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Abstract: The numerical solution of fractional-order elliptic problems is investigated in bounded
domains. According to real-life situations, we assumed inhomogeneous boundary terms, while
the underlying equations contain the full-space fractional Laplacian operator. The basis of the
convergence analysis for a lower-order boundary element approximation is the theory for the
corresponding continuous problem. In particular, we need continuity results for Riesz potentials
and the fractional-order extension of the theory for boundary integral equations with the Laplacian
operator. Accordingly, the convergence is stated in fractional-order Sobolev norms. The results were
confirmed in a numerical experiment.

Keywords: fractional Laplacian; elliptic boundary value problems; boundary integral equations;
boundary element methods; Riesz potential

1. Introduction

The numerical solution of fractional-order diffusion problems has a number of appli-
cations to simulate real-world phenomena such as groundwater flows [1], the dynamics of
some proteins [2], geophysical electromagnetics [3], or population dynamics [4]. In the last
few decades—initiating in the work [5]—different approaches were developed to investi-
gate this important problem. In the space-fractional case, the core of any investigation is
the study of the underlying fractional elliptic problem.

Physically, this phenomenon (also called anomalous diffusion) can be recognized
by the sublinear dependence of the mean-squared displacement of single particles as a
function of time. For further explanations, we refer to the review article [6].

The main difficulty is to deal with these problems on bounded domains. While many
different definitions of the full-space fractional Laplacian are equivalent [7], for bounded
domains, even in the case of homogeneous boundary conditions, substantially different
definitions exist [8]. As in many situations in applied mathematics, the functional analytic
point of view leads to the most adequate model [9]. Since the discretization of the fractional
Laplacian results in a dense matrix in any case, the numerical treatment of the related
problems needs special techniques; see [10–12]. At the same time, based on the nonlocal
property of the fractional Laplacian, the zero-order extension to Rd also makes sense. The
corresponding numerical approximation—containing integrals on Rd—also needs special
care [13]. For a review paper on nonlocal models and their numerical approximations with
further literature, we refer to [14].

The real challenge, however, is the incorporation of inhomogeneous boundary con-
ditions. Indeed, it seems to be hard to model this nonlocal phenomenon if we only have
boundary data. Namely, for the computation of the full-space fractional Laplacian, we
would need the values of the underlying function on the whole space Rd.

A few attempts were made to resolve this problem in the framework of the con-
ventional PDEs, starting from the work [15], which were summarized in detail in [16].
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An alternative approach can be found in [17]. It turns out that the boundary integral form
of these problems offers a meaningful alternative.

This idea was initiated in [18] and completed with all possible cases in [19]. This can
also constitute the basis of the present study, where boundary integral elements are used.

Accordingly, the objective of this work is to set the theoretical basis of the boundary
element method for fractional-order elliptic problems, which can successfully deal with
inhomogeneous boundary conditions. Extending the classical approach for the second-
order elliptic case, we state the convergence properties of this approach and present a series
of numerical experiments.

2. Materials and Methods

In practice, the unknown function u has to be computed on a bounded domain Ω ⊂ Rd

with d = 2, 3, which is assumed to have Lipschitz boundary. The convergence results are
given in terms of fractional Sobolev norms. For the full space Rd, these are usually defined
using the Fourier transform F on the vector space:

Hs(Rd) = {v ∈ L2(Rd) :
∫
Rd
(1 + |r|2)s|Fv|2(r) dr < ∞}

as follows:

‖v‖2
Hs(Rd)

=
∫
Rd
(1 + |r|2)s|Fv|2(r) dr. (1)

Here, s is an arbitrary positive index. Using this, one can define the local version with:

‖v‖Hs(Ω) = inf
ṽ∈Hs(Rd)

{‖ṽ‖Hs(Rd) : ṽ|Ω = v}. (2)

For the details, we refer to the monograph [20].
In the error analysis, we considered a tessellation:

Γ1 ∪ Γ2 ∪ · · · ∪ ΓN = Γ = ∂Ω

of the boundary such that the surface subdomains {Γj}N
j=1 are disjoint open Lipschitz

domains, which were assumed to be a C1-diffeomorphic map of a convex polygon for
d = 3 or a bounded interval for d = 2.

