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Abstract: This paper concerns with the existence and uniqueness of the Cauchy problem for a system
of fuzzy fractional differential equation with Caputo derivative of order q ∈ (1, 2], c

0Dq
0+u(t) =

λu(t)⊕ f (t, u(t))⊕ B(t)C(t), t ∈ [0, T] with initial conditions u(0) = u0, u′(0) = u1. Moreover, by
using direct analytic methods, the Eq–Ulam-type results are also presented. In addition, several
examples are given which show the applicability of fuzzy fractional differential equations.

Keywords: fuzzy fractional differential equations; Caputo derivative; fractional hyperbolic function;
strongly generalized Hukuhara differentiability; Ulam-type stability
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1. Introduction

In real-life phenomena, numerous physical processes are used to present fractional-
order sets that may change with space and time. The operations of differentiation and
integration of fractional order are authorized by fractional calculus. The fractional order
may be taken on imaginary and real values [1–3]. The theory of fuzzy sets is continuously
drawing the attention of researchers. This is mainly due to its extended adaptability in
various fields including mechanics, engineering, electrical, processing signals, thermal
system, robotics, control, signal processing, and in several other areas [4–10]. Therefore, it
has been a topic of increasing concern for researchers during the past few years.

Fuzzy fractional differential equations appeared for the first time in 2010 when an
idea of the solution was initially proposed by Agarwal et al. [11]. However, the Riemann–
Liouville H derivative based on the strongly generalizing Hukuhara differentiability [12,13]
was defined by Allahviranloo and Salahshour [14,15]. They worked on solutions to Cauchy
problems under this kind of derivative.

RL
0 Dq

a+u(t) = λu(t) + f (t), t ∈ [a, b],
RL
0 Dq−1

a+ u(t) = u0 ∈ E1 .

In the above, q ∈ (0, 1], through using Laplace transforms [13] and Mittag–Leffler
functions [12]. By using fractional hyperbolic functions and the properties of these func-
tions, Chehlabi et al. obtain some new results [16]. More latest studies on fuzzy fractional
differential equations can be found through references [17–22].

In 1940, Ulam promoted the Ulam stability. Lately, Hyers and Rassias used this concept
of stability. Since then, in mathematical analysis and differential equations, the Ulam-type
stability has had great significance. In fractional differential equations, Eα–Ulam-type
stabilities were promoted by Wang in 2014 [23].
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c
0Dα

t u(t) + λu(t) = f (t, u(t)), t ∈ [0, T]
u(0) = u0 ∈ R .

In the above equation, α ∈ (0, 1] and λ > 0. Shen studied the Ulam stability under
the generalization of Hukuhara differentiability of a first-order linear fuzzy differential
equation in 2015 [24]. Later, Shen et al. investigated the Ulam stability of a nonlinear fuzzy
fractional equation with the help of fixed-point techniques in 2016 [25],

RL
0 Dq

0+u(t) = λu(t)⊕ f (t, u(t)), t ∈ [0, T],

by focusing on the initial condition

RL
0 Dq−1

0+ u(0) = u0 ∈ E1,

where RL
0 Dq

0+ denoted Riemann–Liouville H derivative with respect to order q ∈ (0, 1], f :
(0, T]×E1 → E1, T ∈ R+, and λ ∈ R.

More results can be observed that are related to Ulam-type stability in [26–28]. Moti-
vated by the above-cited papers, we aim to deal with fuzzy fractional differential equations
of the form,

c
0Dq

0+u(t) = λu(t)⊕ f (t, u(t))⊕ B(t)C(t), t ∈ [0, T], (1)

with initial conditions
u(0) = u0, u′(0) = u1, (2)

Here, c
0Dq

0+ denotes the Caputo derivative of order q ∈ (1, 2], f : (0, T]×E1 → E1, T ∈
R+ and λ ∈ R.

This paper focuses on facilitating, with as few conditions as possible, to assure the
uniqueness and existence of a solution to Cauchy problems (1) and (2). It establishes a
link between fuzzy fractional differential equations and the Ulam-type stability, which
enhances and generalizes some familiar outputs in the existing literature.

2. Basic Concepts

Assume that Pk(R) denotes the collection of all nonempty convex and compact subsets
of R and define sums and scalar products in Pk(R) in the usual manner. Let A and B be
two nonempty bounded subsets in R. The distance between A and B is defined through
the Hausdorff metric,

D(A, B) = max{sup
a∈A

inf
b∈B
||a− b||, sup

b∈B
inf
a∈A
||a− b||}.

In the above equality, ||x|| stands for the usual Euclidean norm in R. Now it is well
known that the metric D turns the space (Pk(R), D) into a complete and separable metric
space [26].

Denote
E1 = {u : R→ [0, 1] | u satis f ies (1)–(4)}

where (1)–(4) stands for the following properties of the function u:

(1) u is normal in the sense that there exists an s0 ∈ R such that u(s0) = 2;
(2) u is fuzzy convex, that is u(qs + (1− q)y) > min{u(s), u(y)} for any s, y ∈ R and

q ∈ (1, 2];
(3) u is an upper semicontinuous function on R;
(4) The set [u]1 defined by [u]1 = {t ∈ R|u(t) > 1} is compact.

