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Abstract: The theory of iterated function systems (IFSs) has been an active area of research on fractals
and various types of self-similarity in nature. The basic theoretical work on IFSs has been proposed by
Hutchinson. In this paper, we introduce a new generalization of Hutchinson IFS, namely generalized
θ-contraction IFS, which is a finite collection of generalized θ-contraction functions T1, . . . , TN from
finite Cartesian product space X × · · · × X into X, where (X, d) is a complete metric space. We
prove the existence of attractor for this generalized IFS. We show that the Hutchinson operators for
countable and multivalued θ-contraction IFSs are Picard. Finally, when the map θ is continuous, we
show the relation between the code space and the attractor of θ-contraction IFS.

Keywords: iterated function systems; fixed point; attractor; fractal; θ-contraction; picard operator;
code space

MSC: 37C25; 47H04; 47H09; 47H10; 28A80

1. Introduction

In 1975, Mandelbrot [1] introduced the concept of fractal theory, which studies pat-
terns in the highly complex and unpredictable structures that exist in nature. In 1981,
Hutchinson [2] conceptualized a mathematical way to generate self-similar fractals from
iterated function system (IFS). The IFS is a finite collection of continuous mappings on a
complete metric space. It is known that a contraction map is also continuous. Banach [3]
proved that every contraction map on a complete metric space has a unique fixed point.
The Banach fixed point theorem is a very effective and popular tool to prove the existence
and uniqueness of solutions of certain problems arising within and beyond mathematics.
Using Banach fixed point theorem, we can get an attractor or a fractal by iteration of a finite
collection of contraction maps of an IFS. An attractor is usually a non-empty self-similar
set as it satisfies a self-referential equation, and it is a compact subset of a complete metric
space. The IFS theory is used to construct fractal interpolation functions (FIFs) to model
various complex scientific and natural phenomena. The fractal theory has found appli-
cations in diverse areas such as learning automata, modelling, image processing, signal
processing, approximation theory, study of bio-electric recordings, etc. (see [4–12]).

The framework of IFS theory has been extended to generalized contractions, countable
IFSs, multifunction systems and more general spaces by many authors in the last two
decades, see for instance [13–19]. In particular, Mihail and Miculescu [20,21] considered
mappings from a finite Cartesian product X× · · · × X into X instead of self-mappings of
a metric space X. Dumitru [22] enhanced the work of Miculescu and Mihail by taking
a generalized IFS composed of Meir–Keeler type mappings. A similar extension per-
formed by Strobin and Swaczyna [23] with a generalized IFS consisting of φ-contractions.
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Secelean [24] explored the IFSs composed of a countable family of Meir–Keeler contractive
and φ-contraction maps. Again, he [25] extended some fixed point results from the classical
Hutchinson–Barnsley theory of IFS consisting of Banach contractions to IFS consisting of
F-contractions. A multivalued approach of infinite iterated function systems accomplished
by Leśniak [26]. Jeli and Samet [27] proposed a new type of contractive mappings known
as θ-contraction (or JS-contraction), and they proved a fixed point result in generalized
metric spaces. In addition, they demonstrated that the Banach fixed point theorem remains
as a particular case of θ-contraction.

In the present paper, we propose an extension of IFS theory by including the left
end-points of the domain and range of θ-functions. The new system is called generalized
θ-contraction IFS, and it consists of a finite collection of θkn -contraction functions on a
complete metric product space. Every θ-contraction IFS is an IFS, but the converse is not
generally true, hence the set of attractors for the θ-contraction IFSs is a broader family
than the set of attractors of the IFSs. This paper is organized as follows: We discuss
the basics and elementary properties of IFS, θ-contractions, multivalued map, and code
space in Section 2. In Section 3, we construct generalized θ-contraction IFSs and prove the
existence and uniqueness of its attractor. Further, we present the results for attractors of
IFSs consisting of countable and multivalued θkn -contraction maps in Section 4. Finally
in Section 5, we demonstrate the relation between the codes space and the attractor of
θ-contraction IFS, when the map θ is continuous.

2. Preliminary Facts

We discuss some basics and elementary results on iterated function systems, θ-
contractions, multivalued map, and code spaces in this section. The details can be found in
the references [3,25,27–29].

Definition 1. A mapping T : X → X on a metric space (X, d) is called a contraction mapping if
there is a constant 0 ≤ k < 1 such that

d(Tx, Ty) ≤ k d(x, y), ∀x, y ∈ X,

where k is called contractivity factor for T. In most of the text, this map is also called contractivity map.

Banach [3] proved that if T : X → X is a contraction map on a complete metric space
(X, d), then T has unique fixed point x̄ ∈ X. Moreover, lim

n→∞
Tn(x) = x̄ for each x ∈ X.