We also need an estimate concerning piecewise Sobolev spaces.

Lemma 1 ([21], p. 37). For the above tessellation and any v ∈ Hs(∂Ω) with s > 0, we have
the estimate:

‖v‖H−s(∂Ω) ≤
N

∑
j=1
‖v|Γj
‖H−s(Γj)

.

For stating the well-posedness of the continuous problem, we also need the Sobolev space:

Ḣs(Rd) =

{
u ∈ L2,loc(Ω) :

∫
Rd
|r|2s|Fu|2(r) dr < ∞

}
with the corresponding norm.

The full-space fractional Laplacian operator [7] can be defined pointwise as:

− (−∆Rd)αu(x) = lim
r→0+

22αΓ( d
2 + α)

π
d
2 Γ(−α)

∫
B(0,r)C

u(x + z)− u(x)
|z|d+2α

dz, (3)

where B(x, r)C = Rd \ B(x, r). One can also define its weak form as the function (−∆Rd)α

for which: ∫
Rd

v(−∆Rd)αu =
∫
Rd

u(−∆Rd)αv
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is satisfied for all v ∈ C∞
0 (Rd).

The success of the boundary integral methods hinges on the existence of the funda-
mental solution φα of (−∆Rd)α, which is given with:

φα = F−1 1
|Id|2α

= 2α− d
2

Γ
(

α
2
)

Γ
(

d−α
2

) |Id|2α−d. (4)

We also used the concept of the trace operator γ, which for a bounded Lipschitz
domain Ω is continuous as:

γ : Hs(Ω)→ Hs− 1
2 (∂Ω) (5)

for s ∈ ( 1
2 , 3

2 ); see [22], Theorem 3.38.
We applied the conventional notation 〈·, ·〉−β,β for the duality pairing between H−β(∂Ω)

and Hβ(∂Ω) with some positive exponent β.
To streamline the presentation, we use the notation ‖ · ‖s,Ω for the Sobolev norm in

the space Hs(Ω) and similarly with Γ. Furthermore, in the estimates, the relation . was
used if the left-hand side can be estimated with a domain-dependent constant times the
right-hand side.

The main problem in practice is the numerical solution of the elliptic boundary
value problem: {

−(−∆)αu(x) = f (x) x ∈ Ω
u(x) = g(x) x ∈ ∂Ω,

where f , g are given real functions. At this stage, the differential operator (−∆)α is not yet
defined. In any case, it should be linear, such that u can be given as u = u1 + u2, where:{

−(−∆)αu1(x) = f (x) x ∈ Ω
u1(x) = 0 x ∈ ∂Ω

(6)

and: {
−(−∆)αu2(x) = 0 x ∈ Ω
u2(x) = g(x) x ∈ ∂Ω.

(7)

The problem in (6) is equipped with homogeneous boundary conditions, which has
already been studied by many authors, as mentioned in Section 1. Therefore, in this study,
we investigate the numerical solution of the problem:

−(−∆Rd)αũ(x) = 0 x ∈ (∂Ω)C

ũ(x) = g(x) x ∈ ∂Ω
|ũ(x)| . |x|2α−d x ∈ B(0, 1)C,

(8)

corresponding to (7), using boundary element approximation.
The result in [19] ensures the well-posedness of (8) as follows.

Theorem 1 ([18,19]). For any bounded Lipschitz domain Ω ⊂ Rd with d ≥ 3 and α ∈ ( 1
2 , 1),

or with d = 2 and α ∈ ( 1
2 , 3

4 ] and g ∈ Hα− 1
2 (∂Ω), the problem in (8) has a unique weak solution

ũ ∈ Ḣα(Rd).

The main building block of the proof is the analysis of the surface potential corre-
sponding to φα on ∂Ω, which is given for any x ∈ Rd with:

Sα(u)(x) =
∫

∂Ω
φα(x− y)u(y) dSy, (9)
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where φα : Rd \ 0→ R is given in (4). In particular, the following result was established
in [19].