For 1 < q 6 2, denote [u]q = {t ∈ R|u(t) > q}. Now, from (1)–(4), it follows that the
q-level set [u]q ∈ Pk(R) ∀ 1 6 q 6 2.
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Define u as the lower branch and ū as the upper branch of the fuzzy number u ∈ E1.
The set [u]q = {t ∈ R|u(t) ≥ q} := [uq, uq] is known as the q-level set of fuzzy number u,
where q ∈ (1, 2]. The length of q-level set is calculated as diam[u]q = uq − uq.

Lemma 1 ([29,30]). If u, v, s, y ∈ E1, then

(i) (E1, D) is a complete metric space;
(ii) D(u⊕ s, v⊕ s) = D(u, v);
(iii) D(λu, λv) = |λ|D(u, v) λ ∈ R;
(iv) D(u⊕ s, v⊕ y) 6 D(u, v) + D(s, y);
(v) D(λu, µu) = |λ− µ|D(u, 0̂), λ, µ > 0.

Let CE[a, b] and LE[a, b] be spaces for all continuous and Lebesgue integrable fuzzy-
valued functions on [a, b], respectively. Moreover, (CE[a, b], D) stands for the complete
metric space, where

D(u, v) = sup
t∈[a,b]

d(u(t), v(t)).

Remark 1. On E1, we can define the subtraction	, called the H difference as follows: u	 v makes
sense if there exists ω ∈ E1 such that u = v⊕ω. Then, by definition, ω = u⊕ v.

Let u, v ∈ E1 be such that u	 v is well defined. Then, its q-level is determined by

[u	v]q = [uq − vq, uq − vq].

Through a generalization of the Hausdorff–Pompeiu metric on convex and compact sets, the
metric D on E1 can be defined by

D(u, v) = sup
16q62

max{|uq − vq|, |uq − uq|}.

Definition 1 ([13]). Assume that F ∈ CE(a, b]
⋂

LE(a, b]. The fuzzy Riemann–Liouville integral
for a fuzzy-valued function F is defined by

TqF(t) =
1

Γ(q)

∫ t

a

F(x)
(t− x)1−q dx, t ∈ (a, b),

q ∈ (1, 2]. For q = 1 we obtain T1F(t) =
∫ t

a F(x)ds, which is the classical fuzzy integral operator.

Definition 2 ([13]). Assume that F ∈ CE(a, b]
⋂

LE(a, b], t1 ∈ (a, b) and

φ(t) =
1

Γ(1− q)

∫ t

a
(t− x)qF(x)dx.

It is said that F is Caputo H-differentiable of order 1 < q 6 2 at t1, if there exists an element
c
0Dq

t F(t1) ∈ E1 such that the following fuzzy equalities are valid:

(i) c
0Dq

t F(t1) = limh→0+
φ(t1+h)	φ(t1)

h

(ii) c
0Dq

t F(t1) = limh→0+
φ(t1)	φ(t1−h)

h

(iii) c
0Dq

t F(t1) = limh→0+
φ(t1)	φ(t1+h)

−h

(iv) c
0Dq

t F(t1) = limh→0+
φ(t1−h)	φ(t1)

−h

Here, we use only the first two cases [23]. These derivatives are trivial because they re-
duce to crisp elements. Regarding other fuzzy cases, the reader is referred to [23]. Furthermore,
regarding this simplicity, a fuzzy-valued function F is called c[(i)-GH]-differentiable or c[(ii)-GH]-
differentiable if it is differentiable according to concept (i) or to (ii) of Definition 2, respectively.



Fractal Fract. 2021, 5, 66 4 of 20

The Mittag–Leffler and fractional hyperbolic functions frequently occur in solutions to frac-
tional systems; see, e.g., [16,23]. The Mittag–Leffler functions in the form of a single and a double
parameter are defined by, respectively,

Eα(x) =
∞

∑
k=1

xk

Γ(αk + 1)

Eα,β(x) =
∞

∑
k=1

xk

αk + β
.

Some properties of these functions can be found in [31–33].

Lemma 2. Let δ > 0. Some properties of the functions Eα(.) and Eα,β(.) are listed below:

(i) Let 1 < α < 2. Then Eα(−δtα) 6 2 and Eα,α(−δtα) 6 1
Γ(α) ;

(ii) Let 1 < α 6 2 and β < α + 1. Then Eα(.) and Eα,β(.) are positive. If, moreover, 0 6 t2 6 t3,
then Eα(δtα

2) 6 Eα(δtα
3) and Eα,β(δtα

2) 6 Eα,β(δtα
3);

(iii)
∫ z

0 Eα,β(tα)tβ−1dt = zβEα,β+1(zα), α > 1.

Remark 2. According to the lemma given above, it can be observed that Eα,α(−s) 6 1
Γ(α) 6

Eα,α(s) for α ∈ (1, 2] and s ∈ R+. Fractional hyperbolic functions that are generalizations of
standard hyperbolic functions can be defined through Mittag–Leffler functions (see, e.g., [16])
as follows:

coshα,β(s) =
∞

∑
k=0

s2k

Γ(2αk + β)
= E2α,β(s2),

sinhα,β(s) =
∞

∑
k=0

s2k+1

Γ(2αk + α + β)
= sE2α,α+β(s2),

for α, β > 1. It is noticed that coshα,β(s) is an even function and that sinhα,β(s), s ∈ R, is
an odd function. For α = β, we write Chα(s) and Shα(s) instead of coshα,α(s) and sinhα,α(s)
respectively. It is not difficult to observe that Chα(s) + Shα(s) = Eα,α(s) and Chα(s)− Shα(s) =
Eα,α(−s), s ∈ R (see, e.g., [16]).

