

n

∑
i=1

qi(s)(ψ1(φi(s)))α
)1/α

du.

Integrating the resulting inequality from ι3 to ι, we obtain

z(ι3) ≥ κ
∫ ι

ι3

∫ ∞

v

1
r1/α(u)

( ∫ ∞

u

n

∑
i=1

qi(s)(ψ1(φi(s)))α
)1/α

du dv,

which contradicts (4), and so we have κ = 0. Therefore, limι→∞ z(ι) = 0. Since 0 < x(ι) ≤ z(ι)
on [ι1, ∞), we obtain limι→∞ x(ι) = 0.

Theorem 1. Assume that (2)–(4) hold and $(ι) ≥ φi(ι) for i = 1, 2, · · · , n. If there exists a
function ζ ∈ C1([ι0, ∞),R) such that

lim sup
ι→∞

∫ ι

T

[
ζ(s)

n

∑
i=1

qi(s)(ψ2(φi(s)))α
(B2($

−1(φi(s)), ι2)

B1(s, ι1)

)α
−

ζ ′+(s)
(B1(s, ι1))α

]
ds = ∞, (10)

for all ι1, ι2, T ∈ [ι0, ∞), where T > ι2 > ι1, then any solution of (1) is either oscillatory or satisfies
limι→∞ x(ι) = 0.

Proof. Assume that (1) has a nonoscillatory solution x(ι) on [ι0, ∞), say there exists
ι1 ∈ [ι0, ∞) such that, for ι ≥ ι1, x(ι) > 0, x($(ι)) > 0, and x(φi(ι)) > 0, (2) and (3)
hold, and z(ι) satisfies either (CI) or (CI I) for i = 1, 2, · · · , n. Assuming that (CI) holds and
proceeding as in the proof of Lemma 3, we obtain (5). Since r(ι)(z′′(ι))α is decreasing, we
see that

z′(ι) = z′(ι1) +
∫ ι

ι1

(r(s)(z′′(s))α)1/α

r1/α(s)
ds ≥ (r(ι)(z′′(ι))α)1/αB1(ι, ι1) for ι ≥ ι1. (11)

From (11), we have for all ι ≥ ι2 := ι1 + 1 that( z′(ι)
B1(ι, ι1)

)′
=

r−1/α(ι)[r1/α(ι)z′′(ι)B1(ι, ι1)− z′(ι)]
(B1(ι, ι1))2 ≤ 0,
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so z′(ι)/B1(ι, ι1) is decreasing for ι ≥ ι2. Next, using the fact that z′(ι)/B1(ι, ι1) is decreasing
for ι ≥ ι2, we obtain

z(ι) = z(ι2) +
∫ ι

ι2

z′(s)
B1(s, ι1)

B1(s, ι1)ds

≥ z′(ι)
B1(ι, ι1)

∫ ι

ι2
B1(s, ι1)ds

=
B2(ι, ι2)

B1(ι, ι1)
z′(ι) for ι ≥ ι2.

(12)

From (12), for all ι ≥ ι3 := ι2 + 1 we have that( z(ι)
B2(ι, ι2)

)′
=

z′(ι)B2(ι, ι2)− z(ι)B1(ι, ι1)

(B2(ι, ι2))2 ≤ 0,

so z(ι)/B2(ι, ι2) is decreasing for ι ≥ ι3. Next, in view of the fact that z(ι)/B2(ι, ι2) is
decreasing for ι ≥ ι3 and $(ι) < ι or $−1(ι) ≤ $−1($−1(ι)), we obtain

B2($
−1($−1(ι)), ι2)z($−1(ι))

B2($−1(ι), ι2)
≥ z($−1($−1(ι))). (13)

Using (13) in (5) yields

x(ι) ≥ 1
p($−1(ι))

[
1− 1

p($−1($−1(ι)))

B2($
−1($−1(ι)), ι2)

B2($−1(ι), ι2)

]
z($−1(ι)) = ψ2(ι)z($−1(ι)),

so
x(φi(ι)) ≥ ψ2(φi(ι))z($−1(φi(ι))), i = 1, 2, · · · , n (14)

for ι ≥ ι3. Using (14) in (1) gives

(r(ι)(z′′(ι))α)′ +
n

∑
i=1

qi(ι)(ψ2(φi(ι)))
αzα($−1(φi(ι))) ≤ 0. (15)

