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Abstract: The present investigation dealing with a hybrid technique coupled with a new iterative
transform method, namely the iterative Elzaki transform method (IETM), is employed to solve
the nonlinear fractional Fisher’s model. Fisher’s equation is a precise mathematical result that
arose in population dynamics and genetics, specifically in chemistry. The Caputo and Antagana-
Baleanu fractional derivatives in the Caputo sense are used to test the intricacies of this mechanism
numerically. In order to examine the approximate findings of fractional-order Fisher’s type equations,
the IETM solutions are obtained in series representation. Moreover, the stability of the approach was
demonstrated using fixed point theory. Several illustrative cases are described that strongly agree
with the precise solutions. Moreover, tables and graphs are included in order to conceptualize the
influence of the fractional order and on the previous findings. The projected technique illustrates
that only a few terms are sufficient for finding an approximate outcome, which is computationally
appealing and accurate to analyze. Additionally, the offered procedure is highly robust, explicit, and
viable for nonlinear fractional PDEs, but it could be generalized to other complex physical phenomena.

Keywords: Elzaki transform; Caputo fractional derivative; AB-fractional operator; new iterative
transform method; Fisher’s equation

1. Introduction

Researchers from various domains have been interested in fractional differential
equations (FDEs) due to their wide applicability, and they are considered to be a handy
tool for simulating the behaviour of several complex processes that have ramifications
in specified disciplines of the physical sciences. Interestingly, it has boosted tremendous
applications in autocatalytic reactions, anomalous diffusion process, viscoelastic damping,
Maxwell fluid, virology, advection-diffusion process, thermal sciences, kinetics, optics,
hydrodynamics, and epidemic diseases; different fractional calculus formulations are
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implemented in FDEs in order to adequately interpret and analyze memory. Numerous
sorts of definitions and notions of fractional operators have been expounded by individuals
such as Coimbra, Davison, and Essex; Riesz; Riemann and Liouville; Hadamard; Weyl;
Jumarie; Caputo and Fabrizio [1]; Atangana and Baleanu [2]; Grünwald and Letnikov [3];
and Liouville and Caputo [4]. However, the Liouville-Caputo and AB operators are the
best fractional filters.

Several studies have been contemplated on the applications of these operators. For
example, Morales-Delgado [5] proposed a fractional analysis with and without kernel sin-
gularity. The authors of [6] employed AB fractional derivatives for finding the generalized
Casson fluid model. Atangana and Alkahtani [7] used the Caputo–Fabrizio derivative for
the analysis of groundwater flowing within a confined aquifer. Kumar et al. [8] consid-
ered the approximate-analytical solution of the regularized long-wave model by using the
AB-fractional operator. Singh et al. [9] use the Mittag-Leffler type function to characterize
the kinetics of an AB-fractional operator. The researchers of [10] proposed novel fractional
optimal control problems with non-singular Mittage-Leffler functions as a kernel. More
specifically, the Mittage-Leffler function is far more effective than the power and exponen-
tial functions in expressing physical difficulties. Consequently, the fractional derivative
of the AB operator is well suited to unraveling heterogeneities in substances, structures,
or media of various sizes.

Fractional PDEs have recently become extremely valuable in a variety of fields, includ-
ing stochastic models, ground water flow, bacterial growth rates, astrophysics, and many
more. Generally, PDEs are classified into conservation laws of energy, momentum, or elec-
tric charge (e.g., Fitzhugh-Nagumo equation, Korteweg-de Vties equations, Navier–Stokes
equations, and Kawahara equations). The development of accurate and explicit solutions to
nonlinear PDEs is a challenging task in applied sciences, and it is one of the most promising
and productive research areas. Due to these facts, numerous mathematical methods for con-
figuring approximate solutions have been proposed, such as the Adomian decomposition
method (ADM) [11–13], homotopy perturbation method (HPM) [14,15], Laplace iterative
transform method (LITM) [16], q-homotopy analysis method (q-HAM) [17], Haar wavelet
method (HWM) [18], Lie symmetry analysis (LSA) [19], Chebyshev spectral collocation
method (CSCM) [20], and many more.

Consider the generalized time-fractional Burgers–Fisher equation [18] presented
as follows:

∂αf
∂t̄α

+ ζfβ ∂f
∂x1

= σ
∂2f
∂x2

1
+ θf(1− fβ) (1)

where ζ, σ, θ are parameters and 0 < α ≤ 1. (1) plays a vital role in fluid dynamics models,
heat conduction, elasticity, and capillary-gravity waves. When ζ = 0 and β = 1 (1) are
transformed into a Fisher’s type equation, the derivative in (1) is a Caputo/AB-fractional
derivative of order α.

Specifically, if ζ = 0 and σ = θ = 1, the generalized time-fractional Fisher’s biological
population diffusion equation [18] is presented as follows:

∂αf
∂t̄α

=
∂2f
∂x2

1
+F (f) (2)

where f(x1, t̄) refers the population density and t̄ > 0, x1 ∈ R, and F (f) is a contin-
uous nonlinear function fulfilling the following hypothesis: F (0) = F (1) = 0, and
F ′(1) < 0 < F ′(0).

Equation (1) transformed into the logistic equation if α = 1, ζ = 0 and the confluence
of the diffusion equation has the diffusion factor σ and the birth rate θ. The coordinates
(x1, t̄) specified by f(x1, t̄) provide the state evolution across the spatial-temporal domain.
Fisher’s equation is used in many fields, including chemical kinetics [21], Neolithic transi-
tions [22], branching Brownian motion [23], epidemics and bacteria [24], and many others.
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Wazwaz and Gorguis [11] used the ADM to solve Fisher’s equation and demonstrated
their convergence. Dag et al. [25] contemplated the B-spline Galerkin method for Fisher’s
equation. Bastani and Salkuyeh [26] adopted the compact finite difference approach in as-
sociation with the third-order Runge–Kutta method to obtain Fisher’s equation. For further
investigations into linear and nonlinear Fisher’s equations, see [27,28].

In 2001, Elzaki [29] expounded a new transform in order to facilitate the process of
solving ODEs and PDEs in the time domain. This novel transform is the generalization of
existing transforms (Laplace and Sumudu) that can contribute to in an analogous way to
the Laplace and Sumudu transformations in order to determine the analytical solutions to
the PDEs.

In [30], Daftardar-Gejji and Jafari suggested a new iterative approach (NITM) for
solving functional equations, with the results reported in series form. Decomposing
the nonlinear terms constitutes the foundation for the formulation of an iterative tech-
nique. Jafari et al. [16], first coupled the Laplace transform in the NITM and then they
generated a novel recursive approach, namely ILTM, for obtaining the numerical conse-
quences of FPDEs. Later, this approach has been correlated with different transformations
(e.g., Sumudu transform, Aboodh transform, Elzaki transform, and Mohand transform)
(see [31–34]). This methodology is incredibly pragmatic, and it does not entail the in-
clusion of an unconditioned matrix, convoluted integrals, or infinite series expressions.
This approach avoids the demand for any explicit problematic configurations. NITM has
been employed to solve PDEs in multiple investigations, including the KdV equation [35],
Fornberg-Whitham equation [36], and Klein-Gordon equations [37].

Considering the substantial literature on fractional PDE frameworks, determining
the analytical results of the underlying PDE is not an inexpensive procedure. In this
perspective, we intend to design an appropriate technique for evaluating the numerical
solution to Fisher’s, the generic Fisher equation, and nonlinear diffusion equations of the
Fisher type that depict the complexities of the mechanism under consideration by utilizing
NITM. The Elzaki transform (ET) is merged with the NITM, and the proactive concept
is said to be the iterative Elzaki transform method (IETM). This novel method is applied
to examining fractional-order Fisher’s models. In order to illustrate the capability of the
recommended methodology, the findings of certain experimental examples were analysed.
New strategies are applied to establish the results of the fractional-order and closed form
results. An evaluation of IETM’s convergence and uniqueness is also supplied. We test
the superiority and practicality of the described algorithmic strategies for generating the
analytical results in a numerical simulation leveraging fabricated trajectories inferred from
Fisher’s model. Additionally, other fractional-orders of linear and non-linear PDEs can be
handled by the expounded approach.