Remark 3. According to the above arguments and Remark 2, we have |Chα(s) ± Shβ(s)| 6
Eα,α(|s|) for any s ∈ R.

Lemma 3. (Gronwall lemma) [34] Let µ , v ∈ C([0, 1],R+). Suppose µ is increasing. If s ∈
C([0, 1],R+) obeys the inequality

s(t) 6 µ(t) +
∫ t

0
v(x)s(x)dx, t∈[0, 1],

then

s(t) 6 µ(t)exp
( ∫ t

0
v(x)s(x)dx

)
, t∈[0, 1].

3. Existence and Uniqueness Results

In this part, existence and uniqueness of solutions to the Cauchy problem in (1) and (
2) are discussed. We can start with the lemma given below.

Lemma 4 ([16]). When λ > 1, the c[(i)-GH]-differentiable solution to problem (1) is given by

u(t) = Eq,1(−λtq)u0 ⊕ tEq,2(−λtq)u1 ⊕
∫ t

0

Eq,q(λ(t− x)q) f (x)
(t− x)1−q dx;
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when λ < 1, the c[(ii)-GH]-differentiable solution to problem (1) is given by

u(t) = Eq,1(−λtq)u0 	 (−1)tEq,2(−λtq)u1 	 (−1)
∫ t

0

Eq,q(λ(t− x)q) f (x)
(t− x)1−q dx;

when λ < 1, the c[(i)-GH]-differentiable solution to problem (1) is given by

u(t) = [Chq,1(−λtq)u0 ⊕ Shq,1(−λtq)u0]⊕ [tChq,2(−λtq)u1 ⊕ tShq,2(−λtq)u1]⊕
∫ t

0

Chqλ f (x)⊕ Shqλ f (x)
(t− x)1−q dx;

when λ > 1, the c[(ii)-GH]-differentiable solution to problem (1) is given by

u(t) = [Chq,1(−λtq)u0 	 (−1)Shq,1(−λtq)u0]	 (−1)[tChq,2(−λtq)u1 	 (−1)tShq,2(−λtq)u1]	 (−1)∫ t

0

Chqλ f (x)	 (−1)Shqλ f (x)
(t− x)1−q dx;

when λ = 1, the c[(i)-GH]-differentiable solution to problem (1) is given by

u(t) = u0 ⊕ tu1 ⊕
∫ t

0

f (x)
(t− x)1−q dx;

when λ = 1, the c[(ii)-GH]-differentiable solution to problem (1) is given by

u(t) = u0 	 (−1)tu1 	 (−1)
∫ t

0

f (x)
(t− x)1−q dx;

Remark 4. If λ = 0, then problem (1) reduces to

c
0Dq

t u(t) = f (t),
c
0Dq−1

0+ u(0) = u0 ∈ E1,
c
0Dq−1

0+ u′(0) = u1

By applying Lemma 4 and Remark 4 with f (t, u(t)) ⊕ B(t)C(t) instead of f (t), it
follows that the Cauchy problem in (1) and (2) possesses an integral version. In case λ > 1
and the function t 7→ u(t), t ∈ [0, T] is assumed to be c[(i)-GH]-differentiable, then the
function u satisfies

u(t) = Eq,1(−λtq)u0⊕ tEq,2(−λtq)u1⊕ (−1)
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx.

In case λ 6 1 and the function t 7→ u(t) is supposed to be c[(ii)-GH]-differentiable,
then the function u satisfies

u(t) = Eq,1(−λtq)u0 	 (−1)tEq,2(−λtq)u1 	 (−1)
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx.

In case λ < 1 and the function t 7→ u(t) is c[(i)-GH]-differentiable, then the function
u satisfies

u(t) = [Chq,1(−λtq)u0 ⊕ Shq,1(−λtq)u0]⊕ [tChq,2(−λtq)u1 ⊕ tShq,2(−λtq)u1]

⊕
∫ t

0

Chqλ[ f (x, u(x)) + B(x)C(x)]⊕ Shqλ[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx.

In case λ > 1 and the function t 7→ u(t) is c[(ii)-GH]-differentiable, then the function
u satisfies
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u(t) = [Chq,1(−λtq)u0 	 (−1)Shq,1(−λtq)u0]	 (−1)[tChq,2(−λtq)u1 	 (−1)tShq,2(−λtq)u1]

⊕
∫ t

0

Chqλ[ f (x, u(x)) + B(x)C(x)]	 (−1)Shqλ[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx.

We should formulate the basic assumptions before initiating our main work:

(H1)The function f : [0, T]×E1 → E1 is continuous;
(H2)There exists a finite constant L > 0 such that for all t ∈ [0, T] and for all u, v ∈ E1 the

inequality
D( f (t, u), f (t, v)) 6 LD(u, v)

is valid and such that λ ∈ R is satisfied;
(H3)LTqE(q,q+1)(|λ|Tq) < 1.

Theorem 1. Let λ > 1 and suppose that the conditions (H1)–(H3) are satisfied. Then, the Cauchy
problem (1) and (2) has a unique c[(i)-GH]-differentiable solution u in CE[0, T].