Theorem 2 ([19]). For any indices s, α satisfying the assumptions in Theorem 1 and 2α− s ∈ ( 1
2 , 3

2 ),
the mapping Sα defines a continuous linear operator between Hs−2α+ 1

2 (∂Ω) and Hs(Ω), i.e., for all
ψ ∈ Hs−2α+ 1

2 (∂Ω), we have:

‖Sα(ψ)‖s . ‖ψ‖s−2α+ 1
2 ,∂Ω. (10)

Moreover, the map γSα is a coercive operator between H1/2−α(∂Ω) and Hα−1/2(∂Ω) in the
sense that:

〈u, γSαu〉 1
2−α,α− 1

2
=
∫

∂Ω
(Sαu)(x)u(x) dSx & ‖u‖2

1/2−α,∂Ω. (11)

3. Results
3.1. Error Analysis

The surface potential Sα allows us to reformulate the problem in (8). We want to find
the unique solution to the equation:

γSα(u) = g. (12)

To approximate the solution of Equation (12), first, we introduced the trial space for
a Galerkin approach. In all cases, the subscript h denotes a parameter corresponding to
the discretization.

We made use of the trial space:

S0
h(Γ) = {w ∈ L2(Γ) : w|Γj

∈ P0 ∀j = 1, 2, . . . , N},

i.e., S0
h(Γ) is piecewise constant with respect to the surface mesh. This trial space fulfills the

relation S0
h(Γ) ⊂ H1/2−α(Γ). A suitable basis of S0

h(Γ) is given by {ϕj}N
j=1, where:

ϕj(x) =

{
1 ifx ∈ Γj,
0 otherwise.

Now, we can apply the Galerkin formulation:

find uh ∈ S0
h(Γ) : 〈vh, γSα(uh)〉 1

2−α,α− 1
2
= 〈vh, g〉 1

2−α,α− 1
2

∀vh ∈ S0
h(Γ), (13)

which implies the Galerkin orthogonality relation:

〈vh, γSα(u− uh)〉 1
2−α,α− 1

2
= 0 ∀vh ∈ S0

h(Γ). (14)

The starting point of the analysis is to state the quasi-optimality of any Galerkin
method as follows.

Lemma 2 (Céa-lemma). For the Galerkin solution uh of Equation (13), we have:

‖u− uh‖ 1
2−α,∂Ω . inf

wh∈S0
h(∂Ω)

‖u− wh‖ 1
2−α,∂Ω. (15)

Proof. Using the coercivity in (11), the orthogonality relation in (14), and finally, the
continuity in (10), we obtain that for any wh ∈ S0

h, the following estimation is valid:
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‖u− uh‖2
1
2−α,∂Ω

. 〈u− uh, γSα(u− uh)〉 1
2−α,α− 1

2

= 〈u− wh, γSα(u− uh)〉 1
2−α,α− 1

2

≤ ‖u− wh‖ 1
2−α,∂Ω‖γSα(u− uh)‖α− 1

2 ,∂Ω

. ‖u− wh‖ 1
2−α,∂Ω‖u− uh‖ 1

2−α,∂Ω.

Dividing both sides of the equation by ‖u− uh‖ 1
2−α,∂Ω, we obtain:

‖u− uh‖ 1
2−α,∂Ω . ‖u− wh‖ 1

2−α,∂Ω,

which also implies:

‖u− uh‖ 1
2−α,∂Ω . inf

wh∈S0
h(∂Ω)

‖u− wh‖ 1
2−α,∂Ω,

as stated in the lemma.

We can verify the stability of the above Galerkin method by applying (11) for u = uh:

‖uh‖2
1
2−α

. 〈uh, γSαuh〉 1
2−α,α− 1

2
= 〈uh, g〉 1

2−α,α− 1
2
≤ ‖uh‖ 1

2−α‖g‖α− 1
2
.

Dividing both sides by ‖uh‖ 1
2−α, we obtain stability on the boundary:

‖uh‖ 1
2−α . ‖g‖α− 1

2
.

Now, applying (10), we finally obtain stability for the reconstructed solution as:

‖ũh‖α = ‖Sα(uh)‖α . ‖uh‖ 1
2−α . ‖g‖α− 1

2 .