Next, we define

w(ι) = ζ(ι)
r(ι)(z′′(ι))α

(z′(ι))α
for ι ≥ ι1. (16)

Then w(ι) > 0, and from (15), we see that

w′(ι) =
ζ(ι)

(z′(ι))α

[
r(ι)(z′′(ι))α

]′
+

[
ζ(ι)

(z′(ι))α

]′
r(ι)(z′′(ι))α

= ζ ′(ι)
r(ι)(z′′(ι))α

(z′(ι))α
+ ζ(ι)

[
(r(ι)(z′′(ι))α)′

(z′(ι))α
− r(ι)(z′′(ι))α((z′(ι))α)′

(z′(ι))2α

]
≤ ζ ′+(ι)

r(ι)(z′′(ι))α

(z′(ι))α
− ζ(ι)

[ n

∑
i=1

qi(s)(ψ2(φi(s)))α zα($−1(φi(ι)))

(z′(ι))α

]
−αζ(ι)r(ι)

(z′′(ι))α+1

(z′(ι))α+1 (17)

for ι ≥ ι3 with ι3 ∈ (ι2, ∞) and ι2 ∈ (ι1, ∞). From (11), z′(ι) > 0 and z′′(ι) > 0, (17) yields

w′(ι) ≤
ζ ′+(ι)

(B1(ι, ι1))α
− ζ(ι)

[ n

∑
i=1

qi(s)(ψ2(φi(s)))α zα($−1(φi(ι)))

(z′(ι))α

]
zα(ι)

(z′(ι))α
for ι ≥ ι3. (18)
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Using the fact that z(ι)/B2(ι, ι2) is nonincreasing for ι ≥ ι3, and noting that $(ι) ≥ φi(ι)
implies $−1(φi(ι)) ≤ ι, we obtain

z($−1(φi(ι)))

z(ι)
≥ B2($

−1(φi(ι)), ι2)

B2(ι, ι2)
, i = 1, 2, · · · , n (19)

for ι ≥ ι3. Substituting (19) and (12) into (18), we obtain

w′(ι) ≤
ζ ′+(ι)

(B1(ι, ι1))α
− ζ(ι)

n

∑
i=1

qi(ι)(ψ2(φi(ι)))
α
(B2($

−1(φi(ι)), ι2)

B1(ι, ι1)

)α
for ι ≥ ι3. (20)

An integration of (20) from ι3 to ι yields

∫ ι

ι3

[
ζ(s)

n

∑
i=1

qi(s)(ψ2(φi(s)))α
(B2($

−1(φi(s)), ι2)

B1(s, ι1)

)α
−

ζ ′+(s)
(B1(s, ι1))α

]
ds ≤ w(ι3),

which contradicts (10).
This implies that (CI I) holds, and so from Lemma 3, we have limι→∞ x(ι) = 0. This

completes the proof.

Theorem 2. Assume that (2)–(4) hold and $(ι) ≥ φi(ι) for i = 1, 2, · · · , n. If there exists a
function ζ ∈ C1([ι0, ∞),R) such that

lim supι→∞
∫ ι

T

[
ζ(s)∑n

i=1 qi(s)(ψ2(φi(s)))α
(

B2($
−1(φi(s)),ι2)
B1(s,ι1)

)α
− r(s)(ζ ′+(s))

α+1

(α+1)α+1ζα(s)

]
ds = ∞, (21)

for all ι1, ι2, T ∈ [ι0, ∞), where T > ι2 > ι1, then any solution of (1) is either oscillatory or satisfies
limι→∞ x(ι) = 0.

Proof. Assume that (1) has a nonoscillatory solution x(ι) on [ι0, ∞), say there exists
ι1 ∈ [ι0,∞) such that, for ι ≥ ι1, x(ι) > 0, x($(ι)) > 0, and x(φi(ι)) > 0, (2) and (3)
hold, for z(ι) satisfies either (CI) or (CI I) and i = 1, 2, · · · , n. Assume that (CI) holds. We
use the same type of argument as in the proof of the Theorem 1, and arrive at (17). In view
of (16), inequality (17) takes the form

w′(ι) ≤ ζ ′+(ι)
ζ(ι)

w(ι)− ζ(ι)

[
∑n

i=1 qi(ι)(ψ2(φi(ι)))
α zα($−1(φi(ι)))

