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Abstract: In this paper, the authors define a new generic class of functions involving a certain
modified Fox-Wright function. A useful identity using fractional integrals and this modified Fox—
Wright function with two parameters is also found. Applying this as an auxiliary result, we establish
some Hermite-Hadamard-type integral inequalities by using the above-mentioned class of functions.
Some special cases are derived with relevant details. Moreover, in order to show the efficiency of our
main results, an application for error estimation is obtained as well.
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1. Introduction and Preliminaries

In many problems in mathematics and its applications, fractional calculus has a crucial
role (see [1-6]). The analysis of the uniqueness of fractional ordinary differential equations
can be accomplished by using fractional integral inequalities (see [7-9]).

Integral inequalities play a major role in the fields of differential equations and applied
mathematics (see [10,11]). Moreover, they are linked with such other areas as differential
equations, difference equations, mathematical analysis, mathematical physics, convexity
theory, and discrete fractional calculus (see [12-18]).

Convexity is a fascinating and natural concept; it is beneficial in optimization theory,
the theory of inequalities, numerical analysis, economics, and in other fields of pure and
applied mathematics.

The notion of the h—convex function is introduced below.

Definition 1 (see [19]). Let h : [0,1] — [0, 00) be a function. A function i : 1 — R is said to be
h—convex if

Y61+ (1 =1)62) = h(1)P(81) + 11 = 1)p(C2)
holds true for every &1, & € Land 1 € [0,1].
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The following class of functions was introduced by Awan et al. (see [20]) and was
demonstrated to play an important role in optimization theory and mathematical eco-
nomics.

Definition 2. A function i : 1 C R — R is called exponentially convex if

1/’(151 + (1 — 1)62) é 1% + (1 _ l)%

holds true forall &, & € I, @ € Rand 1 € [0,1].

The most significant inequality about a convex function ¢ on the closed interval
[¢1,E2] is the Hermite-Hadamard integral inequality (that is, the trapezium inequality).
This two-sided inequality is expressed as follows:

$1+8 1 & (&) +9(&2)

The two-sided inequality (1) has become a very important foundation within the field
of mathematical analysis and optimization. Several applications of inequalities of this type
have been derived in a number of different settings (see [21-29]).

In the context of fractional calculus, the standard left and right-sided Riemann-
Liouville (RL) fractional integrals of order « > 0 are given, respectively, by

L) = o [0 s (> 8

and (2)

Igz,t,b(x) = 1"(104) /:2(1 —x)* Yy(2)di (x < &),

where 1 is a function defined on the closed interval [y, ¢;] and T'(+) is the classical (Euler’s)
gamma function.

Regarding information for some of the fractional integral operators, including those
that are known as Erdélyi-Kober, Riemann-Liouville (RL), Weyl and Liouville-Caputo
(LC) operators, see [30-34].

There are many directions in which one can introduce a new definition of fractional
derivatives and fractional integrals, which are related to or inspired by (for example) the RL
definitions (see [35,36]), with reference to some general classes into which such fractional
calculus operators can be classified. In applied mathematics, it is important to consider
particular types of fractional calculus operators which are suited to the fractional-order
modeling of a given real-world problem.

We now recall the familiar Fox-Wright hypergeometric function ,'¥;(z) (with p nu-
merator and g denominator parameters), which is given by the following series (see [5]
(p. 67, Equation (1.12(68))) and [37] (p. 21, Equation (1.2(38)))):

|4
(‘Xllul)/ Tty (“prup); 1) H r(“f + nZ/[g) Zn
¥ 2| =y G— =, ®)
(B1 V1), (Bg, Va); n=0 TTT(B, +nV))

1

-
Il

where the parameters

a, B €C (U=1---,p;1=1---,q)
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and the coefficients
U1,~~~,UPER+ and V1,~~~,Vq€R+

satisfy the following condition:

q P

1+Y V,—-Y U =o. (4)
1=1 (=1

Here and in what follows, we have made use of the general Pochhammer symbol (77), (17,v € C)

defined by

 T+v) (v=20; 7€ C\{0})
==y = .
nm+1)---(n+n-1) (v=neN; neC),

it being assumed conventionally that (0)g := 1 and understand tacitly that the I'-quotient
in (5) exists.