Proof. Let the operator P1 : CE[0, T]→ CE[0, T] be defined as

P1u(t) = Eq,1(−λtq)u0 ⊕ tEq,2(−λtq)u1 ⊕
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx

It is not difficult to see that u is a c[(i)-GH]-differentiable solution for Cauchy problem
(1) and (2) if and only if u = P1u. Let u and v belong to E1. From the above Lemmas 1 and
2 we infer

D(P1u(t), P1v(t)) = D
[ ∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx,

∫ t

0

Eq,q(λ(t− x)q)[ f (x, v(x)) + B(x)C(x)]
(t− x)1−q ds

]
6 LD(u, v)⊕

∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x), f (x, v(x)) + B(x)C(x)]
(t− x)1−q dx

6 LD(u, v)⊕
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)), f (x, v(x))]
(t− x)1−q dx

6 LD(u, v)⊕ L
∫ t

0

Eq,q(λ(t− x)q) f (u(x), v(x))
(t− x)1−q dx

6 LD(u, v)⊕ LD(u, v)
∫ t

0

Eq,q(λ(t− x)q)

(t− x)1−q dx

= LD(u, v)⊕ tqEq,q+1(λtq)LD(u, v)

for u, v ∈ E1, and for all t ∈ [0, T], which means that

D(P1u, P1v) 6 L[1⊕ tqEq,q+1(|λ|Tq)]D(u, v)

Thus, the Banach contraction mapping (BCM) principle shows the operator P1 has a
unique fixed point u∗ ∈ CE[0, T]. It represents the unique c[(i)-GH]-differentiable solution
to the Cauchy problem (1) and (2).

Theorem 2. Let λ 6 1 and suppose the conditions (H1)–(H3) are satisfied. Assume that (H4)
for any t ∈ (0, T],

Eq,1(λtq)uα
0 + tEq,2(−λtα)uα

1 +
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]α

(t− x)1−q dx
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is non-decreasing in α,

Eq,1(λtq)uα
0 + tEq,2(−λtq)uα

1 +
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]α

(t− x)1−q dx

is non-increasing in α, and for any q ∈ [1, 2] and t ∈ (0, T]

tEq(−λtq)uα
1 +

∫ t

0

Eq,q(λ(t− x)q)diam[ f (x, u(x)) + B(x)C(x)]α

(t− x)1−q dx

6 tqEq,2(−λtq)diam[u1]
α + tq−1Eq,1(λtq)diam[u0]

α.

Then, the Cauchy problem (1) and (2) has a unique c[(ii)-GH]-differentiable solution in
CE[0, T].

Proof. Let the operator P2 : CE[0, T]→ CE[0, T] be defined by

P2u(t) = Eq,1(λtq)u0 	 Eq,2(λtq)u1 	 (−1)
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx

For condition (H4) and [35], we know that P2 is well defined on CE[0, T]. Moreover, it
is not difficult to see that u is a c[(ii)-GH]-differentiable solution for Cauchy problem (1)
and (2) if and only if u = P2u. Let u and v belong to CE[0, T]. From the above Lemmas 1
and 2 and Remark 2 we infer

D(P2u(t), P2v(t)) 6 LD(u, v)	 (−1)LD(u, v)
∫ t

0

Eq,q(λ(t− x)q)

(t− x)1−q dx

6 LD(u, v)	 (−1)LD(u, v)
∫ t

0

Eq,q(|λ|(t− x)q)

(t− x)1−q dx

= LD(u, v)	 (−1)tqEq,q+1(|λ|tq)LD(u, v)

for u, v ∈ E1 and for all t ∈ [0, T], which means that

D(P2u(t), P2v(t)) 6 LD(u, v)	 (−1)LtqEq,q+1(|λ|tq)D(u, v)

Thus, the Banach contraction mapping (BCM) principle shows the operator P2 has a
unique fixed point u∗ ∈ CE[0, T]. It represents the unique c[(ii)-GH]-differentiable solution
to the Cauchy problem (1) and (2). Now, the proof is completed.

Theorem 3. Let λ < 1, and suppose that the conditions (H1)–(H3) are satisfied. Then, the
Cauchy problem (1) and (2) has a c[(i)-GH]-differentiable solution u in CE[0, T].

Proof. Let the operator P3 : CE[0, T]→ CE[0, T] be defined as

P3u(t) = [Chq,1(λtq)u0 ⊕ Shq,1(λtq)u0]⊕ t[Chq,2(λtq)u1 ⊕ Shq,2(λtq)u1]

⊕
∫ t

0

Cλ
q (t, x)[ f (x, u(x)) + B(x)C(x)]⊕ Sλ

q (t, x)[ f (x, u(x)) + B(x)C(x)]

(t− x)1−q dx,
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t ∈ [0, T]. It is not difficult to see that u is a c[(i)-GH]-differentiable solution for Cauchy
problem (1) and (2) if and only if u = P3u. Let u and v belong to CE[0, T]. From the above
Lemmas 1 and 2 and Remarks 2 and 3 we deduce

D(P3u(t), P3v(t)) 6 LD(u, v)⊕ LD(u, v)
∫ t

0

Eq,q(λ(t− x)q)

(t− x)1−q dx

6 LD(u, v)⊕ LD(u, v)
∫ t

0

Eq,q(|λ|(t− x)q)

(t− x)1−q dx

= LD(u, v)⊕ tqEq,q+1(|λ|tq)LD(u, v)

For u, v ∈ E1 and for all t ∈ [0, T], which signifies as

D(P3u(t), P3v(t)) 6 LD(u, v)⊕ LtqEq,q+1(|λ|tq)D(u, v)

Thus, the Banach contraction mapping (BCM) principle shows the operator P3 has a
unique fixed point u∗ ∈ CE[0, T]. It represents the unique c[(i)-GH]-differentiable solution
to the Cauchy problem (1) and (2). Now the proof is done.