We need the approximation property of S0
h on each surface subdomain Γj separately.

For this, we introduced the projection operator Qj
h : L2(Γj)→ S0

h(Γj) defined by:

(Qj
hv, vh)L2(Γj)

= (v, vh)L2(Γj)
∀vh ∈ S0

h(Γj).

An appropriate statement can be found in [21], Theorem 10.14, on p. 237, which was
adapted to our notation using 1/2− α := σ.

Lemma 3. For any α ∈ [ 1
2 , 3

2 ] and s ∈ [1/2− α, 1], the projection operator Qj
h has the following

approximation property:

inf
wh∈S0

h(Γj)
‖u− wh‖1/2−α,Γj

= ‖u−Qj
hu‖1/2−α,Γj

. hs−(1/2−α)‖u‖s,Γj . (16)

Note that the condition in Theorem 1 and in Theorem 2 for α is also sufficient in Lemma 3.
We can now prove the following error estimate for the boundary element approximation.

Theorem 3. Assume that g ∈ Hα− 1
2 (∂Ω) and s ∈ [1/2− α, 1]. Let u be the solution of (12) and

uh be the solution of (13). Then, for every j ∈ {1, 2, . . . , N}, we have:

‖u− uh‖1/2−α,Γj
. hs−(1/2−α)‖u‖s,Γj . (17)

Proof. Using (15) and (16), we obtain:

‖u− uh‖1/2−α,Γj
. inf

wh∈S0
h(∂Ω)

‖u− wh‖ 1
2−α,∂Ω . hs−(1/2−α)‖u‖s,Γj , (18)
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as stated in the theorem.

Using this, we finally state an error estimate for the solution of (8).

Theorem 4. Assume that the conditions in Theorems 1 and 2 are satisfied. Then, we have the
error estimation:

‖ũ− ũh‖α,Rd . ∑
Γj∈∂Ω

hs−(1/2−α)‖u‖s,Γj (19)

for the boundary element based approximation ũh of the solution of (8).

Proof. We first note that ũh is obtained via reconstruction by applying the surface potential
Sα as follows:

ũh(x) =
∫

Γ
φα(x− y)uh(y) dSy = Sα(uh)(x). (20)

Applying the same for the analytic solution u of (8), we obtain the following expansion
for the error of the reconstructed solution:

ũ(x)− ũh(x) = Sα(u)(x)− Sα(uh)(x) = Sα(u− uh)(x).

Using this, then applying (10) for u− uh in Theorem 2, using Lemma 1, and finally,
the estimation (17), we obtain:

‖ũ− ũh‖α,Rn = ‖Sα(u− uh)‖α,Rd . ‖u− uh‖1/2−α,∂Ω

. ∑
Γj∈∂Ω

‖u− uh‖ 1
2−α,Γj

. ∑
Γj∈∂Ω

hs−(1/2−α)‖u‖s,Γj ,

as stated in the theorem.

3.2. Numerical Experiments

Let us take the domain Ω ∈ R2 to be the unit disk. We investigated the model problem:
−(−∆)αũ(x) = 0 |x| 6= 1
ũ(x) = g(x) |x| = 1
|ũ(x)| . |x|2α−2 |x| > 1,

(21)

for different values of α ∈ ( 1
2 , 3

4 ] according to Theorem 1, where the analytic solution ũ is
given with:

ũ(x) =
∫
|y|=1

φα(x− y) f (y) dy, (22)

where:

f (y) = f (x, y) = x2 + sin(10y) (23)
and:

g(x) = ũ(x) |x| = 1. (24)
For the experimental error analysis, we first computed the analytic solution ũ inside

the domain given in (22) using f in (23). For this, a quadrature was applied on the unit
circle with 10,000 equidistributed points. In this way, even the analytic solution should be
approximated for the experimental error analysis.

We also computed the boundary condition g for our model problem. For this, we ap-
plied the built-in MATLAB algorithm integral, which is suitable to compute the singular
integrals on the boundary. In our experiment, we solved Equation (21) numerically for
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different values of α = 0.75, 0.7, 0.65. In the cases where α ≤ 0.6, the built-in quadrature
integral cannot compute the boundary conditions accurately enough, so we omitted
these cases.