2. Preliminaries

In this section, we will discus some basic preliminaries, definitions, and fractional
frameworks of derivatives with power-law and Mittag-Leffler functions in their kernels,
as well as the ET and fractional integrals.

Definition 1 ([35]). The Caputo fractional derivative (CFD) is defined as follows.

c
0Dα

t̄ =


1

Γ(−α)

t̄∫
0

f()(x1)
(t̄−x1)

α+1− dx1, − 1 < α < ,

d

dt̄ f(t̄), α = .
(3)

Definition 2 ([2]). The AB fractional derivative in the Caputo sense (ABC) is presented as follows:

ABC
a1
Dα

t̄
(
f(t̄)

)
=

N(α)
1− α

t̄∫
a1

f′(t̄)Eα

[
− α(t̄− x1)

α

1− α

]
dx1, (4)
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where f ∈ H1(α̌, β̌), α̌ < β̌, α ∈ [0, 1] and N(α) indicates a normalization function as N(α) =
N(0) = N(1) = 1.

Definition 3 ([2]). The fractional integral of the ABC-operator is stated as follows.

ABC
a1
Iα

t̄
(
f(t̄)

)
=

1− α

N(α) f(t̄) +
α

Γ(α)N(α)

t̄∫
a1

f(x1)(t̄− x1)
α−1dx1. (5)

Definition 4 ([29]). A setM containing exponential mapping is presented as follows:

M =
{

f(t̄) : ∃z, p1, p2 > 0,
∣∣f(t̄)∣∣ < ze

|t̄|
pi , i f t̄ ∈ (−1)i × [0, ∞)|

}
. (6)

where z is a finite number, but p1, p2 may be finite or infinite.

Definition 5 ([29,35]). The ET of a given mapping f(t̄) is stated as follows.

E
{

f(t̄)
}
(ω) = Ũ (ω) = ω

∞∫
0

e−
t̄
ω f(t̄)dt̄, t̄ ≥ 0, ω ∈ [p1, p2]. (7)

Definition 6 ([36]). The Elzaki transform of the CFD is presented as follows.

E
{

c
0Dα

t̄
(
f(t̄)

)}
(ω) = ω−αŨ (ω)−

−1

∑
κ=0

ω2−α+κf(κ)(0), − 1 < α < . (8)

Definition 7 ([37]). The ET of the ABC fractional derivative operator is presented as follows:

E
{

ABC
0 Dα

t̄
(
f(t̄)

)}
(ω) =

N(α)
αωα + 1− α

(
Ũ (ω)

ω
−ωf(0)

)
, (9)

where E
{

f(t̄)
}
(ω) = Ũ (ω).

3. Application of Caputo-Liouville and ABC Fractional Derivatives to the Non-Linear
Fisher’s Model

In this note, we analyze time fractional Caputo-Liouville and the ABC fractional
derivative operator in order to analyze the non-linear Fisher’s equation [18]. The model
under consideration is presented as follows:

⊗
0 D

α
t̄ = η

∂2f(x1, t̄)
∂x2

1
− θ(f(x1, t̄)− ϕ)(1− fβ(x1, t̄)), β > 1, 0 < α ≤ 1, (10)

which is subject to the following condition.

f(x1, 0) = 0, a ≤ x1 ≤ b. (11)

3.1. Description of IETM
Assume the following nonlinear fractional PDE:

⊗Dα
t̄ f(x1, t̄) + L̃f(x1, t̄) + Ñ f(x1, t̄) = F (x1, t̄), t̄ > 0, 0 < α ≤ 1, − 1 < α ≤ ,  ∈ N, (12)

subject to the initial condition

∂fκ

∂t̄κ
(x1, 0) = Gκ(x1), κ = 0, 1, . . . , m1 − 1. (13)

where ⊗Dα
t̄ = ∂αf(x1,t̄)

∂t̄α denotes the Caputo or ABC fractional derivative operator with 0 < α ≤ 1,
while L̃ and Ñ are linear and nonlinear terms, and F (x1, t̄) indicates the source term.
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By employing the Elzaki transform to (12), we acquire the following.

E
[⊗Dα

t̄ f(x1, t̄) + L̃f(x1, t̄) + Ñ f(x1, t̄)
]
= E

[
F (x1, t̄)

]
.

By the virtue of the Elzaki differentiation property for the Caputo fractional derivative operator
defined in (6), we have the following.

1
ωα

E
[
f(x1, t̄)

]
−

m1−1

∑
κ=0

f(κ)(x1, 0)ω2−α+κ = −E
[
L̃f(x1, t̄) + Ñ f(x1, t̄)

]
+E

[
F (x1, t̄)

]
,

E
[
f(x1, t̄)

]
= ω2f(x1, 0) + ωαE

[
F (x1, t̄)

]
−ωαE

[
L̃f(x1, t̄) + Ñ f(x1, t̄)

]
. (14)

Again, in view of the Elzaki differentiation property for the ABC fractional derivative operator
defined in (7), we have the following.

E
[
f(x1, t̄)

]
= ω2f(x1, 0) +

αωα + 1− α

N(α) E
[
F (x1, t̄)

]
− αωα + 1− α

N(α) E
[
L̃f(x1, t̄) + Ñ f(x1, t̄)

]
. (15)

Now, by applying the inverse Elzaki transform to (14) and (15), respectively, we have the
following:

f(x1, t̄) = E−1
{

ω2f(x1, 0) + ωαE
[
F (x1, t̄)

]}
−E−1

{
ωαE

[
L̃f(x1, t̄) + Ñ f(x1, t̄)

]}
, (16)

and

f(x1, t̄) = E−1
{

ω2f(x1, 0) +
αωα + 1− α

N(α) E
[
F (x1, t̄)

]}
−E−1

{
αωα + 1− α

N(α) E
[
L̃f(x1, t̄) + Ñ f(x1, t̄)

]}
. (17)

The iterative process in terms of power series is prescribed as follows.

f(x1, t̄) =
∞

∑
m1=0

fm1(x1, t̄). (18)

Moreover, the linear factor can be stated as the following.

L̃
( ∞

∑
m1=0

fm1(x1, t̄)
)
=

∞

∑
m1=0

L̃
[
fm1(x1, t̄)

]
. (19)

Furthermore, the nonlinear operator Ñ can be decomposed [30] as follows:

Ñ
( ∞

∑
m1=0

fm1 (x1, t̄)
)

= Ñ
(
f0(x1, t̄)

)
+

∞
∑

m1=0

[
Ñ
( m1

∑
κ=0

fκ(x1, t̄)
)
− Ñ

( m1−1
∑

κ=0
fκ(x1, t̄)

)]
= Ñ(f0) +

∞
∑

κ=1
Dm1 , (20)

where Dm = Ñ
( m1

∑
κ=0

fκ(x1, t̄)
)
− Ñ

( m1−1
∑

κ=0
fκ(x1, t̄)

)
.

Substituting (18)–(20) into (16) and (17), respectively, we will obtain the following
equations:

∞

∑
m1=0

fm1(x1, t̄) = G(x1) +E−1
{

ωαE
[
F (x1, t̄)

]}

−E−1

{
ωαE

[
L̃

m1

∑
κ=0

fκ(x1, t̄) + Ñ(f0) +
m1

∑
κ=1

Dm1

]}
, (21)
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and

∞

∑
m1=0

fm1(x1, t̄) = G(x1) +E−1
{

αωα + 1− α

N(α) E
[
F (x1, t̄)

]}

−E−1

{
αωα + 1− α

N(α) E
[
L̃

m1

∑
κ=0

fκ(x1, t̄) + Ñ(f0) +
m1

∑
κ=1

Dm1

]}
. (22)

We mention the following iterative scheme for the Caputo fractional derivative opera-
tor as follows.

f0(x1, t̄) = G(x1) +E−1
{

ωαE
[
F (x1, t̄)

]}
,

f1(x1, t̄) = E−1
{

ωαE
[
L̃f0(x1, t̄) + Ñ (f0(x1, t̄))

]}
,

...

fm1+1(x1, t̄) = E−1
{

ωαE
[
L̃fm1(x1, t̄) + Dm1

]}
, m1 > 0, m1 ∈ N.