(z′(ι))α

]
zα(ι)

(z′(ι))α − αw(α+1)/α(ι)
(ζ(ι)r(ι))1/α . (22)

Using (12) and (19) in (22), for ι ≥ ι3, we obtain

w′(ι) ≤
ζ ′+(ι)

ζ(ι)
w(ι)− αw(α+1)/α(ι)

(ζ(ι)r(ι))1/α
− ζ(ι)

n

∑
i=1

qi(ι)(ψ2(φi(ι)))
α
(B2($

−1(φi(ι)), ι2)

B1(ι, ι1)

)α
. (23)

If we apply Lemma 1 with X = α1/λ

[(ζ(ι)r(ι))1/α ]1/λ w(ι), Y =
[

α
α+1

[(ζ(ι)r(ι))1/α ]1/λ

α1/λ

ζ ′+(ι)
ζ(ι)

]α
and

λ = α+1
α , we see that

ζ ′+(ι)

ζ(ι)
w(ι)− α

(ζ(ι)r(ι))1/α
w(α+1)/α(ι) ≤ 1

(α + 1)α+1
r(ι)(ζ ′+(ι))α+1

ζα(ι)
.

Using this in (23) gives

w′(ι) ≤ 1
(α + 1)α+1

r(ι)(ζ ′+(ι))α+1

ζα(ι)
− ζ(ι)

n

∑
i=1

qi(ι)(ψ2(φi(ι)))
α
(B2($

−1(φi(ι)), ι2)

B1(ι, ι1)

)α
.
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Integrating the latter inequality from ι3 to ι yields

lim sup
ι→∞

∫ ι

T

[
ζ(s)

n

∑
i=1

qi(s)(ψ2(φi(s)))α
(B2($

−1(φi(s)), ι2)

B1(s, ι1)

)α
−

r(s)(ζ ′+(s))α+1

(α + 1)α+1ζα(s)

]
ds ≤ w(ι3),

which contradicts (21). Therefore (CI I) holds, and so limι→∞ x(ι) = 0 by Lemma 3. This
completes the proof.

Next, we examine the oscillation results of solutions of (1) by Philos-type [3]. Let
S0 = {(ι, s) : a ≤ s < ι < +∞} , S = {(ι, s) : a ≤ s ≤ ι < +∞}; the continuous function
E(ι, s), E : S→ R belongs to the class function <
(CI) E(ι, ι) = 0 for ι ≥ ι0 and E(ι, s) > 0 for (ι, s) ∈ S0,

(CI I)
∂E(ι,s)

∂s ≤ 0, (ι, s) ∈ S0 and some locally integrable function e(ι, s) such that

∂E(ι, s)
∂s

+ E(ι, s)
ζ ′(ι)

ζ(ι)
=

e+(ι, s)
ζ(ι)

(
E(ι, s)

) 1
α for all (ι, s) ∈ S0.

Theorem 3. Assume that (2)–(4) hold and $(ι) ≥ φi(ι) for i = 1, 2, · · · , n. If there exists a
function ζ ∈ C1([ι0, ∞),R) such that

lim sup
ι→∞

1
E(ι, ι∗)

∫ ι

ι∗

[
E(ι, s)ζ(s)

n

∑
i=1

qi(s)(ψ2(φi(s)))α
(B2($

−1(φi(s)), ι2)

B1(s, ι1)

)α

−
r(s)(ζ ′+(s))α+1

(α + 1)α+1ζα(s)

]
ds = ∞,

(24)

for all ι1, ι2, ι∗ ∈ [ι0, ∞), where ι∗ > ι2 > ι1, then any solution of (1) is either oscillatory or satisfies
limι→∞ x(ι) = 0.

