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Abstract: We start by defining a subordinator by means of the lower-incomplete gamma function.
This can be considered as an approximation of the stable subordinator, easier to be handled in view
of its finite activity. A tempered version is also considered in order to overcome the drawback of
infinite moments. Then, we study Lévy processes that are time-changed by these subordinators with
particular attention to the Brownian case. An approximation of the fractional derivative (as well as of
the fractional power of operators) arises from the analysis of governing equations. Finally, we show
that time-changing the fractional Brownian motion produces a model of anomalous diffusion, which
exhibits a sub-diffusive behavior.
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1. Introduction

In the spirit of [1], we consider here a subordinator Sα(t), t ≥ 0, defined by means of
the lower-incomplete gamma function of parameter α ∈ (0, 1], i.e.,

γ(α, x) =
∫ x

0
e−wwα−1dw, x > 0. (1)

More precisely, we define Sα(t), t ≥ 0, as a non-decreasing Lévy process with Laplace
exponent αγ(α; η). We will see that, in the special case α = 1, it reduces to a homogeneous
Poisson process, while, in general, it can be represented as a compound Poisson process
with positive jumps in size greater than one. Such a process retains many properties of the
stable subordinator, e.g., the tail behavior of the distribution and the asymptotic form of
the fractional moments, even if it loses the property of self-similarity. A standard reference
for the theory of stable processes is [2].

By a slight modification, we are led to a new subordinator whose jumps are greater
than ε > 0, which converges to a stable one in the limit for ε→ 0. We prove that its density
qε(x, t) solves an equation where a perturbation of the Riemann fractional derivative
appears. When ε→ 0, such an operator reduces to the Riemann derivative, and we obtain
the well known equation governing the stable density. For an introduction to fractional
derivatives and fractional equations consult [3].

The above framework can be extended to the so-called multivariate subordinators,
i.e., multidimensional Lévy processes with increasing marginal components (for their
properties and applications see e.g., [4,5]).

In order to overcome the drawback of infinite moments of Sα, we consider a tempered
version of our subordinator, say Sα,θ(t), t ≥ 0, where θ ≥ 0 is the tempering parameter,
whose distribution displays finite moments of any integer order.
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We use these subordinators as independent random times of well-known Lévy pro-
cesses. As for other subordinated processes already studied in the literature, the time-
change allows us to maintain certain properties of the external process and to simultane-
ously modify other features (see [6] for the general theory).

When considering the process B(Sα,θ(t)), t ≥ 0, where B := {B(t), t ≥ 0} is a standard
Brownian motion and Sα,θ is supposed as independent from B, we obtain the following
auto-covariance function

Cov(B(Sα,θ(t)), B(Sα,θ(τ))) = α(t ∧ τ)θα−1e−θ , t, τ ≥ 0.

Even if it is linear in the time argument, as for the standard Brownian motion, the pa-
rameters α and θ model the deviation from the dependence structure of B: in particular,
for θ → 0 and for α strictly less than 1, the auto-covariance tends to infinity, for any t.

Finally, we consider a fractional Brownian motion subordinated by Sα(t) (for basic
notions on the fractional Brownian motion see e.g., [7]). We show that the model obtained
still displays long-range dependence, with a rate depending not only on the Hurst index H
but also on α. It was proven to behave asymptotically as a subdiffusion, depending on the
value of the parameter α: the subdiffusive behavior was more marked the greater the value
of α (for any fixed H). We recall that a process is said to be subdiffusive if, for large times t,
the mean square displacement grows as tγ with γ < 1. We refer to [8] for an overview on
anomalous diffusion models and their applications.

2. Basic Notions and Preliminary Results

We recall the following definition: a function ϕ : (0, ∞)→ R is a Bernstein function if
ϕ is of class C∞, ϕ(η) ≥ 0, for any η > 0, and

(−1)n−1 dn

dxn ϕ(η) ≥ 0, (2)

for any n ∈ N and η > 0. It is well known that any Bernstein function ϕ admits the
following representation

ϕ(η) = a + bη +
∫ +∞

0
(1− e−sη)ν(ds), (3)

for a, b ≥ 0 and where ν(·) denotes a measure on (0,+∞) such that∫ +∞

0
(s ∧ 1)ν(ds) < ∞.

The triplet (a, b, ν) is called the Lévy triplet of the Bernstein function ϕ (see, for exam-
ple, [9], p. 21) and ν(·) is a Lévy measure.

Finally, a Bernstein function ϕ is complete if and only if its Lévy measure in (3) has a
completely monotone density m(·) with respect to the Lebesgue measure, i.e., the following
representation holds for a completely monotone function m(·):

ϕ(η) = a + bη +
∫ +∞

0
(1− e−sη)m(s)ds. (4)

2.1. Univariate Subordinators

We now recall that a subordinator S(t), t ≥ 0, is a Lévy process with non-decreasing
paths and that, for any Bernstein function ϕ, there exists a subordinator S(t) such that

Ee−ηS(t) = e−tϕ(η)
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(see, for example, [10,11]). In the special case where ϕ(η) = ηα, for α ∈ (0, 1), it is well-
known that S := {S(t), t ≥ 0} is a α-stable subordinator and its density satisfies the
following equation:

∂

∂t
h(x, t) = − ∂α

∂xα
h(x, t), h(x, 0) = δ(x), (5)

for x, t ≥ 0, where ∂α

∂xα is the Riemann–Liouville fractional derivative of order α, defined as

∂α

∂xα
f (x) =

{
1

Γ(1−α)
d

dx

∫ x
0

f (t)
(x−t)α dt, α ∈ (0, 1)

d
dx f (x), α = 1

,

for a locally integrable function f on (0,+∞) (see [12], p. 70). This can be easily checked by
considering formula (2.2.36) in [12] and applying the Laplace transform to both members
of (5), which gives h̃(η, t) = e−tηα

.