The following modified version of the Fox-Wright function ,¥,(z) in (3) was intro-
duced, as long ago as 1940, by Wright [38] (p. 424), who partially and formally replaced the
I'-quotient in (3) by a sequence {c(n)}5_, based upon a suitably-restricted function ()
as follows (see also [39], where the same definition is reproduced without giving credit to
Wright [38]):

©)

)
F7 (z) = FoOe ), =) _o0) 0; 0). 6
prg(z) 0,6 (Z) = I"(pg g) Z (p > G > ) ( )

If, in Wright’s definition (6) from 1940 (see [38] (p. 424)), we take p = ¢ = 1 and

=

F(a]- +u]£)
i=1

Q
—~
~
~
|
—

(€20,1,2,~~~),

i

T(Br + Vit)

»
Il
_

then Wright's definition (6) would immediately yield the familiar Fox-Wright hypergeomet-
ric function ,¥;(z) defined by (3). The one- and two-parameter Mittag—Leffler functions
Ey(z) and E,g(z), and indeed also almost all of the parametric generalizations of the
Mittag-Leffler type functions, can be deduced as obvious special cases of the Fox-Wright
hypergeometric function ,'¥,;(z) defined by (3) (see [40] for details).

We are now in the position to introduce a new generic class of functions involving the
modified Fox-Wright function 7 (-).

Definition 3. Let hy, hy : [0,1] — [0, 00) be two functions and p : 1 C R — R. If ¢ satisfies the
following inequality,

1/1((",‘1 +1F5 (82— ffl)) < hl@% +h2(1) lfgzi)

forall 1 € [0,1], @, @y € R, and &,& € 1, where fﬁ,g(@z — &) > 0, then ¥ is called an
exponentially (1, @y, hy, hy)—nonconvex function.

Remark 1. Upon setting

@1 = Wy =, h1(l) =1-3, hz(l) =1
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and
Foc(la—¢1) =801
in Definition 3, we then obtain Definition 2.

Remark 2. Some special cases of our Definition 3 are listed below:

(I)  Taking hy(1) = hp(1) = 1, we have an exponentially (o1, @, P)—nonconvex function.

(I) Choosing hy(1) = h(1 —1) and hy(1) = h(z), we obtain an exponentially (@, @,, h)—
nonconvex function.

(IIT) Setting hi(1) = (1 —1)° and hy(1) = 1° for s € (0,1], we obtain an exponentially
(s, @1, @y)-Breckner-nonconvex function.

(IV) Putting h1(1) = (1 —1)"% and hy(1) = 17° for s € (0,1), we obtain an exponentially
(s, @1, @p)-Godunova—Levin—-Dragomir-nonconvex function.

(V) Taking hi(1) = hy(1) = 1(1 — 1), we obtain an exponentially (1, @,, tgs)-nonconvex
function.

Our paper has the following structure: in Section 2, we first find a useful identity
using fractional integrals with two parameters A and y involving the modified Fox-Wright
function 77 (-). Applying this as an auxiliary result, we give some Hermite-Hadamard-
type integral inequalities pertaining to exponentially (7, @y, hy, hy)-nonconvex functions,
and some special cases are derived in details. In Section 3, the efficiency of our main results
is demonstrated with an application for error estimation. Section 4 presents the conclusion
of this paper.

2. Main Results and Their Consequences
The following notations are used below:

A= |68+ P& - @),

where
]—"&(Cz — 61) >0

and A° is the interior of the closed interval A with @1, @, € R. We denote by £1(A) the
space of integrable functions over A. We need to prove the following basic lemma.

Lemma 1. Let the function  : A — R be differentiable on A° and A, u € (0,1]. If ¢’ € L1(A),
then, for « > 0,

14“1/’(51)+)\“1P<C1+f,‘{g(§2—§1)) _ Tla+1)
A+ p" [Fs@—a)]

Jme(ar o mie-w) (6 T -w)]

- }—;17,4;(52 - él)
- (/\+y)a+l

) {/OA "y (Cl + ;{i;]’gg(gz - @1)>d1 _ /OV ! (Cl + %J—'&(gz - §1)>d1} @)

Proof. We define

Foc(82—¢1)

71%;4(51152) = A+ )t

(2, - 74], )
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where

= [Moy (51 B e T ACE ¢1>)dz

= [y (@ I -

which, upon integrating by parts, would yield

and

I
= AFH .

fﬁg(§2—§1)1¢(€1+2\+y Foe(6 gl))

w(A+p) #
"FEmh RICES s AR

/\+]/l a+1
_r(‘"“)(ﬁ;',g(éz—él))

0

w(m ¢ (& a)) AT ) o)

At o g,g(‘ZZ_gl)lp

Similarly, we find that

_ Aty -
I = mﬂf(él + Fpe(8a = Cl))

o,

a+1
_ I T W ro(x _ >
r<a+1><fgg(éz_ &)) Tt ey PO T F@ - 8). 00)

Substituting from (9) and (10) into (8), we obtain the desired result (7). O

From Lemma 1, we can derive the following case:

Remark 3. Taking & = 1 in Lemma 1, we have

up(&) +M’(§1 +f,3',g(§2*§1)) 1

B /§1+ (62—¢1) (1)ds
A+ F5(62—¢1) Jgy

Foela=C) | * +1
:ip&fmzl [/O up (mfﬂl Foelé2 cn)

'/(;ﬂltp’(mfﬂ Fre(ta m) ] 1

Our first main result is stated as Theorem 1 below.