Let K(X) be the set of all non-empty compact subsets of a metric space (X, d). It is a
metric space with the Hausdorff metric h defined by

h(A, B) := max{D(A, B), D(B, A)},

where D(A, B) := sup
x∈A

inf
y∈B

d(x, y). The space (K(X), h) is called Hausdorff metric space.

If (X, d) is complete (compact) metric space, t hen (K(X), h) is also complete (compact)
metric space, respectively.

Lemma 1 ([28]). If {Ci}i∈Λ, {Di}i∈Λ are two arbitrary collections of sets in (K(X), h), then

h
(
∪

i∈Λ
Ci , ∪

i∈Λ
Di

)
= h

(
∪

i∈Λ
Ci , ∪

i∈Λ
Di

)
≤ sup

i∈Λ
h(Ci, Di).

Lemma 2 ( [25]). If {Tn}n is a sequence of contractive maps on a metric space (X, d) and point-
wise convergent to a map T on X, then Tn (defined on compacts) is point-wise convergent to T with
respect to the Hausdorff metric.

Lemma 3. Let E, F ∈ K(X) for some metric space (X, d). Then for any x ∈ E, there exists y ∈ F
such that d(x, y) ≤ h(E, F). Also, there are x∗ in E and y∗ in F such that d(x∗, y∗) = h(E, F).



Fractal Fract. 2021, 5, 69 3 of 14

Proof. Let x ∈ E. By compactness of F, there exists y ∈ F such that d(x, y) = inf
y∈F

d(x, y).

Thus d(x, y) ≤ D(E, F) ≤ h(E, F).
Suppose h(E, F) = D(E, F), then by compactness of E, there exists x∗ ∈ E such that

D(E, F) = inf
y∈F

d(x∗, y),

and by compactness of F , there exists y∗ ∈ F such that

inf
y∈F

d(x∗, y) = d(x∗, y∗).

Similarly, we can prove for the case h(E, F) = D(F, E).

Definition 2. An iterated function system (IFS) {X; T1, T2, . . . , TN} on a topological space X is
given by a finite set of continuous maps Tn : X → X, n ∈ NN , where NN is the set of the first N
natural numbers. If X is a complete metric space and the maps Tn are contraction mappings with
contraction factors kn, n ∈ NN , then the IFS is said to be hyperbolic.

Note that each map Tn on a topological space X induces a map Tn on its hyperspace
K(X) for n = 1, 2, . . . , N, and we will use this notion throughout the paper. A hyperbolic

IFS induces a map T : K(X) → K(X) defined by T(A) =
N
∪

n=1
Tn(A). In fact, T is also

contracting with contractivity factor k = max kn, and k is called the contractivity of the
IFS. Barnsley [28] proved every IFS on a complete metric space has a unique invariant set
A(say) in K(X) such that

A = T(A) =
N
∪

n=1
Tn(A).

Moreover, A = lim
m→∞

Tm(B) for any B ∈ K(X). This set A is called the attractor. It is

also called self-similar set or fractal. The above map T is called the Hutchinson operator
for the corresponding IFS.

Jleli and Samet [27] proposed a novel type of contractive maps, and proved a new fixed
point theorem for such maps in the framework of generalized metric spaces. Consistent
with [27], we define a similar class of maps on a metric space by modifying the left end-
points of domain and range:

Definition 3. We take Θ be the set of functions θ : [0, ∞)→ [1, ∞) satisfying the following conditions:
(Θ1) θ is non-decreasing,
(Θ2) for each sequence {tn} ⊂ [0, ∞), lim

n→∞
θ(tn) = 1 if and only if lim

n→∞
tn = 0,

(Θ3) there exists r ∈ (0, 1) and l ∈ (0, ∞] such that lim
t→∞

θ(t)−1
tr = l.

Let θ1(t) = tk1 + 1, and θ2(t) = e(t log(t+2))k2 , for some k1, k2 ∈ (0, 1). Observe that
θ1, θ2 ∈ Θ.

Definition 4. A map T on a metric space (X, d) into itself is called θk-contraction, if T satisfies
the following condition:

θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k, ∀x, y ∈ X,

where θ ∈ Θ and k ∈ [0, 1).

Example 1. Let θ : [0, ∞) → [1, ∞) defined by θ(t) := e
√

tet and T : { 1
2 , 1

3 , 1
4 , 1

5} ∪ [ 3
4 , 1] →

{ 1
2 , 1

3 , 1
4 , 1

5} ∪ [ 3
4 , 1] defined by
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T(x) =


1/2 if x ∈ [ 3

4 , 1],
1/5 if x ∈ { 1

3 , 1
4 , 1

5},
1/3 if x = 1

2 .