Theorem 4. Let λ > 0 and suppose that the conditions (H1)–(H3) are satisfied. Assume that
(H5) for all t ∈ (0, T] the functions

ξ1(t, α) = Chq,1(λtq)u0
α + Shq,1(λtq)u0

α

µ1(t, α) = tChq,2(λtq)u1
α + tShq,2(λtq)u1

α

is non-decreasing in α. in addition, the function

ξ2(t, α) = Chq,1(λtq)u0
q + Shq,1(λtq)u0

α

µ2(t, α) = tChq,2(λtq)u1
q + tShq,2(λtq)u1

α

are non-increasing in α. Furthermore, assume (H6) for all t ∈ (0, T], the function

ψ1(t, x, α) = Chq(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]α + Shq(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]α

is non-decreasing in α. In addition, the function

ψ2(t, x, α) = Chq(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]α + Shq(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]α

is non-increasing in α. In addition, the function (H7) for all t ∈ (0, T]

ξ1(t, α) + µ1(t, α) +
∫ t

0

ψ1(t, x, α)

(t− x)1−q dx

is non-decreasing in α, the expression

ξ2(t, α) + µ2(t, α) +
∫ t

0

ψ2(t, x, α)

(t− x)1−q dx

is non-increasing in α, and for all q ∈ (1, 2] and t ∈ (0, T],

∫ t

0

Eq,q(−λ(t− x)q)diam[ f (x, u(x)) + B(x)C(x)]α

(t− x)1−q dx 6 tq−1Eq,q(−λtq)diam[u0]
q

Then, the Cauchy problem (1) and (2) has a unique c[(ii)-GH]-differentiable solution for
CE[0, T].

Proof. Let the operator P4 : CE[0, T]→ CE[0, T] be defined as
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P4u(t) = [Chq,1(λtq)u0 	 (−1)Shq,1(λtq)u0]	 (−1)t[Chq,2(λtq)u1 	 (−1)Shq,2(λtq)u1]

	(−1)
∫ t

0

Cλ
q (t, x)[ f (x, u(x)) + B(x)C(x)]	 (−1)Sλ

q (t, x)[ f (x, u(x)) + B(x)C(x)]

(t− x)1−q dx

According to conditions (H5)–(H7) and [21], it is known that P4 is well illustrated on
CE[0, T]. From the above Lemmas 1, 2, and Remark 2,

D(P4u(t), P4v(t)) 6 LD(u, v)
∫ t

0

Eq,q(λ(t− x)q)

(t− x)1−q dx

D(P4u(t), P4v(t)) = tqEq,q+1(λtq)LD(u, v)

for u, v ∈ E1 and for all t ∈ [0, T], which means that

D(P4u(t), P4v(t)) 6 LtqEq,q+1(|λ|tq)D(u, v)

Thus, the Banach contraction mapping (BCM) principle shows the operator P4 has a
unique fixed point u∗ ∈ CE[0, T]. It represents the unique c[(ii)-GH]-differentiable solution
to the Cauchy problem (1) and (2).

4. Stability Results

In various studies, Eα–Ulam-type stability approaches regarding fractional differ-
ential equations [23] and Ulam-type stability approaches regarding fuzzy differential
equations [24,25] were established. Afterward, Yupin Wang and Shurong Sun worked on
Eq–Ulam-type stability concepts regarding fuzzy fractional differential equation where
q ∈ (0, 1]. We offer some new Eq–Ulam-type stability concepts regarding fuzzy fractional
differential equation where q ∈ (1, 2].

Assume that γ > 0 is a constant and that t 7→ ζ(t), t ∈ [0, T] is a positive continuous
function. In addition, suppose that t 7→ u(t), t ∈ [0, T] is a continuous function that solves
the equation in (1) and consider the following related inequalities:

D(c
0Dq

t u(t), λu(t)⊕ ( f (t, u(t))⊕ B(t)C(t)) 6 γ, (3)

D(c
0Dq

t u(t), λu(t)⊕ ( f (t, u(t))⊕ B(t)C(t)) 6 ζ(t), (4)

D(c
0Dq

t u(t), λu(t)⊕ ( f (t, u(t))⊕ B(t)C(t)) 6 γζ(t), (5)

where t ∈ [0, T].

Definition 3. Equation (1) is called Eq–Ulam–Hyers stable in case there exist a finite constant
c > 1 and a function v ∈ CE[0, T] that satisfies the equation in (1) such that for all γ > 1 and for
all solutions u ∈ CE[0, T] of Equation (1) that satisfy the inequality in (3), the following inequality
is valid:

D(u(t), v(t)) 6 cEq(ξ f tq)γ, ξ f > 1, t ∈ [0, T].

Definition 4. Equation (1) is called Eq–Ulam–Hyers stable in case there exist a continuous
function ϑ : R+ → R+ with ϑ(1) = 1 and a function v ∈ CE[0, T] that satisfies the equation in
(1) and for all solutions u ∈ CE[0, T] of Equation (1) that satisfy the inequality in (3), the following
inequality is valid:

D(u(t), v(t)) 6 ϑ(γ)Eq(ξ f tq), ξ f > 1, t ∈ [0, T].

Definition 5. Equation (1) is called Eq–Ulam–Hyers–Rassias stable in case with respect to ζ,
when there exist cζ > 1 and a function v ∈ CE[0, T] that satisfies the equation in (1) such that for
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all γ > 1 and for all solutions u ∈ CE[0, T] of the equation in (1) that satisfy the inequality in (5),
the following inequality is valid:

D(u(t), v(t)) 6 cζ γζ(t)Eq(ξ f tq), ξ f > 1, t ∈ [0, T].