2.2. Multivariate Subordinators

In the multivariate case, we recall that a subordinator in the sense of [4,5] is a d-
dimensional Lévy process with increasing marginal components. We denote a multivariate
subordinator by

(S1(t), S2(t), . . . , Sd(t)).

The multivariate Lévy measure ν(dx1, . . . , dxd) satisfies the following condition

∫
Rd
+

min
(

1,
√

x2
1 + · · ·+ x2

d

)
ν(dx1, . . . , dxd) < ∞,

where Rd
+ = {(x1, . . . , xd) ∈ Rd : x1 ≥ 0, x2 ≥ 0, . . . , xd ≥ 0}.

Its d-dimensional Laplace transform reads

Ee−(η1S1(t)+η2S2(t)+···+ηdSd(t)) = e−tΦ(η1,...,ηd), η1 ≥ 0 . . . ηd ≥ 0,

where
Φ(η1, . . . , ηd) =

∫
Rd
+

[
1− e−(η1x1+···+ηdxd)

]
ν(dx1, . . . , dxd)

is a multivariate Bernstein function.
A d-dimensional subordinator is said to be stable if, using the spherical variables

ρ ∈ (0, ∞) and θ ∈ Bd−1 (Bd−1 denoting the d − 1-dimensional unit sphere), its Lévy
measure can be expressed as

ν(dρ, dθ) = Cρ−α−1M(dθ),

where M(dθ) is a probability measure on Bd−1
+ = Bd−1 ∩Rd

+ . In other words, a d-dimensional
stable subordinator is a multivariate stable process with increasing marginal components.

In this case, the Bernstein function reads

Φ(η) = k
∫

Bd−1
+

(θ · η)α M(dθ), η = (η1, . . . , ηd).

By Laplace inversion, the density q(x, t), x ∈ Rd
+, t ≥ 0 of a multivariate stable

subordinator satisfies the following equation

∂

∂t
q(x, t) = −k

∫
Bd−1
+

(∇x · θ)αq(x, t) M(dθ), (6)

where (∇x · θ)α is the fractional directional derivative along the unit vector θ, defined as
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(∇x · θ)αh(x) := k
∫ ∞

0

(
h(x)− h(x− rθ)

)
r−α−1dr.

Thus, the operator on the right-hand side of (6), also studied in [3,13], is the average,
under the measure M(dθ), of (∇x · θ)α. For d = 2, we have θ = (cos β, sin β), and the
operator takes the following form

−k
∫ π

2

0

(
cos β

∂

∂x1
+ sin β

∂

∂x2

)αq(x1, x2, t) M(dβ).

2.3. Fractional Equation Satisfied by the Incomplete Gamma Function

The incomplete Gamma function defined in (1) is a Bernstein function. Indeed it is
non-negative, C∞ and null at the origin with derivatives satisfying

d
dη

γ(α; η) = e−ηηα−1 ≥ 0,

d2

dη2 γ(α; η) = − d
dη

γ(α; η) + (α− 1)e−ηηα−2 ≤ 0,

d3

dη3 γ(α; η) = − d2

dη2 γ(α; η)− (α− 1)e−ηηα−2 + (α− 1)(α− 2)e−ηηα−3 ≥ 0,

and so on.
Preliminarily, we show that the lower-incomplete Gamma function (1) solves the

following integro-differential equation

α

Γ(1− α)

∫ x

0

d
ds

u(x− s)Γ(−α, s)ds = Γ(α)− u(x), u(0) = 0, (7)

where Γ(β, x) =
∫ ∞

x e−wwβ−1dw is the upper incomplete Gamma function (which is defined
for any β, x ∈ R and is real-valued for x ≥ 0). Up to a multiplication by α, the operator on
the left-side is the Caputo fractional derivative with tempered kernel (see, e.g., [14]). We
observe that (7) is a relaxation equation because the solution u(x) = γ(α, x) converges to
the stationary solution ũ(x) = Γ(α) as x → ∞.

Let now u : R+ → R+ be an absolutely continuous function, such that |u(x)| ≤ cekx,
for some c, k > 0 and for any x ≥ 0; then, we define the operator

Dλ,ρ
t u(t) :=

ρλρ

Γ(1− ρ)

∫ t

0

d
dt

u(t− s)Γ(−ρ; λs)ds, ρ ∈ (0, 1), λ > 0. (8)

It was proven in [1] that f (t) = Γ(ρ; λt) is the eigenfunction of the operator Dλ,ρ
t ,

i.e., that Dλ,ρ
t f = −λρ f . Then, by recalling that Γ(α; x) + γ(α; x) = Γ(α), it is easy to check

that the Cauchy problem (7) is satisfied. Indeed, Dλ,ρ
t K = 1, for any K ∈ R, by (8) and,

moreover, γ(α; ·) is absolutely continuous on R+ and |γ(α; x)| ≤ Γ(α) ≤ Γ(α)ekx, for any
x, k ≥ 0.