(23)

Analogously, the iterative scheme for the ABC fractional derivative operator is pre-
sented as follows.

f0(x1, t̄) = G(x1) +E−1
{

αωα+1−α
N(α) E

[
F (x1, t̄)

]}
,

f1(x1, t̄) = E−1
{

αωα+1−α
N(α) E

[
L̃f0(x1, t̄) + Ñ (f0(x1, t̄))

]}
,

...

fm1+1(x1, t̄) = E−1
{

αωα+1−α
N(α) E

[
L̃fm1(x1, t̄) + Dm1

]}
, m1 > 0, m1 ∈ N.

(24)

Finally, (12) and (13) yield the m1-terms solution in series forms as follows.

f(x1, f) = f0(x1, t̄) + f1(x1, t̄) + f3(x1, t̄) + . . . + fm1(x1, t̄)., m1 = 1, 2, . . . (25)

3.2. Stability Analysis

Let there be a Banach space (Y, ‖.‖) and V be a self-map of Y. Let xm+1 = h(V , xm)
be a specific iterative scheme. Moreover, let F(V), the fixed-point of V , possess at least
one element and that xn tends to a point q ∈ F(V). Consider a sequence {ym} such that
{ym} ⊆ Y and εm =

∥∥ym+1 − h(V , ym)
∥∥. If lim

m 7→∞
εm = 0 implies that lim

m 7→∞
ym = q, then we

say that the iterative process xm+1 = h(H, xn) is V-stable. Without any loss of generality,
we surmise that {ym} is upper bounded; otherwise convergence cannot be expected. If all
hypotheses fulfilled for xm+1 = Vxm, which is known as Picard’s iteration, are satisfied,
consequently, the iteration will be V-stable. The following theorem will be presented next.

Theorem 1 ([38]). Consider a Banach space (Y, ‖.‖) and V a self-map of Y holding the following:∥∥Vy − Vx1

∥∥ ≤ K∥∥y− Vy
∥∥+ k̂

∥∥y− x1
∥∥, ∀x1, y ∈ Y, (26)

where K > 0, k̂ ∈ [0, 1), then V is Picard V-stable.

Consider the following sequence, which represents the nonlinear fractional Fisher’s
model as follows:

fm+1(x1, t̄) = fm(x1, t̄) +E−1

[
αωα + 1− α

N(α) E
[

σ
∂2fm(x1, t̄)

∂x2
1

+ θfm(x1, t̄)(1− f̂β
m(x1, t̄))

]]
, (27)
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where αωα+1−α
N(α) is the fractional Langrange multiplier and f̂β

m is a limited variant that

denotes δf̂β
m = 0.

Theorem 2. Consider T̄ as a self-map stated as follows:

T̄(fm(x1, t̄)) = fm+1(x1, t̄)

= fn(x1, t̄) +E−1

[
αωα + 1− α

N(α) E
[

σ
∂2fm(x1, t̄)

∂x2
1

+ θfm(x1, t̄)(1− fβ
m(x1, t̄))

]]
(28)

is T̄-stable in L2(a, b) if
[

1 +
(

σΩ1Ω2+θ(1−(K+H)β)
N(α)

)(
αt̄α

Γ(α+1) + (1− α)

)]
< Θ.

Proof. First, we illustrate that T̄ has a fixed point. In order to accomplish this, we examined
the following for all (m, κ) ∈ N×N.

∥∥T̄(fm(x1, t̄))− T̄(fκ(x1, t̄))
∣∣ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

fm(x1, t̄)− fκ(x1, t̄)

+E−1

[
αωα + 1− α

N(α) E
[

σ
∂2fm(x1, t̄)

∂x2
1

+ θfm(x1, t̄)(1− fβ
m(x1, t̄))

]]

+E−1

[
αωα + 1− α

N(α) E
[

σ
∂2fκ(x1, t̄)

∂x2
1

+ θfκ(x1, t̄)(1− fβ
κ (x1, t̄))

]]

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Employing the linearity property of the inverse Elzaki transform yields the following.

∥∥T̄(fm(x1, t̄))− T̄(fκ(x1, t̄))
∣∣ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

fm(x1, t̄)− fκ(x1, t̄)

+E−1

[
αωα + 1− α

N(α) E



[
σ

∂2
[

fm(x1,t̄)−fκ(x1,t̄)
]

∂x2
1

+θ
[
fm(x1, t̄)− fκ(x1, t̄)

]
−θ
[
fβ+1

m (x1, t̄)− fβ+1
κ (x1, t̄)

]]]

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Utilizing triangular inequality for the norms, we have the following.∥∥T̄(fm(x1, t̄))− T̄(fκ(x1, t̄))
∣∣

≤
∥∥fm(x1, t̄)− fκ(x1, t̄)

∣∣+
+E−1

[
αωα+1−α

N(α)

[∥∥∥∥σ
∂2
[

fm(x1,t̄)−fκ(x1,t̄)
]

∂x2
1

∥∥∥∥]
]

+E−1

[
αωα+1−α

N(α) E
[∥∥∥θ

[
fm(x1, t̄)− fκ(x1, t̄)

]∥∥∥]]

+E−1

[
αωα+1−α

N(α) E
[∥∥∥− θ

[
fβ+1

m (x1, t̄)− fβ+1
κ (x1, t̄)

]∥∥∥]].

(29)

Equation (29) can be examined on a case-by-case basis, beginning with the following.∥∥∥∥σ
∂2[fm(x1, t̄)− fκ(x1, t̄)

]
∂x2

1

∥∥∥∥ ≤ σΩ1Ω2. (30)
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The following results.∥∥∥θ
[
fβ+1

m (x1, t̄)− fβ+1
κ (x1, t̄)

]∥∥∥
≤
∥∥∥∥ β

∑
i=0
Ki

β(fm(x1, t̄))i(fκ(x1, t̄))β−i−1
∥∥∥∥.
∥∥fm(x1, t̄)− fκ(x1, t̄)

∥∥. (31)

Since fm(x1, t̄), fκ(x1, t̄) are bounded, there are two different positive constants that
we can obtain K,H such that for all (x1, t̄), we have the following.∥∥fm(x1, t̄)

∥∥ ≤ K,
∥∥fκ(x1, t̄)

∥∥ ≤ H, (m, κ) ∈ N×N. (32)

As a result of combining the triangular inequality with the above inequalities, (31) is
obtained as follows. ∥∥∥θ

[
fβ+1

m (x1, t̄)− fβ+1
κ (x1, t̄)

]∥∥∥
≤ (K+H)β

∥∥fm(x1, t̄)− fκ(x1, t̄)
∥∥. (33)

Now, by combining (31) and (33) into (34), we obtain the following result:

∥∥T̄(fm(x1, t̄))− T̄(fκ(x1, t̄))
∣∣

≤
[

1 +
(σΩ1Ω2 + θ(1− (K+H)β)

N(α)

)( αt̄α

Γ(α + 1)
+ (1− α)

)]∥∥fm(x1, t̄)− fκ(x1, t̄)
∥∥ (34)

with the following.[
1 +

(σΩ1Ω2 + θ(1− (K+H)β)

N(α)

)( αt̄α

Γ(α + 1)
+ (1− α)

)]
< Θ.

This establishes the existence of a fixed point for the nonlinear T̄-self map. As a
consequence, the proof is complete. We also proved that T̄ fulfills the requirements of
Theorem 1. Allow (7) to hold by inserting the following.

f =
[

1 +
(σΩ1Ω2 + θ(1− (K+H)β)

N(α)

)( αt̄α

Γ(α + 1)
+ (1− α)

)]
, (35)

This proves that hypothesis of Theorem 1 fulfills the nonlinear mapping T̄. Thus, all
assumptions in Theorem 1 satisfies the described nonlinear mapping T̄, and T̄ is Picard’s
T̄-stable. As a result, the proof of Theorem 2 is complete.