Proof. Assume that (1) has a nonoscillatory solution x(ι) on [ι0, ∞), say there exists
ι1 ∈ [ι0,∞) such that, for ι ≥ ι1, x(ι) > 0, x($(ι)) > 0, and x(φi(ι)) > 0, (2) and (3)
hold, for z(ι) satisfies either (CI) or (CI I) and i = 1, 2, · · · , n. Assume that (CI) holds.
Following the same arguments as in the proof of the Theorem 1, we arrive at (17). In view
of (16), inequality (17) takes the form

ζ(ι)∑n
i=1 qi(ι)(ψ2(φi(ι)))

α
(

B2($
−1(φi(ι)),ι2)
B1(ι,ι1)

)α
≤ −w′(ι) + ζ ′+(ι)

ζ(ι)
w(ι)− αw(α+1)/α(ι)

(ζ(ι)r(ι))1/α . (25)

Multiplying by E(ι, s) and integrating (25) from ι3 to ι, one can obtain that

∫ ι

ι3
E(ι, s)ζ(s)

n

∑
i=1

qi(s)(ψ2(φi(s)))α
(B2($

−1(φi(s)), ι2)

B1(s, ι1)

)α
ds

≤ −
∫ ι

ι3
E(ι, s)w′(s)ds +

∫ ι

ι3
E(ι, s)

ζ ′+(s)
ζ(s)

w(s)ds−
∫ ι

ι3
E(ι, s)

αw(α+1)/α(s)
(ζ(s)r(s))1/α

ds

≤ E(ι, ι3)w(ι3) +
∫ ι

ι3

{
∂E(ι, s)

∂s
+ E(ι, s)

ζ ′+(s)
ζ(s)

}
w(s)ds−

∫ ι

ι3
E(ι, s)

αw(α+1)/α(s)
(ζ(s)r(s))1/α

ds

≤ E(ι, ι3)w(ι3) +
∫ ι

ι3

(
E(ι, s)

) 1
α

e+(ι, s)
ζ(s)

w(s)ds−
∫ ι

ι3
E(ι, s)

αw(α+1)/α(s)
(ζ(s)r(s))1/α

ds. (26)

Now, using the Lemma 1, set

X =

[
αE(ι, s)

(ζ(s)r(s))1/α

]1/λ

w(s)
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and

Y =

[
α

1 + α

[(
(ζ(s)r(s))1/α

)1/λ

α1/λ

e+(ι, s)
ζ(s)

]α

we obtain that

∫ ι
ι3

[
E(ι, s)ζ(s)∑n

i=1 qi(s)(ψ2(φi(s)))α
(

B2($
−1(φi(s)),ι2)
B1(s,ι1)

)α
− r(s)(ζ ′+(s))

α+1

(α+1)α+1ζα(s)

]
ds ≤ E(ι, ι3)w(ι3),

which contradicts (24). Therefore (CI I) holds, and so limι→∞ x(ι) = 0 by Lemma 3. This
completes the proof.

Corollary 1. Suppose that all conditions of Theorem 3 are satisfied with (24) replaced by

lim sup
ι→∞

1
E(ι, ι∗)

∫ ι

ι∗
E(ι, s)ζ(s)

n

∑
i=1

qi(s)(ψ2(φi(s)))α
(B2($

−1(φi(s)), ι2)

B1(s, ι1)

)α
ds = ∞

and

lim sup
ι→∞

1
E(ι, ι∗)

∫ ι

ι∗

r(s)(ζ ′+(s))α+1

ζα(s)
ds < ∞,

then any solution of (1) is either oscillatory or satisfies limι→∞ x(ι) = 0.

Theorem 4. Let α ≥ 1. Assume that (2)–(4) hold and $(ι) ≥ φi(ι) for i = 1, 2, · · · , n. If there
exists a function ζ ∈ C1([ι0, ∞),R) such that

lim sup
ι→∞

∫ ι

T

[
ζ(s)

n

∑
i=1

qi(s)(ψ2(φi(s)))α
(B2($

−1(φi(s)), ι2)

B1(s, ι1)

)α
−

r1/α(s)(ζ ′+(s))2

4αζ(s)[B1(s, ι1)]α−1

]
ds = ∞, (27)

for all ι1, ι2, T ∈ [ι0, ∞), where T > ι2 > ι1, then any solution of (1) is either oscillatory or satisfies
limι→∞ x(ι) = 0.