As an alternative proof, we recall that the Laplace transform of (8) is given by∫ +∞

0
e−θtDλ,ρ

t u(t)dt = [(θ + λ)ρ − λρ]ũ(θ)− [(θ + λ)ρ − λρ]

θ
u(0), θ > 0 (9)

(see [1]); moreover,∫ +∞

0
e−θxγ(α; x)dx =

∫ +∞

0
e−wwα−1

∫ +∞

w
e−θxdxdw =

Γ(α)
θ(θ + 1)α

,



Fractal Fract. 2021, 5, 72 5 of 17

so that the Laplace transforms of the two sides of (7) coincide. We can easily check that,
for α = 1, the Equation (7) reduces to

d
dx

u(x) = 1− u(x),

which (for u(0) = 0) is satisfied by u(x) = 1− e−x = γ(1; x), even though the expression
of Dλ,ρ

t given in (8) is not well-defined in this special case.

3. The Subordinator Sα

3.1. Definition and Properties

We start by considering the subordinator defined by means of the lower-incomplete
gamma function, i.e., with Laplace exponent αγ(α; η), for α ∈ (0, 1].

Theorem 1. Let α ∈ (0, 1], then the function

ϕ(η) := αγ(α; η), η ≥ 0 (10)

is the Laplace exponent of a finite-activity (or step) subordinator Sα := {Sα(t), t ≥ 0}, with triplet
(0, 0, π), where π is an absolutely continuous Lévy measure, with completely monotone density

π(z) =
1z≥1α(z− 1)−αz−1

Γ(1− α)
. (11)

Proof. The incomplete gamma function γ(α, x) is a Bernstein function, as explained in
Section 2.3. Hence, also αγ(α, x) is a Bernstein function. We now prove that representation
(3) holds, in this case, for a = b = 0 and for the Lévy measure given in (11); indeed, we
have that ∫ +∞

0
(1− e−ηx)π(dx) =

∫ +∞

0
x
∫ η

0
e−zxdzπ(x)dx

=
∫ η

0
dz
∫ +∞

1
xe−zx α(x− 1)−αx−1

Γ(1− α)
dx

=
∫ η

0
e−zdz

∫ +∞

0
e−zw αw−α

Γ(1− α)
dw

=
∫ η

0

αe−z

z1−α
dz = αγ(α; η),

where the interchange of the integral order is allowed by the absolute convergence of the
double integral and the application of the Fubini theorem. In order to prove that Sα does
not have strictly increasing trajectories, we must show that the integral of the Lévy measure
on (0, ∞) is finite. Indeed, by (3) the last condition, together with a = b = 0, is sufficient
to prove that a subordinator is a step process (i.e., it has piecewise sample paths), see [6],
p. 135; in this case, we have that

∫ +∞

0
π(dz) =

∫ +∞

1

α(z− 1)−αz−1

Γ(1− α)
dz =

αΓ(1− α)Γ(α)
Γ(1− α)

= αΓ(α) < ∞, (12)

by considering formula (3.191.2) of [15], since α > 0. Finally, it is easy to check, by differen-
tiating, that the density of the Lévy measure in (11) is completely monotone.
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Remark 1. In the limiting case where α→ 1− the process Sα reduces to the Poisson process. We
have that limα→1− π(dz) = δ1(z)dz, which is the Lévy measure of the Poisson process of rate 1;
this can be seen by considering that

lim
α→1−

ϕ(η) = γ(1, η) = 1− e−η =
∫ +∞

0
(1− e−ηx)δ1(x)dx.

We underline that the Lévy measure given in (11) is different from zero only for z ≥ 1;
this means that the subordinator exhibits almost surely jumps of size greater than one. As a
consequence, and by considering that its diffusion coefficient is zero, the process Sα has
also finite variation (see Theorem 21.9 in [6]).

The result in (12) implies that Sα is a Lévy process of type A (see Definition 11.9 in [6],
p. 65) and has finite activity, i.e., the number of jumps is finite on every compact interval for
almost all the paths (see Theorem 21.3 in [6]). Thus, Sα can be represented as a compound
Poisson process

Sα(t) =
Nα(t)

∑
j=1

Zα
j , (13)

where Nα := {Nα(t), t ≥ 0} is a homogeneous Poisson process with the rate λ = αΓ(α)
and the jumps Zα

j are i.i.d. random variables, taking values in [1,+∞), with probability
density

fZα(z) =
(z− 1)−αz−11z≥1

Γ(1− α)Γ(α)
=

sin(πα)

π

1z≥1

(z− 1)αz
, α ∈ (0, 1).

For α = 1, the jumps are unitary, and the process coincides with the standard Poisson.
The representation (13) can be checked directly as follows: the Laplace transform of the
addends Zα

j is given by

Ee−ηZα
j =

sin(πα)

π

∫ +∞

1
(z− 1)−αz−1e−ηzdz =

Γ(α; η)

Γ(α)
, (14)

for any j = 1, 2, . . . , by formula (3.383.9) in [15] for α < 1. Then, by conditioning, we obtain

Ee−η ∑
Nα(t)
j=1 Zα

j = exp
{
−αΓ(α)t

[
1− Γ(α; η)

Γ(α)

]}
= exp{−tαγ(α; η)}.