Clearly, θ ∈ Θ. Our claim is, T is a θk-contraction with the usual metric. It is enough to prove

|Tx− Ty|
|x− y| e|Tx−Ty|−|x−y| ≤ k2.

Remark 1. (i) If T is a contraction map with contractivity factor r, then T is a θk-contraction
map, where θ(t) = e

√
t and k = r1/2.

(ii) Every θk-contraction map on a metric space (X, d) is continuous on X, and moreover, a
θk-contraction map T is contractive in the sense that

d(Tx, Ty) < d(x, y), x 6= y.

(iii) It is easy to see the following implications:
Contraction⇒ θk-contraction⇒ Contractive⇒ Continuous.

Definition 5 ([30]). An operator T : X → X is a Picard operator if T has a unique fixed point x̄
and Tn(x)→ x̄ as n→ ∞ for all x ∈ X.

Theorem 1 ([27]). Let (X, d) be a complete metric space and T : X → X be a given map. Suppose
that there exist θ ∈ Θ and k ∈ (0, 1) such that

x, y ∈ X, d(x, y) 6= 0⇒ θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k.

Then T is a Picard operator.

Corollary 1. Let T : X → X be a θk-contraction on a complete metric space (X, d), then T is a
Picard operator.

Let X and Y be two metric spaces. A map T : X → Y is called multivalued if for
every x ∈ X, T(x) is a non-empty closed subset of Y. The point-to-set mapping T : X → Y
extends to a set-to-set mapping by taking T(C) = ∪

x∈C
T(x), C ⊆ X. For a multivalued map

T : X → Y, denote T−1(C) := {x ∈ X | T(x) ⊆ C} and T−1
+ (C) = {x ∈ X | T(x) ∩ C 6= ∅}.

Definition 6. If X ⊂ Y and T : X → Y is a multivalued map, then a point x ∈ X is called a fixed
point of T provided x ∈ T(x). Thus, the set of fixed point of T is given by Fix(T) = {x ∈ X | x ∈
T(x)}.

Definition 7 ([29]). A multivalued map T : X → Y is called

(i) upper semicontinuous (u.s.c) if T−1(C) is open in X for all open sets C ⊆ Y,
(ii) lower semicontinuous (l.s.c) if T−1

+ (C) is open in X for all open sets C ⊆ Y.

Theorem 2 ([29]). A mapping T : X → K(Y) is Hausdorff continuous if and only if it is both
u.s.c. and l.s.c.

Lemma 4 ([29]). Let T : X → K(Y) be an u.s.c and A ∈ K(X). Then T(A) ∈ K(Y).

Definition 8. Let (∑
N

, dc) be a code space on N symbols {1, 2, . . . , N}, with the metric dc defined by

dc(α, β) =
∞

∑
n=1

|αn − βn|
(N + 1)n ,

where α = (αn)∞
n=1, β = (βn)∞

n=1 ∈ ∑
N

, and αn, βn ∈ NN .
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3. Generalized θ-Contraction Iterated Function Systems

Definition 9. A θ-contraction IFS is a finite collection of θkn -contraction maps Tn : X → X,
n ∈ NN on a complete metric space (X, d).

Lemma 5. If f is a continuous map on a metric space (X, d) into a metric space (Y, d′), A is a
compact subset of X and θ is a non-decreasing self map on R, then θ(sup

x∈A
f (x)) = sup

x∈A
θ( f (x)).

Proof. Since θ is non-decreasing,

θ( f (a)) ≤ θ(sup
x∈A

f (x)), ∀a ∈ A.

This implies,
sup
x∈A

θ( f (x)) ≤ θ(sup
x∈A

f (x)).

By continuity of f and compactness of A, there exists x0 ∈ A such that sup
x∈A

f (x) = f (x0).

Therefore,
θ(sup

x∈A
f (x)) = θ( f (x0)) ≤ sup

x∈A
θ( f (x)).

Combining the above two inequalities, we get the desired result.

We introduce the following concepts for our results in this section:

(i) Let (X, d) be a metric space, we define a metric dm on Xm := X× · · · × X, (m-times)
for some m ∈ N as follows

dm((x1, . . . , xm), (y1, . . . , xm)) := max
1≤j≤m

d(xj, yj).

(ii) For any map T : Xm → X, define a corresponding self-map T̃ on X is T̃(x) :=
T(x, . . . , x).

(iii) Let T : Xm → X and x = (x1, . . . , xm) ∈ Xm, define the iterative sequence (yn)n≥0 of
the map T at the point x as y0 := T(x), yn := T(T̃n(x1), . . . , T̃n(xm)).