Proof. Let (1) have a nonoscillatory solution x(ι) on [ι0, ∞), and say there exists ι1 ∈ [ι0,∞)
such that, for ι ≥ ι1, x(ι) > 0, x($(ι)) > 0, and x(φi(ι)) > 0, (2) and (3) hold, and z(ι)
satisfies either (CI) or (CI I) for i = 1, 2, · · · , n. Assume (CI) holds. Following the same
arguments as in the proof of the Theorem 2, we arrive at (23), which can be rewritten as

w′(ι) ≤
ζ ′+(ι)

ζ(ι)
w(ι)− ζ(ι)Ω2(ι)

(B2($
−1((ι)), ι2)

B1(ι, ι1)

)α
− αw2(ι)w

1
α−1(ι)

(ζ(ι)r(ι))1/α
. (28)

From (11) and (16) , we see that

w
1
α−1(ι) = (ζ(ι)r(ι))

1
α−1 (z

′′(ι))1−α

(z′(ι))1−α

= (ζ(ι)r(ι))
1
α−1
( z′(ι)

z′′(ι)

)α−1

≥ (ζ(ι)r(ι))
1
α−1[r1/α(ι)B1(ι, ι1)

]α−1

= ζ
1
α−1

(ι)[B1(ι, ι1)]
α−1.

(29)

Using (29) in (28), for ι ≥ ι3, we obtain

w′(ι) ≤ −ζ(ι)∑n
i=1 qi(ι)(ψ2(φi(ι)))

α
(

B2($
−1(φi(ι)),ι2)
B1(ι,ι1)

)α
+

ζ ′+(ι)
ζ(ι)

w(ι)− α[B1(ι,ι1)]α−1

ζ(ι)r1/α(ι)
w2(ι). (30)
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Bringing the square to a close with respect to w, from (30) it follows that

w′(ι) ≤ −ζ(ι)
n

∑
i=1

qi(ι)(ψ2(φi(ι)))
α
(B2($

−1(φi(ι)), ι2)

B1(ι, ι1)

)α
+

r1/α(ι)

4α[B1(ι, ι1)]α−1
(ζ ′+(ι))

2

ζ(ι)
.

Integrating this inequality from ι3 to ι gives

∫ ι

T

[
ζ(s)

n

∑
i=1

qi(s)(ψ2(φi(s)))α
(B2($

−1(θ2(s)), ι2)

B1(s, ι1)

)α
−

r1/α(s)(ζ ′+(s))2

4αζ(s)[B1(s, ι1)]α−1

]
ds ≤ w(ι3),

which contradicts (27).
If (CI I) holds, then again from Lemma 3, we have limι→∞ x(ι) = 0. The proof is

complete.

Next, we give oscillation results in the case when $(ι) ≤ φi(ι) for i = 1, 2, · · · , n holds.

Theorem 5. Assume that (2)–(4) hold and $(ι) ≤ φi(ι) for i = 1, 2, · · · , n. If there exists a
function ζ ∈ C1([ι0, ∞),R) such that

lim sup
ι→∞

∫ ι

T

[
ζ(s)Ω2(s)

(B2(s, ι2)

B1(s, ι1)

)α
−

ζ ′+(s)
(B1(s, ι1))α

]
ds = ∞, (31)

for all ι1, ι2, T ∈ [ι0, ∞), where T > ι2 > ι1, then any solution of (1) is either oscillatory or satisfies
limι→∞ x(ι) = 0.

Proof. Let (1) has a nonoscillatory solution x(ι) on [ι0, ∞), say there exists ι1 ∈ [ι0,∞)
such that, for ι ≥ ι1, x(ι) > 0, x($(ι)) > 0, and x(φi(ι)) > 0, (2) and (3) hold, for z(ι)
satisfies either (CI) or (CI I) and i = 1, 2, · · · , n. Assume that (CI) holds. Following the same
arguments as in the proof of the Theorem 1, we arrive at (18). Using the fact that $(ι) is
strictly increasing and $(ι) ≤ φi(ι), we have

ι ≤ $−1(φi(ι)), i = 1, 2, · · · , n.

Thus, in view of the fact that z(ι) is increasing, we obtain

z($−1(φi(ι)))

z(ι)
≥ 1, i = 1, 2, · · · , n. (32)

Using (32) in (18), we obtain that

w′(ι) ≤
ζ ′+(ι)

(B1(ι, ι1))α
− ζ(ι)

zα(ι)

(z′(ι))α

n

∑
i=1

qi(s)(ψ2(φi(s)))α for ι ≥ ι3. (33)

In view of (12), (33) takes the form

w′(ι) ≤
ζ ′+(ι)

(B1(ι, ι1))α
− ζ(ι)Ω2(ι)

(B2(ι, ι2)

B1(ι, ι1)

)α
for ι ≥ ι3. (34)

The remainder of the proof is similar to that of Theorem 1 and so we omit it.