Finally, we note that Sα is not self-similar, as can be checked from its Laplace transform.
The moments of any integer order of Sα are not finite, for any t > 0, since

∫ +∞

1
|x|kπ(dx) =

∫ +∞

1

α(x− 1)−αxk−1

Γ(1− α)
dx (15)

does not converge, for any k ≥ 1, (see [10], p. 132). Alternatively, this can be seen by
applying the Wald formula and by noting that EZα

j = sin(πα)
π

∫ +∞
1 (z − 1)−αdz = +∞,

j = 1, 2, . . ..
The reason can be found in the heaviness of its distribution’s tail. It can be proven that

it displays the same power law of the stable subordinator, i.e., P(Xα(t) > x) ' tx−α

Γ(1−α)
for

large x (see [2], p. 17).
However, we can study the asymptotic expression of the fractional moment of Sα, of

order p ≤ α and for large t. We recall that the fractional moments have been introduced
and studied by many authors in order to overcome the problem of infinite integer order
moments, especially in the stable case (see, among the others, [16,17]); in particular, we
will follow the techniques given in [18], which are based on fractional differentiation of the
Laplace transform.
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Theorem 2. (1) Let α ∈ (0, 1), then, for any t ≥ 0 and for x → +∞, we have that

P(Sα(t) > x) ' tx−α

Γ(1− α)
. (16)

(2) Let p ∈ (0, 1], then the fractional moment of order p of the process Sα exists, finite,
for p ≤ α, and it asymptotically behaves as follows

ESp
α(t) '

Γ
(
1− p

α

)
Γ(1− p)

tp/α, t→ +∞. (17)

Proof. We can write, for η → 0,

∫ +∞

0
e−ηxP(Sα(t) > x)dx =

1−Ee−ηSα(t)

η
=

1− e−tαγ(α;η)

η

' tηα−1,

where we have taken the Taylor series expansion (up to the first order), and we have
considered the asymptotic behavior of the lower incomplete gamma function, i.e.,

γ(α; η) ' ηα

α
, η → 0. (18)

Formula (18) can be easily derived by rewriting (1) as follows:

γ(α; x) = xα
∫ 1

0
e−xwwα−1dw.

By applying the Tauberian theorem (see [19], Thm.4, p. 446) we find, for any t ≥ 0,
result (16).

In order to derive the asymptotic behavior of the fractional moment of order p, we
apply the Laplace–Erdelyi Theorem to the following integral

ESp
α(t) = − 1

Γ(1− p)

∫ +∞

0

d
dη

[
e−tαγ(α;η)

]
η−pdη

=
αt

Γ(1− p)

∫ +∞

0
e−η−tαγ(α;η)ηα−p−1dη,

(see [20], for details). Let x ∈ (x0,x1), with x0,x1 ∈ R, let, moreover, h(x) and ϕ(x) be
independent of t > 0 and h(x) > h(x0) for all x ∈ (x0, x1). Let the following expansions
hold, for x → x+0 , h(x) ∼ h(x0) + ∑∞

k=0 ak(x − x0)
k+µ, µ ∈ R+, a0 6= 0, and ϕ(x) ∼

∑∞
k=0 bk(x− x0)

k+γ−1, γ ∈ R+, b0 6= 0. Then,

I(t) :=
∫ x1

x0

ϕ(x)e−th(x)dx ∼ e−th(x0)
∞

∑
j=0

cj

t
γ+j

µ

Γ
(

γ + j
µ

)
, t→ +∞, (19)

under the assumption that the integral (with finite or infinite delimiters) converges abso-
lutely for all sufficiently large t. We only need c0 = b0/µaγ/µ

0 , then, for the expressions
of the other cj’s, we refer to [20,21]. In our case, we have that ϕ(x) := e−xxα−p−1 =

∑∞
k=0

(−1)kxk+α−p−1

k! , so that γ = α − p > 0, for p < α, and b0 = 1. On the other hand,

we have h(x) := αγ(α; x) = αγ(α; 0) + α ∑∞
k=0

(−1)kxk+α

k!(α+k) , by using the well-known series
expression of the incomplete gamma function (see [22]). Thus, we have µ = α and a0 = 1.
By considering (19) we, thus, obtain
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ESp
α(t) ∼

αt
Γ(1− p)

∞

∑
j=0

cj

t
α−p+j

α

Γ
(

α− p + j
α

)
∼

αc0tp/αΓ
(
1− p

α

)
Γ(1− p)

,

which coincides with (17).

Remark 2. The fractional moment of order p converges, for t→ +∞, to the value obtained in the
stable case, for any t (see [23]).

3.2. Link to Stable Subordinators
3.2.1. The One-Dimensional Case

We now purpose a slight generalization of the previous results, in order to provide
an approximation of a stable subordinator: while the previously defined subordinator Sα

performs jumps greater than 1, we now consider a lower bound for the jump size equal to
ε > 0.

We, thus, define the following Lévy measure with support on (ε, ∞) and with density

πε(x) =
α

Γ(1− α)
(x− ε)−αx−11x≥ε.

The corresponding Laplace exponent has the form

ϕε(η) =
α

εα
γ(α; ηε).