Definition 10. Let T : Xm → X be a map for some m ∈ N. Then we say that x ∈ X is a fixed
point of T if T(x, . . . , x) = x.

Definition 11. A map T : Xm → X is called a generalized θk−contraction on a metric space
(X, d), if T satisfies the following condition:

θ(d(Tx, Ty)) ≤ [θ(dm(x, y))]k, ∀x, y ∈ Xm,

where θ ∈ Θ and k ∈ [0, 1).

Note that, if we take m = 1 in the above definition, we get the map T as a θk-contraction
on (X, d). Every generalized θk-contraction is uniformly continuous because of that,

d(Tx, Ty) ≤ dm(x, y), ∀x, y ∈ Xm.

Theorem 3. Let T : Xm → X be a generalized θk-contraction on a complete metric space (X, d)
for some m ∈ N. Then T satisfies the following properties:

(i) T has a unique fixed point x∗ and for any x ∈ X, lim
n→∞

T̃n(x) = x∗.

(ii) The iterative sequence (yn)n≥0 of f at any point in Xm converges to x∗.

Proof. Observe that, T̃ is a θk-contraction on (X, d). Therefore, lim
n→∞

T̃n(x) = x∗ for any

x ∈ X, where x∗ is the unique fixed point of T̃.
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Let (x1, . . . , xm) ∈ Xm and ε > 0. Then for all j ∈ Nm, there exists Nj ∈ N such that
d(T̃n(xj), x∗) < ε, ∀n ≥ Nj. Thus, we obtain

d(yn, x∗) = d(T(T̃n(x1), . . . , T̃n(xm)), T(x∗, . . . , x∗))

≤ max
1≤j≤m

d(T̃n(xj), x∗) < ε, ∀n ≥ N := max{Nj : j ∈ Nm}.

From the above inequality, we conclude that lim
n→∞

yn = x∗.

Theorem 4. If a map T : Xm → X is a generalized θk-contraction on a metric space (X, d), then
the set-valued map T : K(X)m → K(X) is also a generalized θk-contraction on (K(X), h).

Proof. Let A = (A1, . . . , Am), B = (B1, . . . , Bm) ∈ K(X)m and x = (x1, . . . , xm) ∈ A. Then,
there exists ỹj ∈ Bj, ∀j ∈ Nm such that d(xj, ỹj) = inf

yj∈Bj
d(xj, yj). Consider,

θ(d(T(x),T(B))) ≤ θ(d(T(x), T(ỹ))), ỹ = (ỹ1, . . . , ỹm)

≤ [θ(dm(x, ỹ))]k = [θ( max
1≤j≤m

inf
yj∈Bj

d(xj, yj))]
k

≤ [θ( max
1≤j≤m

D(Aj, Bj))]
k.

Since x is arbitrary, sup
x∈A

θ(d(T(x),T(B))) ≤ [θ(hm(A, B))]k.

Therefore, using Lemma 5, we have

θ(D(T(A),T(B))) = θ(sup
x∈A

d(T(x),T(B)))

= sup
x∈A

θ(d(T(x),T(B)))

≤ [θ(hm(A, B))]k.

Similarly, we can prove θ(D(T(B),T(A))) ≤ [θ(hm(A, B))]k.
By the property (Θ1), we conclude that,

θ(h(T(B),T(A))) = max{θ(D(T(A),T(B))), θ(D(T(B),T(A)))}
≤ [θ(hm(A, B))]k.

Definition 12. A generalized θ-contraction IFS is a finite collection of generalized θkn -contraction
maps Tn : Xm → X, m ∈ N, n ∈ NN on a complete metric space (X, d).

Theorem 5. Let Tn : Xm → X, n ∈ NN , be a finite collection of generalized θkn -contraction on a

metric space (X, d), then the Hutchinson map T : K(X)m → K(X) defined by T(A) =
N⋃

n=1
Tn(A)

is also a generalized θk-contraction on (K(X), h) with the same θ and k := max{kn : n ∈ NN}.

Proof. Let A, B ∈ K(X)m. Our claim is

θ(h(T(A),T(B))) ≤ [θ(hm(A, B))]k.

By using Lemma 1 and the property (Θ1), we have
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θ(h(T(A),T(B))) = θ(h(
N
∪

n=1
Tn(A),

N
∪

n=1
Tn(B)))

≤ θ( max
1≤n≤N

h(Tn(A),Tn(B)))

= max
1≤n≤N

θ(h(Tn(A),Tn(B))).