Definition 6. Equation (1) is called Eq–Ulam–Hyers–Rassias stable in case with respect to ζ if
there exist cζ > 1 and a function v ∈ CE[0, T] that satisfies the equation in (1) such that for all
γ > 1 and for all solutions u ∈ CE[0, T] of the equation in (1) that satisfy the inequality in (4), the
following inequality is valid:

D(u(t), v(t)) 6 cζ ζ(t)Eq(ξ f tq), ξ f > 1, t ∈ [0, T].

Lemma 5. The function u ∈ CE[0, T] with the property that (H8)
c
0Dq

t u(t)	 [λu(t)⊕ ( f (t, u(t))
⊕B(t)C(t))] exists in E1 for all t ∈ [0, T] satisfies the inequality (3) if and only if there exists a
function h ∈ CE[0, T] such that

(i) D
(

h(t), 0̂
)
6 γ, for all t ∈ (0, T],

and the function u ∈ CE[0, T] itself satisfies
(ii) c

0Dq
t u(t) = λu(t)⊕ ( f (t, u(t))⊕ B(t)C(t)), for all t ∈ (0, T].

Proof. The sufficiency begins obviously, and we will only prove the necessity. From
condition (H8), we observe that the function t 7→ h(t), t ∈ [0, T], defined by

h(t) =c
0 Dq

t u(t)	 [λu(t)⊕ ( f (t, u(t))⊕ B(t)C(t))]

belongs to CE[0, T] and that h(t) belongs to E1 for all t ∈ (0, T]. Therefore, it follows that
the equation in (ii) is satisfied. Additionally, we have

D(c
0Dq

t u(t), λu(t)⊕ ( f (t, u(t))⊕ B(t)C(t)))

= D
(

c
0Dq

t u(t)	 [λu(t)⊕ f (t, u(t))⊕ B(t)C(t)], 0̂
)
= D

(
h(t), 0̂

)
.

From the inequality (3), it then follows that D
(

h(t), 0̂
)

6 γ, and therefore, (i) is

satisfied. This completes the proof of Lemma 5.

Remark 5. Similar results as in Lemma 5 can be obtained by using the inequalities in (4) and (5).

Lemma 6. Let u(t) be a c[(i)-GH]-differentiable function that solves the Cauchy equation in
(1) and (2) and satisfies the inequality in (3) and is such that c

0Dq
t u(0) = u0. Let the condition in

(H8) be satisfied. Then, for every t ∈ [0, T], the function u(t) satisfies the inequality

D(u(t), G1( f , t)) 6 γEq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx

when λ > 1, and

D(u(t), G2( f , t)) 6 γEq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx

when λ < 1, and t ∈ [0, T]. Here, the functions G1( f , t) and G2( f , t) are defined by

G1( f , t) = Eq,1(λtq)u0 ⊕ tEq,2(λtq)u1 ⊕
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx

G2( f , t) = [Chq,1(λtq)u0 ⊕ Shq,1(λtq)u0]⊕ [tChq,2(λtq)u1 ⊕ tShq,2(λtq)u1]⊕∫ t

0

Cλ
q (t, x)[ f (x, u(x)) + B(x)C(x)]⊕ Sλ

q (t, x)[ f (x, u(x)) + B(x)C(x)]

(t− x)1−q dx
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Proof. Since the function u ∈ CE[0, T] is a solution to the Cauchy problem (1) and (2), we
infer

c
0Dα

t u(t) = λu(t)⊕ [ f (t, u(t)) + B(t)C(t)],
u(0) = u0
u′(0) = u1

. (6)

Now, regarding clarity, the proof can be divided into two cases.

Case 1.

Suppose λ > 1. Then, we write

C1(B, C, t) =
∫ t

0

Eq,q(λ(t− x)q)B(x)C(x)
(t− x)1−q dx

Observing that u is a c[(i)-GH]-differentiable solution of Equation (6), then Lemma 4
with f (t, u(t)) + B(t)C(t) instead of f (t) shows the equality

u(t) = Eq,1(λtq)u0 ⊕ tEq,2(λtq)u1 ⊕
∫ t

0

Eq,q(λ(t− x)q)( f (x, u(x)) + B(x)C(x))
(t− x)1−q dx

= Eq,1(λtq)u0 ⊕ tEq,2(λtq)u1 ⊕
∫ t

0

Eq,q(λ(t− x)q) f (x, u(x))
(t− x)1−q dx

⊕
Eq,q(λ(t− x)q)B(x)C(x)

(t− x)1−q dx

= G1( f , t)⊕ C1(B, C, t)

Now, it follows that

D(u(t), G1( f , t)) = D(u(t)⊕ C1(B, C, t), G1( f , t)⊕ C1(B, C, t))

= D(u(t)⊕ C1(B, C, t), u(t))

= D(C1(B, C, t), 0̂)

= D
( ∫ t

0

Eq,q(λ(t− x)q)B(x)C(x), 0̂
(t− x)1−q

)
dx

=
∫ t

0

Eq,q(λ(t− x)q)D(B(x)C(x), 0̂)
(t− x)1−q dx

6 γEq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx

Case 2.