Indeed,

ϕε(η) =
∫ ∞

0
(1− e−ηx)πε(x)dx

=
∫ ∞

ε
(1− e−ηx)

α

Γ(1− α)
(x− ε)−αx−1dx

=
∫ ∞

ε
dx

α

Γ(1− α)
(x− ε)−αx−1

∫ η

0
xe−xzdz

=
∫ η

0
dz
∫ ∞

0

αy−α

Γ(1− α)
e−z(y+ε) dy

=
α

εα

∫ ηε

0
e−wwα−1dw. (20)

By a simple change of variable, the Laplace exponent can also be expressed as ηα

multiplied by a correction factor depending on ε:

ϕε(η) = ηα ·Oε(η)

where
Oε(η) =

α

εα

∫ ε

0
e−ηyyα−1dy (21)

is such that Oε(η) → 1, as ε → 0. Thus, in the limit as ε → 0, the related subordinator
S(ε)

α :=
{

S(ε)
α (t), t ≥ 0

}
converges to a α-stable subordinator, since

πε(x)→ α

Γ(1− α)
x−α−11x≥0

ϕε(η)→ ηα.

By considering that ∫ ∞

0
πε(x)dx = αΓ(α)ε−α,
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we can conclude that S(ε)
α is a compound Poisson process, i.e.,

S(ε)
α (t) =

Nε(t)

∑
j=1

Zε
j

where Nε(t) is a Poisson process with intensity αΓ(α)ε−α, and Zε
j has density

fZε
j
(z) =

εα

Γ(α)Γ(1− α)
(z− ε)−αz−11z≥ε.

Thus, S(ε)
α is a compound Poisson approximation of a stable subordinator. Therefore,

it can be useful in many applications, since it is easier to be handled with respect to the
stable subordinator, due to its finite activity.

As far as the governing equation is concerned, we can show that the transition density
of S(ε)

α satisfies a fractional equation, which generalizes the governing Equation (5) of the
stable subordinator. In particular, the fractional derivative on the right side is corrected by
means of the following operator

Oε

( ∂

∂x
)
h(x) :=

α

εα

∫ ε

0
e−y∂x h(x)yα−1dy

=
α

εα

∫ ε

0
h(x− y)yα−1dy, (22)

where h : R+ → R is a function such that the above integral converges, while e−y∂x denotes
(with a little abuse of notation), the translation operator.

Note that (22) tends to the identity operator as ε→ 0, since

lim
ε→0

Oε

( ∂

∂x
)
h(x) = h(x).

Thus, we can check that the density qε := qε(x, t), x, t ≥ 0, of S(ε)
α solves the follow-

ing equation
∂

∂t
qε(x, t) = − ∂α

∂xα
Oε

( ∂

∂x
)
qε(x, t) qε(x, 0) = δ(x),

by applying the Laplace transform to both members, which gives

q̃ε(η, t) = e−ηαOε(η)t,

where Oε(η) has been defined in (21).

Remark 3. The approximation presented above could be applied to the fractional derivative with
time-dependent order, i.e.,

(
∂

∂x
)α(t), where α(t) takes values in (0, 1). Such an operator governs

a time-inhomogeneous version of the stable subordinator (see, for example, [24,25]), which could
be approximated by considering the time-dependent Lévy measure πε(x, t) = α(t)

Γ(1−α(t)) (x −
ε)−α(t)x−11x≥ε.

3.2.2. The Multivariate Case

Following the lines of the one-dimensional case, we look for a compound Poisson
approximation for a multivariate stable subordinator, which we introduced in Section 2.2.
We define the family of Lévy measures

νε(dρ, dθ) = C(ρ− ε)−αρ−1M(dθ) ε > 0
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and, by the same calculations as in (20), we obtain the following family of Bernstein
functions (the symbol η denotes the vector (η1, . . . , ηd) and · denotes the scalar product)

Φε(η) = k
∫ ∞

0
dρ
∫

Bd−1
+

(
1− e−ρ η·θ)(ρ− ε)−αρ−1M(dθ)

= k
∫

Bd−1
+

(θ · η)α Oε(η · θ)M(dθ)

where the corrective term

Oε(η · θ) =
α

εα

∫ ε

0
e−η·θyyα−1dy

tends to 1 as ε→ 0. By Laplace inversion, the density qε(x, t) of our process satisfies

∂

∂t
qε(x, t) = −k

∫
Bd−1
+

(∇x · θ)αOε(θ · ∇x)qε(x, t) M(dθ)

where

Oε(θ · ∇x)h(x) :=
α

εα

∫ ε

0
e−yθ·∇x h(x)yα−1dy

=
α

εα

∫ ε

0
h(x− yθ)yα−1dy

tends to the identity operator in the limit ε→ 0.

4. The Tempered Subordinator Sα,θ

In order to avoid the inconvenience of infinite moments of Sα, we define a tempered
counterpart of the latter.

Theorem 3. Let η, θ > 0 and α ∈ (0, 1], then the function

ϕθ(η) := αγ(α; η + θ)− αγ(α; θ), (23)

is the Laplace exponent of a tempered subordinator Sα,θ := {Sα,θ(t), t ≥ 0}, with Lévy triplet
(0, 0, πθ) and (absolutely continuous) Lévy measure πθ , with density

πθ(z) =
1z≥1α(z− 1)−αz−1e−θz

Γ(1− α)
. (24)

The sample paths of Sα,θ are not strictly increasing; the mean and variance of Sα,θ read, respectively,

ESα,θ(t) = t αθα−1e−θ (25)

VarSα,θ(t) = t αθα−1e−θ + α(1− α)tθα−2e−θ .