4. Evaluation of the Fractional Fisher Model via IETM

This section demonstrate the reliability and preciseness of the projected methodology.

Problem 1. If θ = 1, β = 1, and ϕ = 0 in (10) with f0(x1, 0) = η, then the one dimensional time
fractional Fisher equation is presented as follows.

∂αf
∂t̄α

=
∂2f
∂x2

1
+ f(1− f). (36)

The integer-order solution for the Fisher’s Equation (36) is obtained by using the Taylor’s
series expansion for α = 1 as follows.

f(x1, t̄) =
η exp(t̄)

1− η + η exp(t̄)
.
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Case I. First, we formulate Problem 1 by utilizing the Elzaki transform coupled with the
Caputo derivative operator.

By employing the Elzaki transform to (36) with the initial condition, we have the
following.

E
[∂αf

∂t̄α

]
= E

[ ∂2f
∂x2

1
+ f(1− f)

]
. (37)

The following is the case:

1
ωα

E
[
f(x1, t̄)

]
−

m−1

∑
κ=0

f(κ)(x1, 0)ω2−α+κ = E
[ ∂2f

∂x2
1
+ f(1− f)

]
.

equivalently, we have

1
ωα

E
[
f(x1, t̄)

]
= f(0)(x1, 0)ω2−α +E

[ ∂2f
∂x2

1
+ f(1− f)

]
.

Using the inverse Elzaki transform, we have the following.

f(x1, t̄) = η +E−1
[

ωαE
[ ∂2f

∂x2
1
+ f(1− f)

]]
.

Applying the iterative technique described in Section 3.1, we obtain the following.

f0(x1, t̄) = η,

f1(x1, t̄) = E−1
[

ωαE
{(

f0(x1, t̄)
)

x1x1
+ f0(1− f0)

}]
= η(1− η)

t̄α

Γ(α + 1)
,

f2(x1, t̄) = E−1
[

ωαE
{(

f1(x1, t̄)
)

x1x1
+ f1(1− f1)

}]
= η(1− η)(1− 2η)

t̄2α

Γ(2α + 1)
,

f3(x1, t̄) = E−1
[

ωαE
{(

f2(x1, t̄)
)

x1x1
+ f2(1− f2)

}]
= η(1− η)(1− 6η + 6η2)

t̄3α

Γ(3α + 1)
,

f4(x1, t̄) = E−1
[

ωαE
{(

f3(x1, t̄)
)

x1x1
+ f3(1− f3)

}]
= η(1− η)(1− 2η)(1− 12η + 12η2)

t̄4α

Γ(4α + 1)
,

...

Provided that the series form solution is as follows:

f(x1, t̄) = f0(x1, t̄) + f1(x1, t̄) + f2(x1, t̄) + f3(x1, t̄) + . . . + fm1(x1, t̄).

we consequently have
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f(x1, t̄) = η + η(1− η)
t̄α

Γ(α + 1)
+ η(1− η)(1− 2η)

t̄2α

Γ(2α + 1)
+ η(1− η)(1− 6η + 6η2)

t̄3α

Γ(3α + 1)

+η(1− η)(1− 2η)(1− 12η + 12η2)
t̄4α

Γ(4α + 1)
+ . . .

Case II. Now we formulate Problem 1 by utilizing Elzaki transform coupled with the ABC
derivative operator.

By employing the Elzaki transform to (36) with the initial condition, we have the
following.

E
[∂αf

∂t̄α

]
= E

[ ∂2f
∂x2

1
+ f(1− f)

]
. (38)

The following is then the case.

E
[
f(x1, t̄)

]
= f(0)(x1, 0)ω2 +

αωα + 1− α

N(α) E
[ ∂2f

∂x2
1
+ f(1− f)

]
.

Using the inverse Elzaki transform, we have the following.

f(x1, t̄) = η +E−1
[

αωα + 1− α

N(α) E
[ ∂2f

∂x2
1
+ f(1− f)

]]
.

Applying the iterative technique described in Section 3.1, we obtain the following
results.

f0(x1, t̄) = η,

f1(x1, t̄) = E−1
[

αωα + 1− α

N(α) E
{(

f0(x1, t̄)
)

x1x1
+ f0(1− f0)

}]
=

η(1− η)

N(α)

[
αt̄α

Γ(α + 1)
+ (1− α)

]
,

f2(x1, t̄) = E−1
[

αωα + 1− α

N(α) E
{(

f1(x1, t̄)
)

x1x1
+ f1(1− f1)

}]
=

η(1− η)(1− 2η)

N2(α)

[
α2 t̄2α

Γ(2α + 1)
+ 2α(1− α)

t̄α

Γ(α + 1)
+ (1− α)2

]
,

f3(x1, t̄) = E−1
[

αωα + 1− α

N(α) E
{(

f2(x1, t̄)
)

x1x1
+ f2(1− f2)

}]
=

η(1− η)(1− 6η + 6η2)

N3(α)

[
α3 t̄3α

Γ(3α + 1)
+ 3α2(1− α)

t̄2α

Γ(2α + 1)
+ 3α(1− α)2 t̄α

Γ(α + 1)
+ (1− α)3

]
,

...

Provided the series form solution is as follows:

f(x1, t̄) = f0(x1, t̄) + f1(x1, t̄) + f2(x1, t̄) + f3(x1, t̄) + . . . + fm1(x1, t̄).

we consequently have

f(x1, t̄) = η +
η(1− η)

N(α)

[
αt̄α

Γ(α + 1)
+ (1− α)

]
+

η(1− η)(1− 2η)

N2(α)

[
α2 t̄2α

Γ(2α + 1)
+ 2α(1− α)

t̄α

Γ(α + 1)
+ (1− α)2

]
+

η(1− η)(1− 6η + 6η2)

N3(α)

[
α3 t̄3α

Γ(3α + 1)
+ 3α2(1− α)

t̄2α

Γ(2α + 1)
+ 3α(1− α)2 t̄α

Γ(α + 1)
+ (1− α)3

]
+ . . .



Fractal Fract. 2021, 5, 94 11 of 29

For showing the accuracy and compactness of our proposed algorithm (IETM via CFD
and ABC fractional derivatives), we compare our results with [39]. It can be observed from
Table 1 that the present algorithm is very effective and yields accurate results. The absolute
errors of the numerical solution of Fisher’s equation obtained by IETM (CFD and ABC
fractional derivatives) and the exact solutions for Case 1 are depicted in Table 1 and presents
a strong correlation among the proposed technique and rapidly converges to the exact
solution very efficiently in a short admissible domain.

Figure 1 compares the exact and approximate solutions to Problem 1 using the CDF
operator. The absolute error norm in Figure 2 for (36) with the assumptions of η = 0.05, θ = 1,
β = 1, and ϕ = 0 ensures the approximation of the numerical results derived by IETM
to the exact solution via the CFD and ABC fractional derivative operators, respectively.
The results of the graphical representation reveal that the model is highly dependent on
fractional order α. The absolute inaccuracy is really small. Two dimensional representations
of graphs via Figure 3 show the strong connection between the exact and approximate
solutions for various fractional orders. Furthermore, Figure3a,b illustrate that the ABC
fractional derivative operator has better harmony than the CFD operator.

(a)

(b)
Figure 1. Numerical behavior of exact and approximate solution to the f(x1, t̄) for Problem 1 when
the parameters are η = 0.05, θ = 1, β = 1, and ϕ = 0.
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Table 1. Comparison results with exact (fE) IETM-numerical solutions (fNum) for CFD and ABC fractional derivative
operator of f(x1, t̄) of Case 1 with absolute errors and the HPM [39] when α = 1, t̄ = 0.01, η = 0.05, and ϕ = 0 for various
values of x1.