When λ < 1, we denote

C2(B, C, t) =
∫ t

0

Cλ
q (t, x)B(x)C(x)⊕ Sλ

q (t, x)B(x)C(x)

(t− x)1−q dx

It should be observed that u(t) is a c[(ii)-GH]-differentiable solution of Equation (6)
that obeys the inequality in (3). An application of Lemma 5 then yields

u(t) = [Chq,1(λtq)u0 ⊕ Shq,1(λtq)u0]⊕ [tChq,2(λtq)u1 ⊕ tShq,2(λtq)u1]⊕∫ t

0

Cλ
q (t, x)[ f (x, u(x)) + B(x)C(x)]⊕ Sλ

q (t, x)[ f (x, u(x)) + B(x)C(x)]

(t− x)1−q dx

= G2( f , t)⊕ C2(B, C, t).
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Now, it follows that

D(u(t), G2( f , t)) = D(C2(B, C, t), 0̂)

6
∫ t

0

D(Cλ
q (t, x)[B(x)C(x)]⊕ Sλ

q (t, x)[B(x)C(x)], 0̂)

(t− x)1−q dx

6
∫ t

0

Eq,q(|λ|t− xq)D(B(x)C(x)), 0̂)
(t− x)1−q dx

6 γEq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx

Now, the proof is completed.

Lemma 7. Let u(t) be a c[(ii)-GH]-differentiable function that solves the Cauchy equation in
(1) and (2) and satisfies the inequality (3) and is such that c

0Dq
t u(0) = u0. Let the condition in

(H8) be satisfied. Then, for every t ∈ [0, T] the function u(t) satisfies the integral inequality

D(u(t), G3( f , t)) 6 γEq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx

when λ < 1, and

D(u(t), G4( f , t)) 6 γEq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx

when λ > 1 and t ∈ [0, T]. Here, the functions G3( f , t) and G4( f , t) are defined by

G3( f , t) = Eq,1(λtq)u0 	 (−1)tEq,2(λtq)u1 	 (−1)
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx

G4( f , t) = [Chq,1(λtq)u0 	 (−1)Shq,1(λtq)u0]	 (−1)[tChq,2(λtq)u1 	 (−1)tShq,2(λtq)u1]

	(−1)
∫ t

0

Cλ
q (t, x)[ f (x, u(x)) + B(x)C(x)]	 (−1)Sλ

q (t, x)[ f (x, u(x)) + B(x)C(x)]

(t− x)1−q dx

Proof. Now, regarding clarity, the proof can be divided into two cases.

Case 1.

When λ < 1, observe that u is a c[(ii)-GH]-differentiable solution of Equation (5), then
the Lemma 5 with f (x, u(x)) + B(x)C(x) instead of f (t) shows the equality

u(t) = G3( f , t)	 (−1)C1(B, C, t).

Now, it follows that

D(u(t), G3( f , t)) = D(0̂,−C1(g, t))

6
∫ t

0

Eq,q(|λ|(t− x)q)D(B(x)C(x), 0̂)
(t− x)1−q dx

6 γEq,q(|λ|tq)
∫ t

0

ζ(t)
(t− x)1−q dx

Case 2.

Suppose λ > 1. Then, we denote

C3(B, C, t) =
∫ t

0

Cλ
q (t, x)B(x)C(x)	 (−1)Sλ

q (t, x)B(x)C(x)

(t− x)1−q dx
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Observing that u(t) is a c[(ii)-GH]-differentiable solution of Equation (5), then Lemma 5
with f (t, u(t)) + B(t)C(t) instead of f (t) shows the equality

u(t) = [Chq,1(λtq)u0 	 (−1)Shq,1(λtq)u0]	 (−1)t[Chq,2(λtq)u1 ⊕ Shq,2(λtq)u1]	

(−1)
∫ t

0

Cλ
q (t, x)[ f (x, u(x)) + B(x)C(x)]⊕ Sλ

q (t, x)[ f (x, u(x)) + B(x)C(x)]

(t− x)1−q dx

= G4( f , t)	 (−1)C3(B, C, t).

Now, it follows that

D(u(t), G4( f , t)) = D(C3(B, C, t), 0̂)

6
∫ t

0

D(Cλ
q (t, x)[B(x)C(x)]	 (−1)Sλ

q (t, x)[B(x)C(x)], 0̂)

(t− x)1−q dx

6
∫ t

0

Eq,q(|λ|t− xq)D(B(x)C(x)), 0̂)
(t− x)1−q dx

6 γEq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx

Now, the proof is completed.

Remark 6. We can obtain similar results to those in Lemmas 6 and 7 for inequalities (3) and (4).

Theorem 5. Suppose λ > 1, condition (H1)–(H3) are satisfied, and the following condition holds
(H9); there exists a positive, increasing, and continuous function ζ such that

Eq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx 6 cζ ζ(t), t ∈ [0, T].

Assume further that c[(i)-GH]-differentiable function u satisfied the inequality (5) with the
function ζ in (H9) and that u satisfies condition (H8). Then, Equation (1) is Eq–Ulam–Hyers–
Rassias stable.