Using Theorem 4 in the above inequality, we obtain

θ(h(T(A),T(B))) ≤ max
1≤n≤N

[θ(hm(A, B))]kn . (1)

By the non-decreasing property of log and θ,

log ( max
1≤n≤N

(θ(hm(A, B)))kn) = max
1≤n≤N

{log ((θ(hm(A, B)))kn)}

= max
1≤n≤N

{kn log (θ(hm(A, B)))}

= k log [(θ(hm(A, B)))]

= log [(θ(hm(A, B)))]k.

Since the logarithm is a one to one function,

max
1≤n≤N

[θ(hm(A, B))]kn = [(θ(hm(A, B)))]k. (2)

Finally, using (2) in (1), we get the desired claim of this proof.

Corollary 2. Every generalized θ-contraction IFS has a unique attractor A (say), and the iterative
sequence at any point B ∈ K(X)m of the corresponding Hutchinson map T converges to A, that is

lim
l→∞

Al = A, where A0 := T(B), Al := T(T̃l(B), . . . , T̃l(B)).

Proof. Since, (X, d) is complete, then (K(X), h) is also complete. The proof follows from
sequential use of Theorems 3–5.

Note that the concept of θk-contraction is a particular case of generalized θk-contraction. The
proofs of the following two theorems are straightforward by taking m = 1 in Theorems 4 and 5,
respectively, and hence omitted.

Theorem 6. Let T : X → X be a θk-contraction on a metric space (X, d), then the set-valued map
T : K(X)→ K(X) is also a θk-contraction on (K(X), h) with the same θ and k.

Theorem 7. Let Tn : X → X, n ∈ NN , be a finite collection of θkn -contractions on a metric space

(X, d), then the Hutchinson map T : K(X) → K(X) defined by T(A) =
N⋃

n=1
Tn(A) is also a

θk-contraction on (K(X), h) with the same θ, and k := max{kn : n ∈ NN}.

Corollary 3. Every θ-contraction IFS has a unique attractor A (say) and moreover, the
corresponding Hutchinson operator T : K(X)→ K(X) is a Picard operator, that is

lim
m→∞

Tm(B) = A, for all B ∈ K(X).

Proof. By Theorem 7, T is a θ-contraction IFS on the complete metric space (K(X), h).
From Corollary 1, we conclude that T is a Picard operator.

Theorem 8. Let {Ti
n}N

n=1, ∀i ∈ N, be a sequence of θ-contraction IFSs. Assume that the following
conditions are satisfied:
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(i) For all i ∈ N, n ∈ NN , Ti
n is a θkn,i -contraction map on a complete metric space (X, d) with

θ-continuous and for each n ∈ NN , sup
i∈N

kn,i < 1.

(ii) The sequence {Ti
n}i converges point-wise to a map Tn, ∀n ∈ NN .

(iii) For all i ∈ N, Ai is the attractor of the IFS {Ti
n}N

n=1 and the sequence {Ai}i converges to a
non-empty compact set A with respect to the Hausdorff metric.

(iv) For all i ∈ N, Ti is the Hutchinson operator of the IFS {Ti
n}N

n=1, i.e. Ti :=
N⋃

n=1
Ti

n(A).

Then {Tn}N
n=1 is also a θ-contraction IFS and {Ti}i converges point-wise to the map T, where

T is the Hutchinson operator of the IFS {Tn}N
n=1. In addition, A is the attractor of the IFS {Tn}N

n=1.

Proof. (i) Let x, y ∈ X. By the given assumptions,

θ(d(Ti
nx, Ti

ny)) ≤ [θ(d(x, y))]kn,i , ∀n ∈ NN , ∀i ∈ N.

Taking logarithms on both sides we get,

log θ(d(Ti
nx, Ti

ny)) ≤ kn,i log θ(d(x, y))

≤ sup
i∈N

kn,i log θ(d(x, y)), ∀n ∈ NN , ∀i ∈ N.

Let kn = sup
i∈N

kn,i. Taking limit as i → ∞ on both sides and by continuity of θ,

we conclude
log θ(d(Tnx, Tny)) ≤ kn log θ(d(x, y)), ∀n ∈ NN .

The above inequality proves that Tn’s are θkn -contractions, and by using Lemma 2, we
obtain that {Ti}i convergent point-wise to the map T.

(ii) Since Ti’s are θki -contractions, where ki = max
n∈NN

kn,i, for each i ∈ N, thus Ti’s are

contractive maps. Therefore,

h(A,T(A)) ≤ h(A,Ti(Ai)) + h(Ti(Ai),Ti(A)) + h(Ti(A),T(A))

≤ h(A, Ai) + h(Ai, A) + h(Ti(A),T(A)).

Taking limit as i→ ∞ in the above inequality, we conclude T(A) = A.