Theorem 6. Assume that (2)–(4) hold and $(ι) ≤ φi(ι) for i = 1, 2, · · · , n. If there exists a
function ζ ∈ C1([ι0, ∞),R) such that

lim sup
ι→∞

∫ ι

T

[
ζ(s)Ω2(s)

(B2(s, ι2)

B1(s, ι1)

)α
−

r(s)(ζ ′+(s))α+1

(α + 1)α+1ζα(s)

]
ds = ∞, (35)
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for all ι1, ι2, T ∈ [ι0, ∞), where T > ι2 > ι1, then any solution of (1) is either oscillatory or satisfies
limι→∞ x(ι) = 0.

Theorem 7. Assume that (2)–(4) hold and $(ι) ≤ φi(ι) for i = 1, 2, · · · , n. If there exists a
function ζ ∈ C1([ι0, ∞),R) such that

lim sup
ι→∞

1
E(ι, ι∗)

∫ ι

ι∗

[
E(ι, s)ζ(s)Ω2(s)

(B2(s, ι2)

B1(s, ι1)

)α
−

r(s)(ζ ′+(s))α+1

(α + 1)α+1ζα(s)

]
ds = ∞, (36)

for all ι1, ι2, ι∗ ∈ [ι0, ∞), where ι∗ > ι2 > ι1, then any solution of (1) is either oscillatory or satisfies
limι→∞ x(ι) = 0.

Corollary 2. Suppose that all conditions of Theorem 7 are satisfied with (36) replaced by

lim sup
ι→∞

1
E(ι, ι∗)

∫ ι

ι∗
E(ι, s)ζ(s)Ω2(s)

(B2(s, ι2)

B1(s, ι1)

)α
ds = ∞

and

lim sup
ι→∞

1
E(ι, ι∗)

∫ ι

ι∗

r(s)(ζ ′+(s))α+1

(α + 1)α+1ζα(s)
ds < ∞,

then any solution of (1) is either oscillatory or satisfies limι→∞ x(ι) = 0.

Theorem 8. Let α ≥ 1. Assume that (2)–(4) hold and $(ι) ≤ φi(ι) for i = 1, 2, · · · , n. If there
exists a function ζ ∈ C1([ι0, ∞),R) such that

lim sup
ι→∞

∫ ι

T

[
ζ(s)Ω2(s)

(B2(s, ι2)

B1(s, ι1)

)α
− r1/α(s)

4α[B1(s, ι1)]α−1
(ζ ′+(s))2

ζ(s)

]
ds = ∞, (37)

for all ι1, ι2, T ∈ [ι0, ∞), where T > ι2 > ι1, then any solution of (1) is either oscillatory or satisfies
limι→∞ x(ι) = 0.

Example 1. Consider the differential equation(((
x(ι) + 8x

(
ι/2
))′′)3

)′
+ ι2x3(ι/4) + ι3x3(ι/8) = 0, ι ≥ 1 (38)

where α = 3, r(ι) = 1, p(ι) = 8, $(ι) = ι/2, q1(ι) = ι2, q2(ι) = ι3, φ1(ι) = ι/4 and
φ2(ι) = ι/8. Then, we obtain

B1(ι, ι1) = B1(ι, 1) = ι− 1,

B2(ι, ι2) = B2(ι, 2) = (ι2 − 2ι)/2,

B2($
−1(ι), ι2) = B2(2ι, 2) = 2ι2 − 2ι,

B2($
−1($−1(ι)), ι2) = B2(4ι, 2) = 8ι2 − 4ι

B2($
−1(φ1(ι)), ι2) = B2(ι/2, 2) =

4ι2 − ι

8

B2($
−1(φ2(ι)), ι2) = B2(ι/4, 2) =

8ι2 − ι

32
,



Fractal Fract. 2021, 5, 95 11 of 13

and

ψ1(ι) =
1
8

(
1− 1

8

)
= 7/64 > 0,

ψ2(ι) =
1
8

(
1− 1

8
8ι2 − 4ι

2ι2 − 2ι

)
=

1
8

(2ι− 1
ι− 1

)
≥ 1

32
> 0, for ι ≥ ι2 = 2,

Ω1(ι) =
2

∑
i=1

qi(ι)(ψ1(φi(ι)))
α = ι2

( 7
64

)3
+ ι3

( 7
64

)3
= ι2

( 7
64

)3
(1 + ι).