Proof. It is immediate to check that (23) is a Bernstein function (as a consequence of
Theorem 1). We can prove that the representation (3) holds, in this case, for a = b = 0 and
for the Lévy density given in (24); indeed, we have that
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∫ +∞

0
(1− e−ηx)πθ(x)dx =

∫ +∞

0
x
∫ η

0
e−zxdzπθ(x)dx

=
∫ η

0
dz
∫ +∞

1
xe−zx α(x− 1)−αx−1e−θx

Γ(1− α)
dx

=
∫ η

0
e−(z+θ)dz

∫ +∞

0
e−(z+θ)w αw−α

Γ(1− α)
dw

= α
∫ θ+η

θ
e−wwα−1dz,

which coincides with (23). In this case, the Lévy measure is finite, since

∫ +∞

0
πθ(dz) =

∫ +∞

1

α(z− 1)−αz−1e−θz

Γ(1− α)
dz = αΓ(α; θ) < ∞, (26)

by considering (14). The mean and variance given in (25) can be obtained by differentiating
the Laplace transform

Ee−ηSα,θ(t) = e−tα
∫ θ+η

θ e−wwα−1dz, (27)

with respect to η and considering the relationship E[Sα,θ(t)]
k = (−1)k ∂k

∂ηk Ee−ηSα,θ(t)
∣∣∣
η=0

,

for k ∈ N.

Remark 4. It is easy to check that the mean and variance of Sα,θ , given in (25), tend to infinity,
as θ → 0, as expected from (15).

Remark 5. From (26), we can infer that the process Sα,θ has finite activity and that the following
compound Poisson representation holds

Sα,θ(t) =
Nα,θ(t)

∑
j=1

Zα,θ
j , (28)

where Nα,θ := {Nα,θ(t), t ≥ 0} is a homogeneous Poisson process with rate λ = αΓ(α; θ). The jumps
Zα,θ

j are i.i.d. random variables, taking values in [1,+∞) and with the probability density function

fZα,θ (z) =
1z≥1(z− 1)−αz−1e−θz

Γ(1− α)Γ(α; θ)
, α ∈ (0, 1).

For α = 1, Formula (23) reduces to ϕθ(η) = γ(1; η + θ)− γ(1; θ) = e−ϑ(e−η − 1), which
is the Laplace exponent of a Poisson process of rate e−θ . This is confirmed by its Lévy measure,
which is obtained from (24), since limα→1 πθ(dz) = e−θδ1(z)dz. Indeed, the process N1,θ in (28)
has rate λ = Γ(1; θ) = e−ϑ, in this special case.

5. Subordination of Lévy Processes

We now consider the subordination of a Lévy process X(t) by means of β0t + Sα,θ(t),
where Sα,θ is the tempered subordinator defined above and β0 ≥ 0 is a possible drift
parameter. Let (a, b, ν) be the Lévy triplet of X and µ be its probability distribution,
i.e., µt(B) := P(X(t) ∈ B), for any Borel set B. We assume that X is independent of Sα,θ .

Then, by applying Thm. 30.1, p. 197 in [6], the process Z := {Z(t), t ≥ 0} defined as

Z(t) := X(β0t + Sα,θ(t)), t ≥ 0, (29)

is a Lévy process with triplet (a′, b′, ν′), where
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a′ = β0a, (30)

b′ = β0b +
∫ +∞

0
πθ(dz)

∫
|x|≤1

xµz(dx),

ν′(dx) = β0ν(dx) +
∫ +∞

1
µz(dx)πθ(dz).

By considering Prop.1.3.27 in [10], we can also derive the Lévy symbol of the subordi-
nated process, which is again expressed in terms of incomplete gamma functions:

ψZ(u) = −ϕθ(−ψX(u)) = αγ(α; θ)− αγ(α; θ − ψX(u)). (31)

5.1. The Generator Equation

Let us consider the case β0 = θ = 0. For h ∈ Bb(R), where Bb(R) denotes the
set of real-valued bounded Borel measurable functions, equipped with the sup-norm.
The operator Tt defined by

Tt h(x) = E h
(
x + X(t)

)
(32)

defines a strongly continuous contraction semigroup on Bb(R). If A is the generator of Tt,
then (32) satisfies

∂

∂t
g(x, t) = Ag(x, t) g(x, 0) = h(x)

for h in the domain of A. If σα(t) is a stable subordinator, then the process X(σα(t)) induces
the subordinate semigroup

T̃t h(x) = E h
(
x + X(σα(t))

)
. (33)

In light of the Phillips theorem (see [6], page 212), the semigroup (33) satisfies

∂

∂t
g(x, t) = −(−A)αg(x, t), g(x, 0) = h(x), (34)

where the fractional power of the operator is defined by

− (−A)αh(x) =
∫ ∞

0

(
Tsh(x)− h(x)

) α

Γ(1− α)
s−α−1ds (35)

at least on the same domain of A.
Now, if we employ the subordinator S(ε)

α , which is an approximation of σα (see the
discussion in Section 3.2.1), we obtain an approximation of Equation (34). Indeed, using
again the Phillips theorem,

Tε
t h(x) = E h(x + X(Sε

α(t))

satisfies the following equation

∂

∂t
g(x, t) =

∫ ∞

ε
(Tsg(x, t)− g(x, t))

α(s− ε)−αs−1

Γ(1− α)
ds, g(x, 0) = h(x).