η fE fNum/CFD sol. fNum/ABC sol. |fE− fNum/CFD| |fE− fNum/ABC| HPM sol. [39]

0.1 1.009 × 10−1 1.009 × 10−1 2.329 × 10−1 0 1.319 × 10−1 8.999 × 10−1

0.2 2.016 × 10−1 2.016 × 10−1 4.091 × 10−1 0 2.017 × 10−1 7.987 × 10−1

0.3 3.021 × 10−1 3.021 × 10−1 5.429 × 10−1 0 2.408 × 10−1 9.210 × 10−1

0.4 4.024 × 10−1 4.024 × 10−1 6.464 × 10−1 1.00 × 10−11 2.440 × 10−1 7.540 × 10−1

0.5 5.025 × 10−1 5.025 × 10−1 7.292 × 10−1 3.00 × 10−10 2.267 × 10−1 8.908 × 10−1

0.6 6.024 × 10−1 6.024 × 10−1 7.984 × 10−1 1.00 × 10−10 1.960 × 10−1 9.765 × 10−1

0.7 7.021 × 10−1 7.021 × 10−1 8.589 × 10−1 0 1.568 × 10−1 9.344 × 10−1

0.8 8.016 × 10−1 8.016 × 10−1 9.131 × 10−1 3.00 × 10−10 1.115 × 10−1 9.123 × 10−1

0.9 9.009 × 10−1 9.009 × 10−1 9.609 × 10−1 3.00 × 10−10 6.000 × 10−2 9.777 × 10−1

1.0 1.000 × 100 1.000 × 100 1.000 × 100 0 0 1.000 × 100

(a)

(b)
Figure 2. (a) Absolute error plots of f(x1, t̄) for Problem 1 for (a) CFD and (b) ABC when the
parameters are η = 0.05, θ = 1, β = 1, and ϕ = 0.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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=0.55
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(b)
Figure 3. Two dimensional representation of f(x1, t̄) for Problem 1 at different fractional orders
when the parameters are η = 0.05, θ = 1, β = 1, and ϕ = 0. (a) illustrates the comparison view
of CFD and ABC operators with their exact solutions, while (b) shows the two dimensional view
of the exact-approximate solution with different fractional-order in the CFD and ABC fractional
derivative sense.

Problem 2. If θ = 6, β = 1 and ϕ = 0 in (10) with f0(x1, 0) = 1
(1+exp(x1))2 , then the one

dimensional time fractional Fisher equation is presented as follows.

∂αf
∂t̄α

=
∂2f
∂x2

1
+ 6f(1− f). (39)

The integer-order solution for the Fisher’s Equation (39) is obtained by using the Taylor’s
series expansion for α = 1 as follows.

f(x1, t̄) =
1

(1 + exp(x1 − 5t̄))2 .

Case I. First, we formulate Problem 2 by utilizing the Elzaki transform coupled with the
Caputo derivative operator.

Employing the Elzaki transform to (39) with the initial condition, we have the following.

E
[∂αf

∂t̄α

]
= E

[ ∂2f
∂x2

1
+ 6f(1− f)

]
. (40)
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The following results:

1
ωα

E
[
f(x1, t̄)

]
−

m−1

∑
κ=0

f(κ)(x1, 0)ω2−α+κ = E
[ ∂2f

∂x2
1
+ 6f(1− f)

]
.

equivalently, we have

1
ωα

E
[
f(x1, t̄)

]
= f(0)(x1, 0)ω2−α +E

[ ∂2f
∂x2

1
+ 6f(1− f)

]
.

Using the inverse Elzaki transform, we have the following.

f(x1, t̄) = η +E−1
[

ωαE
[ ∂2f

∂x2
1
+ 6f(1− f)

]]
.

Applying the iterative technique described in Section 3.1, we obtain the following.

f0(x1, t̄) =
1

(1 + exp(x1))2 ,

f1(x1, t̄) = E−1
[

ωαE
{(

f0(x1, t̄)
)

x1x1
+ 6f0(1− f0)

}]
=

10 exp(x1)

(1 + exp(x1))3
t̄α

Γ(α + 1)
,

f2(x1, t̄) = E−1
[

ωαE
{(

f1(x1, t̄)
)

x1x1
+ 6f1(1− f1)

}]
=

50 exp(x1)(exp(2x1)− 1)
(1 + exp(x1))4

t̄2α

Γ(2α + 1)
,

f3(x1, t̄) = E−1
[

ωαE
{(

f2(x1, t̄)
)

x1x1
+ 6f2(1− f2)

}]
= −750(7 exp(x1)− 4 exp(2x1)− 1)

3(1 + exp(x1))5
t̄3α

Γ(3α + 1)
,

...

Provided the series form solution is the following:

f(x1, t̄) = f0(x1, t̄) + f1(x1, t̄) + f2(x1, t̄) + f3(x1, t̄) + . . . + fm1(x1, t̄).

we consequently have the following.

f(x1, t̄) =
1

(1 + exp(x1))2 +
10 exp(x1)

(1 + exp(x1))3
t̄α

Γ(α + 1)
+

50 exp(x1)(exp(2x1)− 1)
(1 + exp(x1))4

t̄2α

Γ(2α + 1)

−570(7 exp(x1)− 4 exp(2x1)− 1)
3(1 + exp(x1))5

t̄3α

Γ(3α + 1)
+ . . .

Case II. Now we formulate Problem 2 by utilizing the Elzaki transform coupled with
an ABC derivative operator.

Employing the Elzaki transform to (39) with the initial condition, we have the following.

E
[∂αf

∂t̄α

]
= E

[ ∂2f
∂x2

1
+ 6f(1− f)

]
. (41)

E
[
f(x1, t̄)

]
= f(0)(x1, 0)ω2 +

αωα + (1− α)

N(α) E
[ ∂2f

∂x2
1
+ 6f(1− f)

]
.
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By using the inverse Elzaki transform, we have the following.

f(x1, t̄) = η +E−1
[

αωα + (1− α)

N(α) E
[ ∂2f

∂x2
1
+ 6f(1− f)

]]
.

By applying the iterative technique described in Section 3.1, we obtain the following.

f0(x1, t̄) =
1

(1 + exp(x1))2 ,

f1(x1, t̄) = E−1
[

αωα + (1− α)

N(α) E
{(

f0(x1, t̄)
)

x1x1
+ 6f0(1− f0)

}]
=

10 exp(x1)

N(α)(1 + exp(x1))3

[
αt̄α

Γ(α + 1)
+ (1− α)

]
,

f2(x1, t̄) = E−1
[

αωα + (1− α)

N(α) E
{(

f1(x1, t̄)
)

x1x1
+ 6f1(1− f1)

}]
=

50 exp(x1)(exp(2x1)− 1)
N2(α)(1 + exp(x1))4

[
α2 t̄2α

Γ(2α + 1)
+ 2α(1− α)

t̄α

Γ(1 + α)
+ (1− α)2

]
,

f3(x1, t̄) = E−1
[

αωα + (1− α)

N(α) E
{(

f2(x1, t̄)
)

x1x1
+ 6f2(1− f2)

}]
= −750(7 exp(x1)− 4 exp(2x1)− 1)

3N3(α)(1 + exp(x1))5

×
[

α3 t̄3α

Γ(3α + 1)
+ 3α2(1− α)

t̄2α

Γ(1 + 2α)
+ 3α(1− α)2 t̄α

Γ(1 + α)
+ (1− α)3

]
,

...

Provided that the series form solution is as follows:

f(x1, t̄) = f0(x1, t̄) + f1(x1, t̄) + f2(x1, t̄) + f3(x1, t̄) + . . . + fm1(x1, t̄).

the following consequently results.

f(x1, t̄) =
1

(1 + exp(x1))2 +
10 exp(x1)

N(α)(1 + exp(x1))3

[
αt̄α

Γ(α + 1)
+ (1− α)

]
+

50 exp(x1)(exp(2x1)− 1)
N2(α)(1 + exp(x1))4

[
α2 t̄2α

Γ(2α + 1)
+ 2α(1− α)

t̄α

Γ(1 + α)
+ (1− α)2

]
−750(7 exp(x1)− 4 exp(2x1)− 1)

3N3(α)(1 + exp(x1))5

×
[

α3 t̄3α

Γ(3α + 1)
+ 3α2(1− α)

t̄2α

Γ(1 + 2α)
+ 3α(1− α)2 t̄α

Γ(1 + α)
+ (1− α)3

]
+ . . .