Theorem 1. Assume that hy, hy : [0,1] — [0, c0) are two continuous functions and let p : A — R
be a differentiable function on A° with A,y € (0,1]. Furthermore, let ' € L4(A). If |¢'|7 is an
exponentially (@01, @2, hy, hy)—nonconvex function, then, for g > 1, % + % =1landa > 0,itis
asserted that
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Fo@a—a) [ 21w @l W), \T
(3 0,6 1 2
’7;\,,4(‘31/ gZ)’ < W .Alp( ) Hi1+ o 7'[1,2>

1

5 (1 (&)T [¢' (52)]7 q
A (g, 4 W a0) | a2

where
Apa+l thx—&—l
Al'—pa—i—l' 2'_poc+1'

A A
L u+t1 __/ u+1 J
Hig ._/0 hl(/\_”l)dz, Higi= | hz(Aﬂl 5
Hoq:= /yh Ll pH and Hyp = /yh r- di.
21— 0 1 /\+H 22— 0 2 A"’}l

Proof. Applying Lemma 1, the property of the modulus, Holder’s inequality, and the
exponential (@1, @y, hy, hy)-nonconvexity of |¢'|7, we have

w(mfiy Fyolta— a)) dr

+ /OH iy’ <Cl + %fg,g(ﬁz - Cl))

)%

/<§1 + %f,ig(éz - 51))

. Foc(62— 1)
7;\,;4(61/ 62) § Wl/(;

4

SW[(/OAzP“d1>;< OA (51 f:; Fo(82— 51))

1
H ]
+</ ﬂ“‘dz)p(
Jo Jo

< T8 O[] ([ i () WA (e I 4
() () B (o )

Foole— &) [ A (WLt |¢'<@>|qu2>%

W) ;]

(A+y)0¢+l 11+

@181 ¢ @282

@161 @282

s (|¢ GV (gzw,,{zlz)q},

which completes the proof of Theorem 1. [

Some corollaries and consequences of Theorem 1 are listed below:

Corollary 1. Upon setting « = 1, Theorem 1 yields
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up(G1) + Ay (gl + ]:;)7;5(62 - 51)) B 1 S1+F5c(82—01) \d
A+H Jﬁga—a>él o

Folea— &) [ APFINT (|9 (@) (@), \7
< S | G) (Mo + )

+1 / / 1
() (0 )|

Corollary 2. Choosing hy(1) = hp(1) = 1in Theorem 1, it is asserted that

F, - 1 1 / q ' q 1
Tiu(C1, 62)| = W(Af)\q +A;yq) |:|lpe¢(0§é1)| n |¢e§a§§3| r‘ 14

Corollary 3. Choosing

h(1) = (1 —1)° and  hp(1) =1° (s € (0,1))

in Theorem 1, it is asserted that

Fg - 1 ! , %
Tiu(C1 62)| = m lAf (lP (51)|qDll N ¥ (@)1 /2)

e@181 ’ 0262

+@CW”WM+W@WQQW<E

@161 ¢ @282

where

B )\S'H o (}\ + "LI)S'H _ PlS-H

D1,1 = m, Dl,Z = (S + 1)()\ + ‘M)s ’
()\ + ‘u)erl _ )\s+l
(s+1)(A+p)s

s+1
DZ,l =

._ i
and ’Dz/z = (S+1)(A+‘u)s.

Corollary 4. Taking

hi()=1-1)""° and  hy(1) =177 (s € (0,1))

in Theorem 1, the following inequality is deduced:

" Foe@—a) [ b (1w @l (@I . \7
ﬂ,y(glr 62) = % [Af (lpecgfél” ]‘—111 + Wﬁi@f]g) !

Al (5 )]

@282

where

A175A+ s A+ 1-s _ ,,1-s A4 u)s
Fiye 1(_SP‘), Fipm (AHH) ¥ JA+p)*

A 1—s_)L1—s A s 1-s s
Fop = (AW — LG R Y i U 1“_?‘).