The operator on the right-side is an approximation of the fractional power in (35),
to which it converges as ε→ 0.

We observe that, in the special case X(t) = t, i.e., when Tt is the shift operator, the op-
erator on the right-side is an approximation of the Marchaud fractional derivative, namely

∫ ∞

ε
(g(x− s, t)− g(x, t))

α(s− ε)−αs−1

Γ(1− α)
ds.
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5.2. Subordinated Brownian Motion

In the Brownian case, i.e., when the external process X is a standard Brownian motion
B := {B(t), t ≥ 0} and the triplet is (0, 1, 0), we have, from (30), that the Lévy process

Z(t) = B(β0t + Sα,θ(t))

is given by the superposition of a Brownian motion (with diffusion coefficient β0) and a
jump process. Indeed it has the Lévy triplet (0, β0, ν′), where

ν′(x) =
∫ +∞

1

e−
x2
2z

√
2πz

α(z− 1)−αz−1e−θz

Γ(1− α)
dz

=
α

Γ(1− α)
√

2π

+∞

∑
j=0

(−x2/2)j

j!

∫ +∞

1
(z− 1)1−α−1z−j− 1

2−1e−θzdz

=
αe−θ/2θ

α
2−

1
4

√
2π

+∞

∑
j=0

(−x2
√

θ/2)j

j!
Wα

2−
j
2−

3
4 , α

2 +
j
2+

1
4
(θ(1− α)),

by (3.383.4) in [15], where Wβ,γ(·) denotes the Whittaker function (see also [16], p. 27),
by considering that 1− α > 0 and θ > 0. In the special case where θ = 0, i.e., in the
non-tempered case, we have, instead, the following easier expression

ν′(x) =
∫ +∞

1

e−
x2
2z

√
2πz

α(z− 1)−αz−1

Γ(1− α)
dz (36)

=
∫ 1

0

e−
x2w

2
√

2π

αwα+ 1
2−1(1− w)1−α−1

Γ(1− α)
dw

=

√
2αΓ

(
α + 1

2

)
π 1F1

(
α +

1
2

;
3
2

;− x2

2

)
,

by (1.6.15) in [12] [a = α + 1
2 , c = 3

2 ], where 1F1(a; c; z) = ∑∞
k=0

(a)k
(c)k

zk

k! is the confluent

hypergeometric Kummer function, which is defined for any a, z ∈ C and c ∈ C\Z−0
(see [12], p. 29, for details). Due to formula (1.9.3) in [12], p. 45, we can write (36) in terms
of the generalized (three-parameters) Mittag–Leffler function, as follows

ν′(x) = α
Γ
(

α + 1
2

)
√

2π
Eα+1/2

1,3/2

(
− x2

2

)
,

where Eγ
α,β(z) := ∑∞

k=0
(γ)kzk

k!Γ(αk+β)
and (γ)k := γ(γ + 1) . . . (γ + n− 1), for z, α, β, γ ∈ C with

Re(α) > 0, n ∈ N.
It is easy to check that the jump component of the subordinated process has finite

activity for any α ∈ (0, 1), since

∫ +∞

0
ν′(dx) =

∫ +∞

1

α(z− 1)−αz−1e−θz

Γ(1− α)
dz

= αΓ(α; θ) < ∞.
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By (26), we have that

∫
|x|≥1

|x|kν′(dx) =
∫ +∞

1

∫
|x|≥1

|x|k e−
x2
2z

√
2πz

dx

α(z− 1)−αz−1e−θz

Γ(1− α)
dz

≤
∫ +∞

1
E|B(z)|k α(z− 1)−αz−1e−θz

Γ(1− α)
dz

=
2k/2Γ

(
k+1

2

)
√

π

∫ +∞

1

α(z− 1)1−α−1z
k
2−1e−θz

Γ(1− α)
dz.

The characteristic function of Z(t) is given by

EeiuB(β0t+Sα,θ(t)) = exp

{
−1

2
u2β0t− t α

∫ θ+u2/2

θ
e−wwα−1dw

}
. (37)

By conditioning and considering (25), we have that EB(β0t + Sα,θ(t)) = 0, for any
t, θ ≥ 0, and the autocovariance of the subordinated Brownian motion, for any t, τ ≥ 0, reads

Cov(B(β0t + Sα,θ(t)), B(β0τ + Sα,θ(τ))) = E((β0t + Sα,θ(t)) ∧ (β0τ + Sα,θ(τ))

= E(β0(t ∧ τ) + Sα,θ(t ∧ τ)) (38)

= β0(t ∧ τ) + (t ∧ τ)αθα−1e−θ .

Thus, even if the autocovariance is linear w.r.t. the time argument, the parameters α
and θ can be interpreted as a measure of deviation from the standard Brownian dependence
structure: in particular, for θ → 0 and for α strictly less than 1, the autocovariance tends to
infinity, for any t.