For showing the accuracy and compactness of our proposed algorithm (IETM via CFD and ABC
fractional derivatives), we compare our results with [39]. It can be observed from Table 2 that the
present algorithm is very effective and yields accurate results. The absolute errors of the numerical
solution of Fisher’s equation obtained by IETM (CFD and ABC fractional derivatives) and the exact
solutions for Case 2 are depicted in Table 2 and presents a strong correlation among the proposed
technique and rapidly converges to the exact solution very efficiently in a short admissible domain.

Figure 4 compares the exact and approximate solutions to Problem 2 by using the CDF operator.
The absolute error norm in Figure 5 for (39) with the assumptions of θ = 6, β = 1, and ϕ = 0 ensures
the approximation of the numerical results derived by the IETM to the exact solution via the CFD and
ABC fractional derivative operators, respectively. The results of the graphical representation reveal
that the model is highly dependent on fractional order α. The absolute inaccuracy is really small.
Surface and two dimensional representations of graphs via Figure 6 show the strong connection



Fractal Fract. 2021, 5, 94 16 of 29

between the exact and approximate solutions for various fractional orders. Furthermore, Figure 6a,b
illustrates that the ABC fractional derivative operator has better harmony than the CFD operator.

Table 2. Comparison results with exact (fE) IETM-numerical solutions (fNum) for CFD and ABC fractional derivative
operator of f(x1, t̄) of Case 2 with absolute errors and the HPM [39] when α = 1, t̄ = 0.01, and ϕ = 0 for various values
of x1.

x1 fE fNum/CFD sol. fNum/ABC sol. |fE− fNum/CFD| |fE− fNum/ABC| HPM sol. [39]

0.1 2.377 × 10−1 2.375 × 10−1 2.432 × 10−1 1.394 × 10−4 −5.7000 × 10−4 8.387 × 10−1

0.2 2.140 × 10−1 2.138 × 10−1 2.159 × 10−1 1.119 × 10−4 −0.019 × 10−4 9.567 × 10−1

0.3 1.917 × 10−1 1.915 × 10−1 2.000 × 10−1 9.68 × 10−5 −0.083 × 10−5 4.534 × 10−1

0.4 1.709 × 10−1 1.708 × 10−1 1.888 × 10−1 7.32 × 10−5 −0.179 × 10−5 8.887 × 10−1

0.5 1.516 × 10−1 −0.18 × 10−5 1.575 × 10−1 4.85 × 10−5 −0.059 × 10−5 7.337 × 10−1

0.6 1.339 × 10−1 1.338 × 10−1 1.958 × 10−1 2.35 × 10−5 −0.619 × 10−5 9.337 × 10−1

0.7 1.176 × 10−1 1.175 × 10−1 1.234 × 10−1 4.85 × 10−5 −0.58 × 10−5 7.337 × 10−1

0.8 1.029 × 10−1 1.029 × 10−1 1.416 × 10−1 2.51 × 10−5 −0.055 × 10−5 9.998 × 10−1

0.9 8.966 × 10−2 8.971 × 10−2 9.516 × 10−1 4.76 × 10−5 3.426 × 10−5 9.001 × 10−1

1.0 7.778 × 10−1 7.784 × 10−1 9.001 × 100 6.75 × 10−5 −1.223 × 10−5 7.337 × 10−1

(a)

(b)
Figure 4. Numerical-behavior of exact and approximate solution to the f(x1, t̄) for Problem 2 when
the parameters are θ = 6, β = 1, and ϕ = 0.
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(a)

(b)
Figure 5. (a) Absolute-error plots of f(x1, t̄) for Problem 2 for (a) CFD and (b) ABC when the
parameters are θ = 6, β = 1, and ϕ = 0.

(a)

Figure 6. Cont.
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Figure 6. (a) Three-dimensional comparison plot among exact, CFD, and ABC fractional derivative
operators via the IETM (b) Two dimensional representation of f(x1, t̄) for Problem 2 when the
parameters are θ = 6, β = 1, and ϕ = 0.

Problem 3. If θ = 1, β = 6, and ϕ = 0 in (10) with f0(x1, 0) = 1
(1+exp( 3x1

2 ))1/3
, then the one

dimensional time fractional generalized Fisher’s equation is presented as follows.

∂αf
∂t̄α

=
∂2f
∂x2

1
+ f(1− f6). (42)

The integer-order solution for the Fisher’s Equation (42) is obtained by using the Taylor’s
series expansion for α = 1 as follows.

f(x1, t̄) =
(1

2

)1/3
(

tanh
(15

8
t̄− 3

4
x1

)
+ 1
)1/3

.

Case I. First, we formulate Problem 3 by utilizing the Elzaki transform coupled with the
Caputo derivative operator.

Employing the Elzaki transform to (42) with the initial condition, we have the following.

E
[∂αf

∂t̄α

]
= E

[ ∂2f
∂x2

1
+ f(1− f6)

]
. (43)

The following is the case.

1
ωα

E
[
f(x1, t̄)

]
−

m−1

∑
κ=0

f(κ)(x1, 0)ω2−α+κ = E
[ ∂2f

∂x2
1
+ f(1− f6)

]
.

Equivalently, we have the following.

1
ωα

E
[
f(x1, t̄)

]
= f(0)(x1, 0)ω2−α +E

[ ∂2f
∂x2

1
+ f(1− f6)

]
.

By using the inverse Elzaki transform, we have the following.

f(x1, t̄) =
1

(1 + exp( 3x1
2 ))1/3

+E−1
[

ωαE
[ ∂2f

∂x2
1
+ f(1− f6)

]]
.

By applying the iterative technique described in Section 3.1, we obtain the following.
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f0(x1, t̄) =
1

(1 + exp( 3x1
2 ))1/3

,

f1(x1, t̄) = E−1
[

ωαE
{(

f0(x1, t̄)
)

x1x1
+ f0(1− f6

0)
}]

=
5 exp( 3x1

2 )

4(1 + exp( 3x1
2 ))4/3

t̄α

Γ(α + 1)
,

f2(x1, t̄) = E−1
[

ωαE
{(

f1(x1, t̄)
)

x1x1
+ f1(1− f6

1)
}]

=
50 exp( 3x1

2 )
(

exp( 3x
2 )− 3

)
16(1 + exp( 3x1

2 ))7/3

t̄2α

Γ(2α + 1)
,

f3(x1, t̄) = E−1
[

ωαE
{(

f2(x1, t̄)
)

x1x1
+ f2(1− f6

2)
}]

=
125 exp( 3x1

2 )
(

exp(3x1)− 18 exp( 3x1
2 ) + 9

)
16(1 + exp( 3x1

2 ))10/3

t̄3α

Γ(3α + 1)
,

...

Provided the series form solution is the following:

f(x1, t̄) = f0(x1, t̄) + f1(x1, t̄) + f2(x1, t̄) + f3(x1, t̄) + . . . + fm1(x1, t̄).

the following consequently results.

f(x1, t̄) =
1

(1 + exp( 3x1
2 ))1/3

+
5 exp( 3x1

2 )

4(1 + exp( 3x1
2 ))4/3

t̄α

Γ(α + 1)
+

50 exp( 3x1
2 )
(

exp( 3x
2 )− 3

)
16(1 + exp( 3x1

2 ))7/3

t̄2α

Γ(2α + 1)

+
750 exp( 3x1

2 )
(

exp(3x1)− 18 exp( 3x1
2 ) + 9

)
16(1 + exp( 3x1

2 ))10/3

t̄3α

Γ(3α + 1)
+ . . .

Case II. Now we formulate Problem 3 by utilizing the Elzaki transform coupled with an
ABC derivative operator.

Employing the Elzaki transform to (42) with the initial condition, we have the following.