It is easy to verify that∫ ∞

ι0

∫ ∞

v

1
r1/α(u)

( ∫ ∞

u
Ω1(s)ds

)1/α
du dv =

∫ ∞

1

∫ ∞

v

∫ ∞

u

( 7
64

)
(s2(1 + s))

1
3 ds du dv = ∞,

and picking ζ(ι) = ι, we see that

∫ ∞

T

[
s

2

∑
i=1

qi(s)(ψ2(φi(s)))3
(B2($

−1(φi(s)), ι2)

B1(s, ι1)

)3
− 1

(B1(s, ι1))3

]
ds

=
∫ ∞

2

{
s3
( 7

64

)3( 4s2 − s
8(s− 1)

)3
+ s4(

1
32

)3
( 8s2 − s

32(s− 1)

)3
− 1

(s− 1)3

}
ds = ∞.

Hence, any solution of (38) is either oscillatory or satisfies limι→∞ x(ι) = 0 by Theorem 1.

Example 2. Consider the differential equation(((
x(ι) + 7ι+8

ι+1 x
(
ι− 2

))′′)1/5
)′

+ (ι2 + ι)x1/5(ι− 3
2 ) + (ι3 + ι)x1/5(ι− 1

2 ) = 0, ι ≥ 2 (39)

where α = 1/5, r(ι) = 1, p(ι) = 7ι+8
ι+1 , $(ι) = ι− 2, q1(ι) = ι2 + ι, q2(ι) = ι3 + ι, φ1(ι) =

ι− 3/2 and φ2(ι) = ι− 1/2. Then, we obtain

7 ≤ p(ι) < 8,

B1(ι, ι1) = B1(ι, 2) = ι− 2,

B2(ι, ι2) = B2(ι, 3) = (ι2 − 4ι + 3)/2,

B2($
−1(ι), ι2) = B2(ι + 2, 3) = (ι2 − 1)/2,

B2($
−1($−1(ι)), ι2) = B2(ι + 4, 3) = (ι2 + 4ι + 3)/2ι,

and

ψ1(ι) ≥
1
8

(
1− 1

7

)
= 3/28 > 0,

ψ2(ι) =
1
8

(
1− 1

7
ι2 + 4ι + 3

ι2 − 1

)
≥ 1

14
> 0, for ι ≥ ι2 = 3,

Ω1(ι) =
2

∑
i=1

qi(ι)(ψ1(φi(ι)))
1
5 =

( 3
28

) 1
5
(ι3 + ι2 + 2ι),

Ω2(ι) =
2

∑
i=1

qi(ι)(ψ2(φi(ι)))
α ≥

( 1
14

)1/5
(ι3 + ι2 + 2ι), for ι ≥ ι2 = 3.
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It is easy to verify that ∫ ∞

ι0

∫ ∞

v

1
r1/α(u)

( ∫ ∞

u
Ω1(s)ds

)1/α
du dv =

(
3

28
)

1
5

∫ ∞

2

∫ ∞

v

∫ ∞

u
(s3 + s2 + 2s)1/5ds du dv = ∞,

and picking ζ(ι) = 1, we see that

∫ ∞

T

[
ζ(s)Ω2(s)

(B2(s, ι2)

B1(s, ι1)

)1/5
−

ζ ′+(s)
(B1(s, ι1))1/5

]
ds

=
∫ ∞

3

{( 1
14

)1/5
(s3 + s2 + 2s)

( s2 − 4s + 3
2s− 4

)1/5
}

ds = ∞.

Hence, any solution of (39) is either oscillatory or satisfies limι→∞ x(ι) = 0, by Theorem 5.

3. Conclusions

We established several oscillation theorems for (1) under the assumptions of $(ι) ≥ φi(ι)
and $(ι) ≤ φi(ι) for i = 1, 2, · · · , n, when p(ι) ≥ 1. The main outcomes were proven via
the means of a generalized Riccati technique, integral averaging conditions under the
assumptions of

∫ ∞
ι0

r−1/α(s)ds = ∞. Two examples were given to prove the significance of
new theorems. The primary conclusions given in this work are basically new and have a
high degree of generality. For future consideration, it will be of great importance to study
the oscillation of (1) when

∫ ∞
ι0

r−1/α(s)ds < ∞.
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