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Abstract: The fractal Toda oscillator with an exponentially nonlinear term is extremely difficult to
solve; Elias-Zuniga et al. (2020) suggested the equivalent power-form method. In this paper, first,
the fractal variational theory is used to show the basic property of the fractal oscillator, and a new
form of the Toda oscillator is obtained free of the exponential nonlinear term, which is similar to
the form of the Jerk oscillator. The homotopy perturbation method is used to solve the fractal Toda
oscillator, and the analytical solution is examined using the numerical solution which shows excellent
agreement. Furthermore, the effect of the order of the fractal derivative on the vibration property is
elucidated graphically.

Keywords: fractal Hamilton principle; fractal Weierstrass theorem; strong minimum condition; Toda
oscillator homotopy perturbation method; frequency-amplitude relationship

1. Introduction

An oscillation occurs when its kinetic energy and its potential energy are changed
alternatively, while the total energy remains unchanged. Its variational formulation can be
expressed as [1–3]:

J(u) =
∫ {1

2
(

du
dt

)2 − f (u)
}

dt (1)

where 1
2

.
u2 is kinetic energy and f (u) is the potential energy.

They meet the following energy balance equation [4]:

1
2
(

du
dt

)2 + f (u) = H (2)

where H is the Hamiltonian constant depending on the initial conditions.
Generally, a nonlinear oscillator can be written in the form:

d2u
dt2 +

d
du

f (u) = 0; (3)

with the initial conditions:
u(0) = A,

.
u(0) = 0 (4)

For an oscillator, it requires [5,6]:

d2

du2 f (u) > 0 (5)
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When f (u) = 1
2 u2 + 1

4 εu4, we have the well-known Duffing oscillator, which reads
as follows:

d2u
dt2 + u + εu3 = 0 (6)

The potential function, f (u), will greatly affect its periodic property. In this paper, we
consider a potential with an exponential form:

f (u) = eu − u (7)

and its variational formulation is:

J(u) =
∫ {1

2
(

du
dt

)2 − (eu − u)
}

dt (8)

The nonlinear oscillator can be obtained from Equation (8) as a stationary condition:

d2u
dt2 + eu = 1; u(0) = A,

.
u(0) = 0 (9)

This is the Toda oscillator [7–10].

2. Fractal Toda Oscillator and Fractal Weierstrass Theorem

The Toda oscillator is well-known for its chaos and bifurcation properties [9,10], and
its fractal partner was first studied in [8], where some new properties were revealed.
The fractal vibration theory has attracted much attention recently and can solve what
the classic vibration theory cannot solve. For example, the pull-in instability of a micro-
electromechanical system (MEMS) oscillator can never be solved by differential models,
and it was Tian and colleagues that made a momentous contribution to the landmark using
a fractal modification [11–13]. Ji et al. suggested a new fractal vibration theory to avoid
vibration damage [14]. A fractal oscillation revealed, for the first time, the mechanism of
Fangzhu device for water collection from the air [15–18]. In a microgravity space, a fractal
modification of Newton’s law is a must to describe the motion [19]. Zuo established a
fractal vibration model for the 3D printing process [20]. Elias-Zuniga et al. suggested a
fractal model for current generation in porous electrodes [21]. Elias-Zuniga et al. extended
the Duffing equation to its fractal modification [22]. He, Liu, and Gepreel found the large
period property of a fractal concrete beam [23]. He et al. revealed the thermal response of a
fractal concrete [24]. Various analytical methods for the frequency-amplitude relationship
of a fractal oscillator have appeared in literature, among which He’s frequency formulation
was the simplest [25–28].

In a fractal space, the variational formulation of Equation (8) can be modified as [29]:

J(u) =
∫ {1

2
(

du
dtα

)2 − (eu − u)
}

dtα (10)

where du
dtα is the two-scale fractal derivative [30].

The fractal variational theory is helpful to establish a governing equation in a fractal
space. Some useful fractal variational principles can be found in the literature, for example,
the fractal variational theory for compressible fluids [31], the fractal variational principle
for the telegraph equation [32], the fractal variational theory for Chaplygin-He gas [33],
and the fractal variational principle for a solitary wave traveling [34–38].

Consider a fractal variational principle in the form:

J(u) =
∫

L(t, u,
du
dtα

)dtα (11)
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and introduce a new variable w defined as:

du
dtα

= w (12)

The fractal variational formulation given in Equation (11) becomes:

J(u) =
∫

L(t, u, w)dtα (13)

which is subject to the constraint of Equation (12).
The fractal Weierstrass function is defined as [29]:

E(t, u, u(α), w) = L(t, u, w)− L(t, u, u(α))− (w− u(α))
∂L
∂w

(14)

where u(α) = du
dtα .

According to the fractal Weierstrass theorem [29], Equation (11) is a strong minimal
variational principle if the following conditions are satisfied:

E(t, w, w(α), q) ≥ 0 and
∂2E
∂q2 > 0 (15)

In our study for Equation (10), the fractal Weierstrass function is:

E = L(t, u, w)− L(t, u, u(α))− (w− u(α)) ∂L
∂w

=
[

1
2 w2 − (eu − u)

]
−
[

1
2 (

du
dtα )

2 − (eu − u)
]
− (w− du

dtα )
du
dtα

(16)

It is obvious that

E(t, u, u(α), w) = 0 and
∂2E
∂w2 = 1 > 0. (17)

Therefore, Equation (10) is a strong minimal variational principle.
The fractal Toda oscillator can be obtained from minimizing Equation (10), which is:

d2u
dt2α

+ eu = 1 (18)

The initial conditions are:

u(0α) = A,
du
dtα

(0α) = 0 (19)

Using the two-scale transform [30]:

T = tα. (20)

The fractal Toda oscillator can be expressed in the form:

..
u + eu = 1, u(0) = A,

.
u(0) = 0 (21)

where the dot is the derivative T concerning.