E
[∂αf

∂t̄α

]
= E

[ ∂2f
∂x2

1
+ f(1− f6)

]
. (44)

E
[
f(x1, t̄)

]
= f(0)(x1, 0)ω2 +

αωα + (1− α)

N(α) E
[ ∂2f

∂x2
1
+ f(1− f6)

]
.

By using the inverse Elzaki transform, we have the following.

f(x1, t̄) =
1

(1 + exp( 3x1
2 ))1/3

+E−1
[

αωα + (1− α)

N(α) E
[ ∂2f

∂x2
1
+ f(1− f6)

]]
.

By applying the iterative technique described in Section 3.1, we obtain the following.
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f0(x1, t̄) =
1

(1 + exp( 3x1
2 ))1/3

,

f1(x1, t̄) = E−1
[

αωα + (1− α)

N(α) E
{(

f0(x1, t̄)
)

x1x1
+ f0(1− f6

0)
}]

=
5 exp( 3x1

2 )

4N(α)(1 + exp( 3x1
2 ))4/3

[
αt̄α

Γ(α + 1)
+ (1− α)

]
,

f2(x1, t̄) = E−1
[

αωα + (1− α)

N(α) E
{(

f1(x1, t̄)
)

x1x1
+ f1(1− f6

1)
}]

=
50 exp( 3x1

2 )
(

exp( 3x
2 )− 3

)
16N2(α)(1 + exp( 3x1

2 ))7/3

[
α2 t̄2α

Γ(2α + 1)
+ 2α(1− α)

t̄α

Γ(α + 1)
+ (1− α)2

]
,

f3(x1, t̄) = E−1
[

αωα + (1− α)

N(α) E
{(

f2(x1, t̄)
)

x1x1
+ f2(1− f6

2)
}]

=
750 exp( 3x1

2 )
(

exp(3x1)− 18 exp( 3x1
2 ) + 9

)
16N3(α)(1 + exp( 3x1

2 ))10/3

×
[

α3 t̄3α

Γ(3α + 1)
+ 3α2(1− α)

t̄2α

Γ(2α + 1)
+ 3α(1− α)2 t̄α

Γ(α + 1)
+ (1− α)3

]
,

...

Provided the series form solution is as follows:

f(x1, t̄) = f0(x1, t̄) + f1(x1, t̄) + f2(x1, t̄) + f3(x1, t̄) + . . . + fm1(x1, t̄).

the following consequently results.

f(x1, t̄) =
1

(1 + exp(
3x1

2
))1/3

+
5 exp(

3x1

2
)

4N(α)(1 + exp(
3x1

2
))4/3

[
αt̄α

Γ(α + 1)
+ (1− α)

]

+
50 exp(

3x1

2
)
(

exp(
3x
2
)− 3

)
16N2(α)(1 + exp(

3x1

2
))7/3

[
α2 t̄2α

Γ(2α + 1)
+ 2α(1− α)

t̄α

Γ(α + 1)
+ (1− α)2

]

+
750 exp(

3x1

2
)
(

exp(3x1)− 18 exp(
3x1

2
) + 9

)
16N3(α)(1 + exp(

3x1

2
))10/3

×
[

α3 t̄3α

Γ(3α + 1)
+ 3α2(1− α)

t̄2α

Γ(2α + 1)
+ 3α(1− α)2 t̄α

Γ(α + 1)
+ (1− α)3

]
+ . . .

Figure 7 compares the exact and approximate solutions to Problem 3 using the CDF
operator. The absolute error norm in Figure 8 for (42) with the assumptions of θ = 1, β = 6,
and ϕ = 0 ensures the approximation of the numerical results derived by the IETM
to the exact solution via the CFD and ABC fractional derivative operators, respectively.
The results of the graphical representation reveal that the model is highly dependent on
fractional order α. The absolute inaccuracy is really small. Surface and two dimensional
representations of graphs via Figure 9 show the strong connection between the exact and
approximate solutions for various fractional orders. Furthermore, Figure 9a,b illustrate
that the ABC fractional derivative operator has better harmony than the CFD operator.
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(a)

(b)
Figure 7. Numerical-behavior of exact and approximate solution to the f(x1, t̄) for Problem 3 when
the parameters are θ = 1, β = 6, and ϕ = 0.

(a)

Figure 8. Cont.
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(b)
Figure 8. (a) Absolute-error plots of f(x1, t̄) for Problem 3 for (a) CFD and (b) ABC when the
parameters are θ = 1, β = 6 and ϕ = 0.

(a)
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(b)
Figure 9. (a) Three-dimensional comparison plot among exact, CFD, and ABC fractional derivative
operators via the IETM. (b) Two dimensional representation of f(x1, t̄) for Problem 3 at different
fractional orders when θ = 1, β = 6, and ϕ = 0.

Problem 4. If θ = 1, β = 1, and 0 < ϕ < 1 in (10) with f0(x1, 0) = 1
(1+exp(− 1√

2
)x1)

, then the

nonlinear diffusion equation of the Fisher’s type is as follows.
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∂αf
∂t̄α

=
∂2f
∂x2

1
+ f(1− f)(f− ϕ). (45)

The integer-order solution for the the nonlinear diffusion equation of the Fisher’s type (45) is
obtained by using the Taylor’s series expansion for α = 1 as follows.

f(x1, t̄) =
1

1 + exp(−ζ/
√

2)
.

Case I. First, we formulate Problem 4 by utilizing the Elzaki transform coupled with the
Caputo derivative operator.

By employing the Elzaki transform to (45) with the initial condition, we have the
following.

E
[∂αf

∂t̄α

]
= E

[ ∂2f
∂x2

1
+ f(1− f)(f− ϕ)

]
. (46)

The following results.

1
ωα

E
[
f(x1, t̄)

]
−

m−1

∑
κ=0

f(κ)(x1, 0)ω2−α+κ = E
[ ∂2f

∂x2
1
+ f(1− f)(f− ϕ)

]
.

Equivalently, we also have the following.

1
ωα

E
[
f(x1, t̄)

]
= f(0)(x1, 0)ω2−α +E

[ ∂2f
∂x2

1
+ f(1− f)(f− ϕ)

]
.

By using the inverse Elzaki transform, the following results.

f(x1, t̄) =
1

(1 + exp(− 1√
2
)x1)

+E−1
[

ωαE
[ ∂2f

∂x2
1
− ϕf + (ϕ + 1)f2 − f3

]]
.

By applying the iterative technique described in Section 3.1, we obtain the following.

f0(x1, t̄) =
1

(1 + exp(− 1√
2
)x1)

,

f1(x1, t̄) = E−1
[

ωαE
{(

f0(x1, t̄)
)

x1x1
+ (ϕ + 1)f2

0 − f3
0 − ϕf0

}]

=
(1− 2ϕ) exp(−x1√

2
)

2(1 + exp(−x1√
2
))2

t̄α

Γ(α + 1)
,

f2(x1, t̄) = E−1
[

ωαE
{(

f1(x1, t̄)
)

x1x1
+ (ϕ + 1)f2

1 − f3
1 − ϕf1

}]

= −
(1− 2ϕ)2 exp(−x1√

2
)(exp(−x1√

2
)− 1)

4(1 + exp(− x1√
2
))3

t̄2α

Γ(2α + 1)
,

f3(x1, t̄) = E−1
[

ωαE
{(

f2(x1, t̄)
)

x1x1
+ (ϕ + 1)f2

2 − f3
2 − ϕf2

}]

= −
(1− 2ϕ)3 exp(−x1√

2
)(exp(

√
2x)− 4 exp(−x1√

2
) + 1)

8(1 + exp(−x1√
2
))4

t̄3α

Γ(3α + 1)
,

...
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Provided that the series form solution is the following:

f(x1, t̄) = f0(x1, t̄) + f1(x1, t̄) + f2(x1, t̄) + f3(x1, t̄) + . . . + fm1(x1, t̄).

the following consequently results.

f(x1, t̄) =
1

(1 + exp(− 1√
2
)x1)

+
(1− 2ϕ) exp(− x1√

2
)

2(1 + exp(−x1√
2
))2

t̄α

Γ(α + 1)
−

(1− 2ϕ)2 exp(−x1√
2
)(exp(−x1√

2
)− 1)

4(1 + exp(−x1√
2
))3

t̄2α

Γ(2α + 1)

−
(1− 2ϕ)3 exp(−x1√

2
)(exp(

√
2x1)− 4 exp(−x1√

2
) + 1)

8(1 + exp(−x1√
2
))4

t̄3α

Γ(3α + 1)
+ . . .