Corollary 5. For
h(1) = hy(1) = 1(1 =),
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Theorem 1 yields

o, 1 / q / g7}

where 2( ) 2( )
_ATQButA  wBAt
G := 76()\4—}1)2 and Gy := 76()\—&—;4)2'

Our second main result is stated as Theorem 2 below.

Theorem 2. Assume that hy, hy : [0,1] — [0, 00) are two continuous functions and i : A — R
is a differentiable function on A° with A,y € (0,1]. Furthermore, let ¢’ € L1(A). If [¢'|7 be an
exponentially (@1, @7, hy, hy)—nonconvex function; then, for g = 1 and « > 0, it is asserted that

‘7;\0(,;1(6% (:2)‘ é Sl,l + 0@ Tt

Fg (G2 —¢1) [Bi_‘% <|‘7"’(f51)|‘7

9 (&) 12)5
(A_i_y)wrl e©181 ’

o (K, ) .

where

A A
— ® Bt '_/ ® u+1
81,1 .—/O lhl()&—i-‘u)dll 81’2.— 0 lhz()\+y)dl,
H u—1 H—1t
S:z/"‘h d d Sz/“h( )d.
2,1 OZ 1<A+y>l an 2,2 0 /\—f—ﬂ 1

Proof. Applying Lemma 1, the property of the modulus, power-mean inequality and the
exponential (@1, @y, hy, hy)-nonconvexity of |¢’|7, we obtain

Foe(la—2¢
’7;6;4(51, 52)’ s W

V(o I e [y (e S - )

Foc(8a—¢1)
= (A

l(/oAl“dl)l;(/oAla ’(§1+)’f:; (6 §1)>
() (e

.[/Oﬂa

g

>$
(o i o))

Foo(62—¢61)
= ()\ (A )t

Yo NI oS (B @D AN AT
[ o) (e () e (e G0
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(ff e (A= Gy () R }dﬂ
_ TG —61)
S At

[qu <|lp ol S+ u (€Z)|q31,2> ﬁ + 27 (WJ (61)|q52,1 + |¢e(§2)q32,2)q1.

1

17
2
—i—(/ 1"‘dz> !
0

®161 @282 ®161 @262
The proof of Theorem 2 is completed. [

We now state several corollaries and consequences of Theorem 2.

Corollary 6. Upon setting « = 1, Theorem 2 yields

/\+I’l ]:a,g(é'Z_

1 1
(62— AN (@) 1§ (&) g
PQ 1 2
e (CINCC L
2,2

)
(;;) <|¢ Gty WG ” %)

up(81) +AP( &1+ Fo (82 —¢1) 1 G +F(82—1)
( Pe ) ) / g P(1)d1

@181

where

M '—/y1h<y_l di and M '—/y1h<y_l>d1
21:= |t At n 22:= |t Aga)™

Corollary 7. Choosing hy(1) = hy(1) = 1 in Theorem 2, the following inequality holds true:

L [ T @W} 20

o (82
W( e s

’7:\%;1(61/ 62)’ é
Corollary 8. Choosing

h()=1-1)° and ()= (se(0,1]),

Theorem 2 is reduced to the following inequality:

To (G 8)| < Fpe(@—¢1) [Bl—;<|¢’<¢1)|qp1+|¢’(§2>|‘7Pl,2>v

(A + ]/[)zx+ 5+1 @181 @262

@181 @262

LB 2*% (W’ (gl)|qp2,1 + |1’b,(§2)|q7)2,2) q] , (21

where

A A
Py = / 1“(A—1)°ds, Pip = / *(p+1)°ds,
0 0

H K
Py = / “(A+1)°d1 and Py := / “(u —1)°du
0 0



Fractal Fract. 2021, 5, 80

10 of 13

Corollary 9. By putting
h()=0-1)"° and h()=1"° (s€(01)),

Theorem 2 yields the following inequality:

’7; U 61/ gZ)’ g M [B I (llp (gl)w 1, 1+ ll«’eégéz)le,z)q

A+ it e
LB é(lllﬂ (61)|‘4732/1+ ¢;(§2)|E’Rzlz)”’], (22)

@181 @282

where
R /)\ “ d R /)\ - d
= —d, = —ds,
M (A= o (e

ZDC

Ry = /” " d Rop:= /V —d
= 1 an = 1.
21 0o (A+1)° 22 0o (p—1)s

Corollary 10. Upon letting
(1) = hp(1) =1(1—1),
Theorem 2 yields the following inequality:

55, - -1 1 _1 1 / 1
TH (61, &) gM(Bi ki1 5! q,q){lw <§1>|q+|¢<§2>|q]q, )