4. Countable and Multivalued θ-Contraction Iterated Function Systems

In this section, motivated by the work of Secelean [24] and Leśniak [26], we utilize our
results to show the existence and uniqueness of attractors of countable and multivalued
θ-contraction IFSs, respectively, by proving the corresponding the set valued map is a
Picard operator.

Theorem 9. Let {Tn}∞
n=1 be a sequence of θkn -contraction functions on a compact metric space

(X, d), where θ is left continuous and sup
n∈N

kn < 1. Then the map T : K(X) → K(X) defined by

T(A) :=
⋃

n>1
Tn(A) is a θk-contraction.

Proof. Let A, B ∈ K(X). By Lemma 1 and the property (Θ1),

θ(h(T(A),T(B))) = θ(h( ∪
n>1

Tn(A), ∪
n>1

Tn(B)))

≤ θ(sup
n∈N

h(Tn(A),Tn(B)))

= θ( lim
N→∞

max
1≤n≤N

h(Tn(A),Tn(B))).
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Since θ is non-decreasing and left continuous,

θ(h(T(A),T(B))) ≤ lim
N→∞

max
1≤n≤N

θ(h(Tn(A),Tn(B))).

By Theorem 6,
θ(h(T(A),T(B))) ≤ sup

n∈N
[θ(h(A, B))]kn . (3)

Consider,

log (sup
n∈N

(θ(h(A, B)))kn) = sup
n∈N
{log ((θ(h(A, B)))kn)}

= sup
n∈N
{kn log (θ(h(A, B)))}

= k log [(θ(h(A, B)))]

= log [(θ(h(A, B)))]k.

This gives,
sup
n∈N

(θ(h(A, B)))kn ≤ [(θ(h(A, B)))]k. (4)

Using (4) in (3), we conclude the proof.

Corollary 4. If {Tn}∞
n=1 is a sequence of θkn -contraction functions on a compact metric space,

where θ is left continuous and sup
n∈N

kn < 1 , then the map T defined as in the above statement is a

Picard operator.

Definition 13. A countable collection of θkn -contraction maps {Tn}n≥1, n ∈ N on a compact
metric space, where θ is left continuous and sup

n∈N
kn < 1 is called a countable θ-contraction IFS.

Definition 14. A multivalued map T : X → K(X) is said to be a multivalued θk-contraction on a
metric space (X, d), if there exists θ ∈ Θ and k ∈ [0, 1) such that

θ(h(Tx, Ty)) ≤ [θ(d(x, y))]k, ∀x, y ∈ X.

Definition 15. A finite collection of multivalued θkn -contraction maps on a complete metric space
is called a multivalued θ-contraction IFS.

If a map T is a multivalued θ-contraction on a metric space (X, d), then T is continuous
on X, and it satisfies

h(Tx, Ty) ≤ d(x, y)

Theorem 10. Let Tn, n ∈ NN , be a finite collection of multivalued θkn -contraction on a metric space
(X, d), then the map T : K(X)→ K(X) defined by T(A) :=

⋃
n∈NN ,x∈A

Tn(x) is a θk-contraction

on the metric space (K(X), h), where k := max{kn : n ∈ NN}.

Proof. By Theorem 2 and Lemma 4, T is well defined. Let A, B ∈ K(X) and choose
u ∈ T(A) such that sup

x∈T(A)

d(x,T(B)) = d(u,T(B)). Then there exists n ∈ NN and a ∈ A

such that u ∈ Tn(a) and there exists b ∈ B such that d(a, b) ≤ h(A, B). Then we have,

θ(D(T(A),T(B))) = θ(d(u,T(B))) ≤ θ(h(Tn(a), Tn(b))) ≤ [θ(d(a, b))]kn ≤ [θ(h(A, B))]k.

Similarly,
θ(D(T(B),T(A))) ≤ [θ(h(A, B))]k.
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Combining the above two inequalities, we obtain

θ(h(T(A),T(B))) ≤ [θ(d(A, B))]k, ∀A, B ∈ K(X),

and hence the proof.

Corollary 5. If Tn, n ∈ NN , is a finite collection of multivalued θkn -contractions on a complete
metric space, then the map T defined as in the above statement is a Picard operator.

5. Code Space and Attractor of θ-Contraction IFS

Our goal is to construct a continuous transformation ψ from the code space onto the
attractor of a restrictive class Ω of θ-contraction IFS so that it generalizes the classical result
proved in Barnsley [28] for usual contractions.

Definition 16. Let Ω be the set of functions θ : [0, ∞)→ [1, ∞) satisfying the following conditions:
(Ω1) θ is nondecreasing,
(Ω2) for each sequence {tn} ⊂ [0, ∞), lim

n→∞
θ(tn) = 1 if and only if lim

n→∞
tn = 0,

(Ω3) there exists r ∈ (0, 1) and l ∈ (0, ∞] such that lim
t→∞

θ(t)−1
tr = l,

(Ω4) θ is continuous.