3. A Simplified Model for the Fractal Toda Oscillator

To establish a compatible form of the Toda oscillator, it is suitable to convert it to a Jerk
oscillator. To accomplish this aim, an annihilation operator is required for the function eu

which is found to be
(

D− .
u
)
, in such a way that

(
D− .

u
)
eu → 0; D ≡ d../dT ; therefore,

Equation (21) can be converted to the following form:

...
u +

.
u =

.
u

..
u, (22)
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This is an alternative equation free of the exponential nonlinear term. It is known as a
Jerk oscillator. It lacks the linear term; therefore, it can be modified by adding the term ω3u
to both sides as follows: (

D3 + ω3
)

u = ω3u− .
u +

.
u

..
u, (23)

where ω3 is an unknown to be determined later; therefore, these nonlinear equations can
be solved by the HPM. In [39], a reduced-order model for analysis is proposed by using
the HPM. Equation (23) can be arranged in the form:

(D + ω)
(

D2 −ωD + ω2
)

u = ω3u− .
u +

.
u

..
u. (24)

Since the original equation is a second-order equation, then, it is suitable to reduce
the rank of Equation (23). This can be accomplished when operating on both sides of
Equation (24) by the inverse of (D + ω) as follows [40–48]:(

D2 + ω2
)

u = ω
.
u + (D + ω)−1

(
ω3u− .

u +
.
u

..
u
)

. (25)

This is a second-order differential equation that contains quadratic nonlinear terms.

Application of the HPM

The homotopy perturbation method was first proposed to solve nonlinear differential
equations [40], and it is also an effective tool for various nonlinear oscillators [41–43]. To
solve Equation (21) by the homotopy perturbation method, we can establish the homotopy
equation in the form:(

D2 + ω2
)

u = ρ
[
ω

.
u + (D + ω)−1

(
ω3u− .

u +
.
u

..
u
)]

; ρ ∈ [0, 1] (26)

Accordingly, we expand the solution in the form:

u(T) = u0(T) + ρu1(T) + ρ2u2(T) + . . . , (27)

where ui, i = 0, 1, 2, . . . are unknown constants to be later determined. Because there
is only one unknown in the homotopy Equation (16), that is ω, the first-order pertur-
bation is enough to determine it. Substituting the expansion (27) into the homotopy
Equation (26) yields:

ρ0 :
(

D2 + ω2
)

u0 = 0, u0(0) = A&
.
u0(0) = 0, (28)

ρ1 :
(

D2 + ω2
)

u1 = ω
.
u0 +

1
D + ω

(
ω3u0 −

.
u0 +

.
u0

..
u0

)
, u1(0) = 0&

.
u1(0) = 0, (29)

Equation (28) having the following solution:

u0(T) = A cos ωT. (30)

Employing (30) into (29) yields:(
D2 + ω2

)
u1 = −Aω2 sin ωT +

1
2

A
[(

ω2 + 1
)

sin ωT +
(

ω2 − 1
)

cos ωT − 2A
5

ω2 cos 2ωT +
1
5

Aω2 sin 2ωT
]

. (31)

Removing the terms that producing secular terms gives:

ω2 = 1. (32)

Accordingly, the periodic solution of Equation (30) has the form:

u0(T) = A cos T. (33)



Fractal Fract. 2021, 5, 93 5 of 8

Employing (32) and (33) with (31), its solution becomes:

u1(T) = −
1A2

15
cos T +

4A2

15
sin T +

A2

15
cos 2T − A2

30
sin 2T. (34)

The first-order approximate solution can be performed by employing (33) and (34)
into the expansion (27) and letting ρ→ 1 yield:

u(tα) = A
(

1− 1
15

A
)

cos tα +
4A2

15
sin tα +

A2

15
cos 2tα − A2

30
sin 2tα. (35)

4. Numerical Illustration

For more opportunities, the attained approximate analytical solution must validate
the numerical solution. For this perseverance, the numerical solution of Equation (21)
was utilized to confirm the approximate solution (35). Therefore, Figure 1 is designed
to demonstrate the bounded analytical solution given from the HPM, together with the
numerical solution that is given by Mathematica software. Through this figure, the usage
of the sample chosen system exposed that the value of the amplitude A = 0.1 and α is
supposed in the stander case of α = 1. As shown from this figure, the amplitudes of the
solution in the two cases coincident. Additionally, both solutions behave in the periodic
nature of the solution. It is found that there is excellent agreement between the analytical
solution and the numerical solution even when the amplitude A has increased, as displayed
in Figures 2–4. Three sequences of the parameter α are considered (α = 0.6, 0.8 &1) for
the solution (35) with the fixed amplitude A = 0.2 and graphed together in Figure 5. It is
observed that an increase in α leads to a decrease in the wavelength with the wave height
fixed. In Figure 6, the analytical solution (35) is plotted as a function of the parameter α
with the fixed variable t to the value t = 20. Again, an increase in the parameter α decreases
the wavelength.
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5. Conclusions

In this paper, we show the basic properties of a fractal oscillator in the frame of fractal
variational theory. The fractal Tota oscillator can be obtained by minimizing the fractal
variational formulation. The complexity of the Toda equation was relaxed by converting
it to the jerk oscillator. The homotopy perturbation method was adopted to solve the
nonlinear third-order differential equation, and the results are good enough for practical
applications. The accuracy of the obtained solution was examined by comparing it with the
numerical solutions which show excellent agreement even for relatively large amplitudes.
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