6. Subordinated Fractional Brownian Motion

We now consider the process {BH(Sα(t)), t ≥ 0}, where BH := {BH(t), t ≥ 0} is the
fractional Brownian motion (hereafter FBM) with the Hurst parameter H and the subordi-
nator Sα is supposed to be independent of it. The FBM BH is defined, for any H ∈ (0, 1)
as a self-similar process with index H and with zero-mean Gaussian distribution. Its one
dimensional distribution has density

fBH (x, t) =
1√

2πtH
exp

{
− x2

2t2H

}
, x ∈ R, t ≥ 0.

It can be expressed, in terms of the standard Brownian motion B := {B(t), t ≥ 0}, by
the following representation

BH(t) =
∫
R

[
(t− u)H−1/2

+ − (−u)H−1/2
+

]
dB(u), t ≥ 0

where x+ = max(x, 0).
For details on the fractional Brownian motion we refer to [7]. It is worth recalling

that the FBM exhibits subdiffusive dynamics for H < 1/2 and a superdiffusive one for
H > 1/2; indeed the moment of order q of the FBM is given by

E|BH(t)|q = tqHE|BH(1)|q =

√
2q

π
Γ
(

q + 1
2

)
tqH . (39)

(See, for example, [18]).
Different forms of time-changed FBM have been introduced and studied (see [18,26,27]).
We prove here that the FBM, subordinated by an independent Sα, displays the long-

range dependence (LRD) property, for H ∈ (0, 1/2); moreover, this behavior depends on
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α, instead of what happens in the cases of the FBM subordinated by the tempered stable
subordinator (studied in [18]) and by the gamma process (analyzed in [26]). Indeed, in the
last cases, the LRD rate depends only on the Hurst parameter H.

Since the process is not stationary, we use the following definition of long-range
dependence: a process Z(t) is said to have the LRD property if, for s > 0 and t > s,

Corr(Z(t), Z(s)) ∼ c(s)t−d, t→ +∞, (40)

where c(s) is a constant depending on s and d ∈ (0, 1) (see [28]).

Theorem 4. Let H ∈ (0, 1/2) and α ≥ 2H. Let

ZH(t) := BH(Sα(t)), t ≥ 0, (41)

where BH is the FBM, with Hurst parameter H, and Sα is supposed to be independent of it. Then,
ZH has the LRD behavior given in (40), with d = 1− H

α .

Proof. We notice that the subordinator, being a compound Poisson process has stationary
and independent increments. By conditioning and considering (39), we find, for q < α/H,

E|ZH(t)|q = E|BH(1)|qE(Sα(t))
qH =

√
2q

π
Γ
(

q + 1
2

)
E(Sα(t))

qH (42)

'
√

2q

π
Γ
(

q + 1
2

)Γ
(

1− qH
α

)
Γ(1− qH)

tqH/α, t→ +∞.

By (17), we, thus, evaluate the covariance of the process ZH , as follows , for s < t,

E(ZH(t) · ZH(s)) =
1
2

{
E(ZH(t))2 +E(ZH(s))2 −E[ZH(t)− ZH(s)]2

}
=

1
2
E(BH(1))2

{
E(Sα(t))

2H +E(Sα(s))
2H −E(Sα(t− s))2H

}
= [by (17)]

∼ 1
2

Γ
(

1− 2H
α

)
Γ(1− 2H)

t2H/α +E(Sα(s))
2H −

Γ
(

1− 2H
α

)
Γ(1− 2H)

(t− s)2H/α


=

1
2

Γ
(

1− 2H
α

)
Γ(1− 2H)

t2H/α

2H
α

s
t
+E(Sα(s))

2H Γ(1− 2H)

Γ
(

1− 2H
α

) t−2H/α + O(t−2)

.

By putting K2H,α := Γ
(

1− 2H
α

)
/Γ(1− 2H), we can write E(ZH(t) · ZH(s)) ∼

H
α K2H,αst

2H
α −1. Therefore, the correlation function asymptotically behaves as follows,

for t→ +∞,

Corr(ZH(t), ZH(s)) ∼
st

2H
α −1√

t
2H
α s

2H
α

= s1− H
α t−(1−

H
α ). (43)

Note that we have applied (42) for q = 2, and thus (43) holds for α ≥ 2H, by Theorem 3;
as a consequence, the result is limited to the case of a FBM with H < 1/2.

Remark 6. We underline that the values of H ≥ 1/2 are excluded, since, in this range, theE
(
Sα(t)2H)

is infinite. To overcome this limitation, we could have used the tempered subordinator Sα,θ(t) (as done
in [18], in the stable case); unfortunately, in the tempered case, the function h(x) in (19) would be
given by h(x) = αγ(α; x + θ)− αγ(α; θ), which cannot be expanded, as requested by the Laplace–
Erdelyi Theorem.
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Remark 7. We stress that the LRD parameter d is dependent on α, on the contrary of what happens
in the case of a FBM subordinated by a tempered stable subordinator or by the gamma process,
where the rate d of the LRD depends only on the Hurst parameter H and coincides with that of the
fractional Brownian motion itself (see [18,26], respectively).

It is evident by (42) that var(ZH(t)) ' Kt2H/α, for t → +∞ (where K is a constant
depending on α, H), and therefore the process ZH behaves asymptotically as a subdiffusion,
according to the parameter α. Indeed, 2H/α is always less than one (since, by assumption,
2H ≤ α), and the subdiffusive behavior is more marked the greater the value of α (for any
fixed H).
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