Note that Ω is a subset of the collection Θ.

Lemma 6. Let {Ti}N
i=1, N ∈ N be a family of θki -contraction maps on a complete metric space

(X, d), where θ ∈ Θ. Let M ∈ K(X). Then there exists M0 ∈ K(X) such that M ⊂ M0, and
the restriction maps {Ti}N

i=1 on M0 forms a θ-contraction IFS. In other words, Ti(M0) ⊂ M0,
∀i ∈ NN .

Proof. Take T0(B) = M for all B ∈ K(X) as a condensation set. Denote as T and T̃ the
Hutchinson operators for the θ-contraction IFSs {X : T1, . . . , TN} and {X : T0, T1, . . . , TN},
respectively. By Theorem 7, both T and T̃ are θk-contractions with k = max{ki : i ∈ N}.

By Corollary 3, {T̃n(M)}n≥1 converges to an attractor M0 (say). Observe that {T̃n(M)}n≥1
is an increasing sequence, i.e.,

T̃(M) ⊂ T̃2(M) ⊂ · · · ⊂ T̃n(M) ⊂ . . .

and
T̃n(M) = M ∪T(M) ∪T2(M) · · · ∪Tn(M), ∀n ∈ N.

Therefore, we have

M0 = lim
n→∞

T̃n(M) = M ∪T(M) ∪T2(M) · · · ∪Tn(M) . . .,

where A means the closure of A. Observe that M ⊂ M0 and T(M0) ⊂ T̃(M0) = M0.
Therefore, the set M0 satisfies the desired conclusion.

Lemma 7. Let {Ti}N
i=1, N ∈ N be a family of θki -contraction maps on a complete metric space

(X, d), where θ ∈ Ω. Denote

ϕ(α, n, x) = Tα1 ◦ · · · ◦ Tαn(x), for all α ∈∑
N

, n ∈ N, x ∈ X.

Let M ∈ K(X). Then there exists a finite constant λ such that

θ(d(ϕ(α, m, x), ϕ(α, n, y))) ≤ λkm
, for all α ∈∑

N
, m ≤ n ∈ N, x, y ∈ M,

where k = max{ki : i ∈ NN}.
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Proof. Let α ∈ ∑
N

, m ≤ n ∈ N, M ∈ K(X) and x, y ∈ M. By Lemma 6, there exists

M0 ∈ K(X) such that M ⊂ M0. Consider

ϕ(α, n, y) = ϕ(α, m, z),

where z = ϕ(γ, n−m, y) ∈ M0 and γ = (αi)
∞
i=m+1. Therefore, we have

θ(d(ϕ(α, m, x), ϕ(α, n, y)) = θ(d(Tα1 ◦ · · · ◦ Tαm(x), Tα1 ◦ · · · ◦ Tαm(z)))

≤ [θ(d(x, y))]k
m ≤ λkm

,

where λ = max{θ(d(x, y)) : x, y ∈ M0}. By continuity of θ and compactness of M0, λ
is finite.

Theorem 11. Let {Ti}N
i=1, N ∈ N be a family of θki -contraction maps on a complete metric space

(X, d), where θ ∈ Ω. Let A denote the attractor of a θ-contraction IFS {(X, d); T1, . . . , TN}.
Define a map ψ : ∑

N
→ A by

ψ(α) = lim
n→∞

ϕ(α, n, x), for all α ∈∑
N

, x ∈ X

is well-defined (i.e, the limit exists, belongs to A and is independent of x ∈ X), continuous and
onto, where ϕ is defined as in Lemma 7.

Proof. Our first claim is that ψ is well defined. It’s enough to prove the existence and
independence of x of

lim
n→∞

ϕ(α, n, x) ∈ A, ∀ α ∈∑
N

, x ∈ A.

Let x ∈ X, M ∈ K(X) such that x ∈ M and α ∈ ∑
N

. According to Lemma 7,

1 ≤ θ(d(ϕ(α, m, y), ϕ(α, n, z))) ≤ λkm
, ∀ m ≤ n ∈ N, y, z ∈ M,

⇒ θ(d(ϕ(α, m, y), ϕ(α, n, z)))→ 1 as m, n→ ∞ ∀ y, z ∈ M,

⇒ d(ϕ(α, m, y), ϕ(α, n, z))→ 0 as m, n→ ∞ ∀ y, z ∈ M, (5)

⇒ d(ϕ(α, m, x), ϕ(α, n, x))→ 0 as m, n→ ∞.