Note that in a real-life problem, usually, the boundary condition g is given (instead of
the function f ), so the method can still be used.

Then, we applied the boundary element method in (13) to compute the approximation
uh using the boundary data g in (24). To compute the terms in the corresponding discrete
variational formulation (13), we need to compute the entries of the matrix Sh given by:

[Sh]ij := 〈ϕj, γSα ϕi〉 =
∫

Γj

∫
Γi

φα(x− y) dy dx i, j = 1, 2, . . . , N.

To obtain the diagonal elements here, one needs to take special care, as a conventional
three-point Gauss quadrature does not deliver sufficient accuracy. Instead, we applied
the built-in MATLAB subroutine integral2, which can handle singularities in the two-
dimensional integrand.

Completing the linear system corresponding to (13), we computed the entries in its
right-hand side gh as:

[gh]j := 〈ϕj, g〉 =
∫

Γj

g(x) dx j = 1, 2, . . . , N, (25)

which were approximated using a simple midpoint quadrature.
Finally, we reconstructed ũh according to (20), which was the most technical and

time-consuming part of the computation. This was performed in each point of a grid
in the unit disk. This grid size was approximately the same as the one on the boundary.
To approximate the integrals in (20) for a fixed x 6∈ Γ, we applied a midpoint approximation
on the boundary using the same mesh as for the solution of (13).

In the boundary element method, we used different partitions of the unit circle, into
N = 8, 16, 32, 64, 128, 256, and 512 uniform parts. In each case, the computational error
was calculated in the L2(Ω)-norm. After the consecutive refinements, we estimated the
corresponding convergence rate, which is called the rate in the tables. Note that in (19),
the error estimation is given in Hα(Ω)-norm, so we expect the order of convergence to be
higher in the L2(Ω)-norm. According to Theorem 4, the expected rate of convergence in
the Hα(Ω)-norm is s− (1/2− α). Since ũ|Ω is in H1(Ω), this is equal to 1.25 for α = 0.75,
1.2 for α = 0.7, and 1.15 for α = 0.65. In Tables 1–3, the results of the experimental error
analysis can be found for different exponents.

Table 1. Computational error in uh of (21) for α = 0.75 with respect to the L2(Ω)-norm with the
experimental convergence rates.

h 2π/8 2π/16 2π/32 2π/64 2π/128 2π/256 2π/512

error 0.252 0.107 0.037 0.012 2.7× 10−3 6.38× 10−4 2.43× 10−4

rate − 1.232 1.524 1.611 2.175 2.08 1.39

For relative coarse meshes, in each case, the convergence rate is even faster than ex-
pected. At the same time, for a relatively fine mesh, the computation with singular integrals
becomes inaccurate, which results in oscillations in uh and deteriorates the accuracy of the
reconstructed approximation ũh. At the same time, we could achieve a relatively small
error of magnitude 10−4 before this phenomenon affected the convergence rate.

We can observe in Tables 1 and 2 that the convergence rate decreases already for
N = 512 and N = 256, respectively. In these cases, α is closer to 1

2 , so that the singularities
at the computation of the boundary condition become sharper. This makes the applied
quadratures less accurate. For the coarser meshes, the convergence rate is still better than
the expected rate.
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Table 2. Computational error in uh of (21) for α = 0.7 with respect to the L2(Ω)-norm with the
experimental convergence rates.

h 2π/8 2π/16 2π/32 2π/64 2π/128 2π/256 2π/512

error 0.396 0.173 0.064 0.022 6.9× 10−3 2× 10−3 1.5× 10−3

rate − 1.192 1.435 1.576 1.642 1.818 0.339

Table 3. Computational error in uh of (21) for α = 0.65 with respect to the L2(Ω)-norm with the
experimental convergence rates.

h 2π/8 2π/16 2π/32 2π/64 2π/128 2π/256 2π/512

error 0.62 0.277 0.11 0.042 0.016 0.01 9.8× 10−3

rate − 1.161 1.338 1.402 1.358 0.683 0.0334

In the case of α = 0.65, the deterioration of the convergence rates starts earlier at N = 256.
For the coarser meshes, the convergence rate is still better than the expected rate 1.15.