(A+ y)rx+l £@0181 @282
where
. 1 ‘u/\chrZ B ‘u/\terZ /\Dc+3 B )\“+3
VT A2 a4+1 a+2 T a+2 a+3)
and
]Cz _ 1 /\ychrZ B )\VIXJrZ ‘uoz+3 B ‘utx+3
oA+ la+l w42 a42 a+3)

Remark 4. If we take A = p = 1 or FJ (S2 —¢1) = G2 — &1 or hi(1) = h(1 —1) and
hy(1) = h(1) in Theorem 1 and Theorem 2, then we can obtain some interesting results imme-
diately. We omit their proofs here, and the details are left to the interested reader.

Remark 5. If we choose @1 = @y = 0 in our results in this paper, then all of the consequent
results will hold true for the (hy, hy)—nonconvex functions.

3. Application

In this section, we present an application involving a new error estimation for the
trapezoidal formula by using the inequalities obtained in Section 2. We fix the parameters
p and . We also suppose that the bounded sequence {c(¢)}{>, of positive real numbers is
given.

Let

U:Gr=xo<x1<-<xu1<xn=08+F;.(52—31)

be a partition of the closed interval A.
For A, u € (0,1], let us define

n=1 [ up(xi) + A (xi + Fo ()
T(U,y) = ; ( A(er = ))f;,{g(hi),
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and
S1+Fgc(82—61)
/ p(0)d = T(U$) + R(U p),
1
where R(U, ¢) is the remainder term and
hi:XiJrl_Xi (Vi:0,1,2,-~-,n—1).
From the above notations, we can obtain some new bounds regarding error estimation.
Proposition 1. Assume that hy,hy : [0,1] — [0, c0) are two continuous functions. Furthermore,
let  : A — R be a differentiable function on A° with A,y € (0,1]. Suppose that ' € L1(A)

and that |¢'|7 is an exponentially (@1, @,, hy, hy)—nonconvex function. Then, for ¢ > 1 and
% + % =1, it is asserted that

n—1
RIS G L [f;;(hi)]z

APHL ' (xi)lT [¢' (xix1)]7
(p—|-1) ( e@1Xi H1,1+ e@P2Xi+1 H1’2>

. <w+l> <|¢ GOLPY r¢'<xi+l>w%m)3]' o

=

p+1 e@1Xi ’ eD2Xi+1

Proof. Applying Theorem 1 on the subinterval [x;, x;r1] of the closed interval
A(Vi=0,1,2,--- ,n—1),and taking « = 1, we obtain

2
m) + M (i T m)\ ey ()]
Atu pil ’)7-/i 1= w2
AN (! (3 W (), \7
(P+1> ( e@1Xi Hig+ e@2Xit+1 HM)
1
pr 1 [y’ (xi) |7 [ (Xit1)]7 7
+<P+1> ( prora %2/1—'—73@2)&“ Hopo . (25)

Upon summing the inequality (25) over i from 0 to n — 1 and using the property of
the modulus, we obtain inequality (24). O

Proposition 2. Assume that hy,hy : [0,1] — [0, c0) are two continuous functions. Furthermore,
let  : A — R be a differentiable function on A° with A,y € (0,1]. Suppose that ¢’ € L1(A) and
that |¢'|7 is an exponentially (@1, @3, hy, hy)—nonconvex function. Then, for q = 1, the following
inequality holds true:

RUIE G g[ ()]

A 9" (i) |7 [ (Xi+1) 1
l(z) ( e@1Xi M 1+ esz—: MLZ)

2 1_1 / 12 1
T () ¢ (xi1) | 7
* (2) (MMZlJFewzmMz,z . (26)

.
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Proof. Choosing &« = 1in Theorem 2 and using the same technique as in our demonstration
of Proposition 1, we obtain the desired inequality (26). O

Remark 6. In view of Remark 2, we can establish new error estimations by using Proposition 1
and Proposition 2.

4. Conclusions

In this paper, the authors have defined a new generic class of functions involving the
modified Fox-Wright function 7 (-) as well as the so-called exponentially (@1, @2, h1, h2)~
nonconvex function. A useful identity has also been found by using fractional integrals
and the function 7 (-) with two parameters A and . We have established some Hermite-
Hadamard-type integral inequalities by using the above class of functions and the afore-
mentioned identity as an auxiliary result. Several special cases have been deduced as
corollaries including relevant details. We have also outlined the derivations of several
other corollaries and consequences for the interested reader. The efficiency of our main
results has been shown by proving an application for error estimation.
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