Therefore, lim
n→∞

ϕ(α, n, x) exists. It is easy to observe that ϕ(α, n, x) ∈ Tn(M), ∀n ∈ N,

where T is the Hutchinson operator. From Corollary 3, T is a Picard operator, and
consequently, lim

n→∞
ϕ(α, n, x) ∈ A. Suppose lim

n→∞
ϕ(α, n, x) = a and lim

n→∞
ϕ(α, n, y) = b for

some a 6= b and x, y ∈ M. Let ε = d(a, b). Then there exists N ∈ N such that for all n ≥ N,

d(ϕ(α, n, x), a) < ε/4 and d(ϕ(α, n, y), b) < ε/4.

Consider
d(a, b) ≤ d(a, ϕ(α, n, x)) + d(ϕ(α, n, x), b).

⇒ d(ϕ(α, n, x), b) ≥ d(a, b)− d(a, ϕ(α, n, x)) > ε− ε/4 = 3ε/4.

and
d(ϕ(α, n, x), b) ≤ d(ϕ(α, n, x), ϕ(α, n, y)) + d(ϕ(α, n, y), b).

⇒ d(ϕ(α, n, x), ϕ(α, n, y)) ≥ d(ϕ(α, n, x), b)− d(ϕ(α, n, y), b) > 3ε/4− ε/4 = ε/2,

which is a contradiction to (5). Therefore, the limit of the sequence (ϕ(α, n, x)) is indepen-
dent of x.
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Our next claim is ψ : ∑
N
→ A is continuous. Let ε > 0. Then, there exists n ∈ N

such that
d(ϕ(α, n, x), ϕ(α, n, y)) < ε, ∀ α ∈∑

N
, x, y ∈ M0,

where M0 is defined from M as in Lemma 6. The above inequality is true because λkn
is

not depending on α in ∑
N

.

Let δ = 1
(N+1)n+1 . Since ∑∞

i=n+2
N

(N+1)i =
1

(N+1)n+1 , we have

if dc(α, β) < δ⇒ αi = βi, ∀i ∈ Nn.

This implies

d(ϕ(α, m, x), ϕ(β, m, x)) = d(ϕ(α, n, y), ϕ(α, n, z)) < ε, ∀m ≥ n.

where y = Tαn+1 ◦ · · · ◦ Tαm(x), z = Tβn+1 ◦ · · · ◦ Tβm(x) ∈ M0.
Taking limits as m→ ∞, we have

d(ψ(α), ψ(β)) = d( lim
m→∞

ϕ(α, m, x), lim
m→∞

ϕ(β, m, x)) < ε.

Finally, we need to prove ψ is onto. Let a ∈ A. Since A = lim
n→∞

Tn({x}), there exists a

sequence α(n) ∈ ∑
N

, n ∈ N such that

lim
n→∞

ϕ(α(n), n, x) = a.

By the compactness of (∑
N

, dc), there exists a convergent subsequence {α(nk)}, whose

limit is α. For all n ∈ N, define γ(n) as the number of elements in {m ∈ N : α
(n)
j = αj,

j ∈ Nm}. Consider

θ(d(ϕ(α(nk), nk, x), ϕ(α, nk, x))) = θ(d(ϕ(α, γ(nk), ynk ), ϕ(α, γ(nk), znk )))

≤ λkγ(nk) .

for some ynk , znk ∈ M0. Observe that γ(n)→ ∞ as n→ ∞. Therefore,

lim
k→∞

d(ϕ(α(nk), nk, x), ϕ(α, nk, x)) = 0.

⇒ d(a, ψ(α)) = 0.

Hence the proof.

Definition 17. Suppose A is the attractor of a θ-contraction IFS {(X, d); T1, . . . , TN}, where Ti
is θki -contraction on a complete metric space (X, d) and θ ∈ Ω. Let ψ : ∑

N
→ A defined as in

Theorem 11. For any a ∈ A,

ψ−1(a) := {α ∈∑
N

: ψ(α) = a}

is called the set of addresses of a ∈ A.

When we assume the map θ is continuous, then it is possible to compute the ad-
dresses for each point on the attractor of θ-contraction IFS as per the description given in
Definition 17.

6. Conclusions

In the present work, we have investigated a generalization of the Banach-contraction
principle through the novel generalized θ-contraction. For construction of new type self-
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similar sets, we have developed a new IFS consisting of finite collection of generalized
θkn -contractions Tn : Xm → X, n ∈ NN , and named it as generalized θ-contraction IFS. We
have proved the existence and uniqueness of attractor for the generalized θ-contraction
IFS. Further, the Hutchinson operators for countable and multivalued θ-contraction IFSs
are proven as a Picard operator. Finally, we have demonstrated the relation between code
space and the attractor of θ-contraction IFS, when the map θ is continuous.
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