In Figure 1, the numerical solution is shown together with the given boundary data,
while in Figure 2, the pointwise error of the numerical solution is presented for α = 0.75.
For α = 0.65, similar results are shown in Figures 3 and 4.

Figure 1. Boundary condition and numerical solution ũh of (21) for α = 0.75 and N = 512 inside
the domain.

Here, one can already observe some deviation, which is shown in detail in Figure 2,
where only the error is presented. At the boundary, indeed, relatively large errors emerge,
which were then smoothed out by applying the reconstruction.

9 of 11

Figure 2. Pointwise error of the numerical solution ũh of (21) for α = 0.75 and N = 512 inside the
boundary. One can observe that the most of the error accumulates close to the boundary.

Figure 3. Boundary condition and numerical solution ũh of (21) for α = 0.65 and N = 512 inside
the domain.

Figure 4. Pointwise error of the numerical solution ũh of (21) for α = 0.65 and N = 512 inside the
boundary. We can observe that the error is significantly larger than in the case of α = 0.75.

4. Discussion214

The idea to convert fractional-order elliptic boundary value problems into boundary215

integral equations leads to well-posed problems with some extra conditions. Also, as216

the solution is defined everywhere, this corresponds to the non-local nature of these217

problems. Their numerical approximations, which were investigated here, offer also218

efficient methods. To see this, we recall that for conventional elliptic boundary value219

problems, boundary element methods lead to dimensional reduction but also to full220

matrices in the resulting linear algebraic problems. In case of fractional order problems,221

however, boundary element methods offer a clear advantage: we have to compute222

Figure 2. Pointwise error of the numerical solution ũh of (21) for α = 0.75 and N = 512 inside the
boundary. One can observe that most of the error accumulates close to the boundary.
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Figure 3. Boundary condition and numerical solution ũh of (21) for α = 0.65 and N = 512 inside
the domain.

9 of 11

Figure 2. Pointwise error of the numerical solution ũh of (21) for α = 0.75 and N = 512 inside the
boundary. One can observe that the most of the error accumulates close to the boundary.

Figure 3. Boundary condition and numerical solution ũh of (21) for α = 0.65 and N = 512 inside
the domain.

Figure 4. Pointwise error of the numerical solution ũh of (21) for α = 0.65 and N = 512 inside the
boundary. We can observe that the error is significantly larger than in the case of α = 0.75.

4. Discussion214

The idea to convert fractional-order elliptic boundary value problems into boundary215

integral equations leads to well-posed problems with some extra conditions. Also, as216

the solution is defined everywhere, this corresponds to the non-local nature of these217

problems. Their numerical approximations, which were investigated here, offer also218

efficient methods. To see this, we recall that for conventional elliptic boundary value219

problems, boundary element methods lead to dimensional reduction but also to full220

matrices in the resulting linear algebraic problems. In case of fractional order problems,221

however, boundary element methods offer a clear advantage: we have to compute222

Figure 4. Pointwise error of the numerical solution ũh of (21) for α = 0.65 and N = 512 inside the
boundary. We can observe that the error is significantly larger than in the case of α = 0.75.

4. Discussion

The idea to convert fractional-order elliptic boundary value problems into boundary
integral equations leads to well-posed problems with some extra conditions. Furthermore,
as the solution is defined everywhere, this corresponds to the nonlocal nature of these prob-
lems. Their numerical approximations, which were investigated here, offer also efficient
methods. To see this, we recall that for conventional elliptic boundary value problems,
boundary element methods lead to dimensional reduction, as well as to full matrices in
the resulting linear algebraic problems. In the case of fractional-order problems, however,
boundary element methods offer a clear advantage: we have to compute with dense matri-
ces anyway, such that using these methods significantly reduces the computational costs.
Moreover, as we have pointed out, in this framework, it is possible to model and simulate
the presence of inhomogeneous boundary data. An important future research direction
is to extend the well-posedness of the original problem in (8) for α > 3

4 . Furthermore,
the application of higher-order elements and the performance of a simple approach, the
so-called method of fundamental solutions [23], should be investigated.
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