Case II. We now formulate Problem 4 by utilizing the Elzaki transform coupled with the
ABC derivative operator.

By employing the Elzaki transform to (45) with the initial condition, we have the
following.

E
[∂αf

∂t̄α

]
= E

[ ∂2f
∂x2

1
+ f(1− f)(f− ϕ)

]
. (47)

E
[
f(x1, t̄)

]
= f(0)(x1, 0)ω2 +

αωα + 1− α

N(α) E
[ ∂2f

∂x2
1
+ f(1− f)(f− ϕ)

]
.

By using the inverse Elzaki transform, we have the following.

f(x1, t̄) =
1

(1 + exp(− 1√
2
)x1)

+E−1
[

αωα + 1− α

N(α) E
[ ∂2f

∂x2
1
− ϕf + (ϕ + 1)f2 − f3

]]
.

Applying the iterative technique described in Section 3.1, we obtain the following.

f0(x1, t̄) =
1

(1 + exp(− 1√
2
)x1)

,

f1(x1, t̄) = E−1
[

αωα + 1− α

N(α) E
{(

f0(x1, t̄)
)

x1x1
+ (ϕ + 1)f2

0 − f3
0 − ϕf0

}]

=
(1− 2ϕ) exp( x1√

2
)

2N(α)(1 + exp( x1√
2
))2

[
αt̄α

Γ(α + 1)
+ (1− α)

]
,

f2(x1, t̄) = E−1
[

αωα + 1− α

N(α) E
{(

f1(x1, t̄)
)

x1x1
+ (ϕ + 1)f2

1 − f3
1 − ϕf1

}]

= −
(1− 2ϕ)2 exp( x1√

2
)(exp( x1√

2
)− 1)

4N2(α)(1 + exp( x1√
2
))3

[
α2 t̄2α

Γ(2α + 1)
+ 2α(1− α)

t̄α

Γ(α + 1)
+ (1− α)2

]
,

f3(x1, t̄) = E−1
[

αωα + 1− α

N(α) E
{(

f2(x1, t̄)
)

x1x1
+ (ϕ + 1)f2

2 − f3
2 − ϕf2

}]

= −
(1− 2ϕ)3 exp( x1√

2
)(exp(

√
2x)− 4 exp( x1√

2
) + 1)

8N3(α)(1 + exp( x1√
2
))4

×
[

α3 t̄3α

Γ(3α + 1)
+ 3α2(1− α)

t̄2α

Γ(2α + 1)
+ 3α(1− α)2 t̄α

Γ(α + 1)
+ (1− α)3

]
,

...

Provided that the series form solution is the following:
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f(x1, t̄) = f0(x1, t̄) + f1(x1, t̄) + f2(x1, t̄) + f3(x1, t̄) + . . . + fm1 (x1, t̄).

the following consequently results.

f(x1, t̄) =
1

(1 + exp(− 1√
2
)x1)

+
(1− 2ϕ) exp( x1√

2
)

2N(α)(1 + exp( x1√
2
))2

[
αt̄α

Γ(α + 1)
+ (1− α)

]

−
(1− 2ϕ)2 exp( x1√

2
)(exp( x1√

2
)− 1)

4N2(α)(1 + exp( x1√
2
))3

[
α2 t̄2α

Γ(2α + 1)
+ 2α(1− α)

t̄α

Γ(α + 1)
+ (1− α)2

]

−
(1− 2ϕ)3 exp( x1√

2
)(exp(

√
2x1)− 4 exp( x1√

2
) + 1)

8N3(α)(1 + exp( x1√
2
))4

×
[

α3 t̄3α

Γ(3α + 1)
+ 3α2(1− α)

t̄2α

Γ(2α + 1)
+ 3α(1− α)2 t̄α

Γ(α + 1)
+ (1− α)3

]
+ . . .

Figure 10 compares the exact and approximate solutions to Problem 4 by using the CDF operator.
The absolute error norm in Figure 11 for (45) with the assumptions of θ = 1, β = 1, and 0 < ϕ < 1
ensures the approximation of the numerical results derived by the IETM to the exact solution via the
CFD and ABC fractional derivative operators, respectively. The results of the graphical representation
reveal that the model is highly dependent on fractional order α. The absolute inaccuracy is really small.
Surface and two dimensional representations of graphs via Figure 12 show the strong connection
between the exact and approximate solutions for various fractional orders. Furthermore, Figure 12a,b
illustrate that the ABC fractional derivative operator has better harmony than the CFD operator.

(a)

(b)
Figure 10. Numerical-behavior of exact and approximate solution to the f(x1, t̄) for Problem 4 when
the parameters are θ = 1, β = 1, and ϕ = 1/10.
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(a)

(b)
Figure 11. (a) Absolute-error plots of f(x1, t̄) for Problem 3 for (textbfa) CFD and (b) ABC when the
parameters are θ = 1, β = 1, and ϕ = 1/10.

(a)
Figure 12. Cont.
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(b)
Figure 12. (a) Three-dimensional comparison plot among exact, CFD, and ABC fractional derivative
operators via the IETM. (b) Two dimensional representation of f(x1, t̄) for Problem 4 at different
fractional orders when the parameters are θ = 1, β = 1, and ϕ = 1/10.

Remark 1. The integer-order (α = 1) solution of Problem 4 is the following:

f(x1, t̄) =
1

1 + exp(−ζ/
√

2)
,

which agrees completely with the findings [40], where ζ = x1 + c1 t̄ and c1 = 1
2
√

2
−
√

2ϕ. It is obvious that
f(−∞) = 0. f(∞) = 1, and hence f(ζ) in this scenario is a wave front traveling from right to left with speed
c1 = 1

2
√

2
−
√

2ϕ. It is worth noting that (45) enables steady travelling wave solutions.

f(x1, t̄) =
1
2

(
1 + tanh

(
+ x1

2
√

2
+

(1− 2ϕ)

4
t̄
))

,

f(x1, t̄) =
ϕ

2

(
1 + tanh

(
+ ϕx1

2
√

2
+

(ϕ2 − 2ϕ)

4
t̄
))

,

f(x1, t̄) =
(1 + ϕ)

2
+

(1− ϕ)

2

(
1 + tanh

(
+ (1− ϕ)x1

2
√

2
+

(1− ϕ2)

4
t̄
))

, (48)

The above is proposed by Khawara and Tanaka [41].

5. Conclusions
In this paper, the new iterative Elzaki transform method is used to efficiently solve the nonlinear

Fisher’s equation by using the Caputo and the AB fractional derivative operators, which possess
a fractional Lagrange multiplier. In addition, the concept of V-stable mapping and the fixed point
theorem demonstrates the stability of the proposed technique in the sense of the AB-fractional
operator. Several illustrative cases were carried out to verify the efficacy and reliability of the
proposed technique. The findings indicate that the ABC fractional derivative is completely accurate
and has a wide spectrum of uses as compared to CFD. In comparison to existing numerical algorithms,
the suggested method has a lower processing complexity. Furthermore, the approach interprets and
regulates the series of solutions, which converge swiftly to the exact solution in a short admissible
domain. In this process, we do not require rectification functionals, stationary constraints, or hefty
integrals since the findings are noise-free, which addresses the drawbacks of earlier techniques.
Furthermore, we believe that this technique will be adopted to contend with other non-linear
fractional order systems of equations that are extremely complex. In the future, we will investigate
a similar problem by utilizing the double Laplace transform and generalized Kudryashov method,
which will be a useful mechanism for solving nonlinear PDEs and other FDEs.
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