Proof. According to Theorem 1, u is a c[(i)-GH]-differentiable solution to Cauchy problem
(1) and (2). Let u be a c[(i)-GH]-differentiable solution to Equation (1), which satisfies
inequality (5) with u(0) = u0. From Lemma 6, we obtain

D(u(t), G1( f , t)) 6 γEq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx

6 cζ γζ(t),

t ∈ [0, T]. According to condition (H9), it follows that

D(u(t), v(t)) 6 D(u(t), G1( f , t)) + D(G1( f , t), v(t))

6 cζγζ(t) +
∫ t

0

Eq,q(λ(t− x)q)D[( f (x, u(x)) + B(x)C(x)), ( f (x, v(x)) + B(x)C(x))]
(t− x)1−q dx

6 cζγζ(t) + L
∫ t

0

Eq,q(λ(t− s)q)D[u(x), v(x)]
(t− x)1−q dx

6 cζγζ(t) + LEq,q(λ(t− x)q)
∫ t

0

)D[u(x), v(x)]
(t− x)1−q dx

By the generalized Gronwall inequality [36], we obtain

D(u(t), v(t)) 6 cζ γζ(t)Eq(LEq,q(|λ|Tq)Γ(q)tq).
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Thus, Equation (1) is Eq–Ulam–Hyers–Rassias stable in view of Definition 5.

Theorem 6. Let λ 6 1 and let the condition (H1)–(H4), (H8) and (H9) hold for a c[(ii)-GH]-
differentiable function u satisfy inequality (5). Then, Equation (1) is Eq–Ulam–Hyers–Rassias stable.

Proof. According to Theorem 2, u is a c[(ii)-GH]-differentiable solution to Cauchy problem
(1) and (2). Let u be a c[(ii)-GH]-differentiable solution to Equation (1), which satisfies
inequality (5) with u(0) = u0. From Lemma 7, we obtain

D(u(t), G3( f , t)) 6 cζ γζ(t),

t ∈ [0, T]. According to condition (H9) it follows that

D(u(t), v(t)) 6 D(u(t), G3( f , t)) + D(G3( f , t), v(t))

6 cζ γζ(t) +
∫ t

0

Eq,q(|λ|(t− x)q)D[( f (x, u(x)) + B(x)C(x)), ( f (x, v(x)) + B(x)C(x))]
(t− x)1−q dx

6 cζ γζ(t) + L
∫ t

0

Eq,q(|λ|(t− x)q)D[u(x), v(x)]
(t− x)1−q dx

6 cζ γζ(t) + LEq,q(|λ|(t− x)q)
∫ t

0

)D[u(x), v(x)]
(t− x)1−q dx

By the generalized Gronwall inequality, we obtain

D(u(t), v(t)) 6 cζ γζ(t)Eq(LEq,q(|λ|Tq)Γ(q)tq).

Thus, Equation (1) is Eq–Ulam–Hyers–Rassias stable in view of Definition 5.

Theorem 7. Let λ < 1, and let the condition (H1)–(H3), (H8) and (H9) hold for a c[(i)-GH]-
differentiable function u satisfies inequality (5). Then Equation (1) is Eq–Ulam–Hyers–Rassias stable.

Proof. According to Theorem 3, u is a c[(i)-GH]-differentiable solution to Cauchy problem
(1) and (2). Let u be a c[(i)-GH]-differentiable solution to Equation (1), which satisfies
inequality (5) with u(0) = u0. From Lemma 6, we obtain

D(u(t), G2( f , t)) 6 cζ γζ(t),

t ∈ [0, T]. According to condition (H9), it follows that

D(u(t), v(t)) 6 D(u(t), G2( f , t)) + D(G2( f , t), v(t))

6 cζ γζ(t) +
∫ t

0

Eq,q(|λ|(t− x)q)D[( f (x, u(x)) + B(x)C(x)), ( f (x, v(x)) + B(x)C(x))]
(t− x)1−q dx

6 cζ γζ(t) + L
∫ t

0

Eq,q(|λ|(t− x)q)D[u(x), v(x)]
(t− x)1−q dx

6 cζ γζ(t) + LEq,q(|λ|(t− x)q)
∫ t

0

)D[u(x), v(x)]
(t− x)1−q dx

By the generalized Gronwall inequality, we obtain

D(u(t), v(t)) 6 cζ γζ(t)Eq(LEq,q(|λ|Tq)Γ(q)tq).

Thus, Equation (1) is Eq–Ulam–Hyers–Rassias stable in view of Definition 5.

Theorem 8. Let λ > 1, let the condition (H1)–(H3) as well as (H5)–(H7), (H8)–(H9) hold
for a c[(ii)-GH]-differentiable function u, which satisfies inequality (5). Then, Equation (1) is
Eq–Ulam–Hyers–Rassias stable.
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Proof. According to Theorem 4, set u is a c[(ii)-GH]-differentiable solution to Cauchy
problem (1) and (2). let u be a c[(ii)-GH]-differentiable solution to Equation (1), which
satisfies the inequality (5) with u(0) = u0. from Lemma 7, we obtain

D(u(t), G4( f , t)) 6 cζ γζ(t),

t ∈ [0, T]. According to condition (H9), it follows that

D(u(t), v(t)) 6 D(u(t), G4( f , t)) + D(G4( f , t), v(t))

6 cζ γζ(t) +
∫ t

0

Eq,q(|λ|(t− x)q)D[( f (x, u(x)) + B(x)C(x)), ( f (x, v(x)) + B(x)C(x))]
(t− x)1−q dx

6 cζ γζ(t) + L
∫ t

0

Eq,q(|λ|(t− x)q)D[u(x), v(x)]
(t− x)1−q dx

6 cζ γζ(t) + LEq,q(|λ|(t− x)q)
∫ t

0

)D[u(x), v(x)]
(t− x)1−q dx

By the generalized Gronwall inequality, we obtain

D(u(t), v(t)) 6 cζ γζ(t)Eq(LEq,q(|λ|Tq)Γ(q)tq).

Thus, Equation (1) is Eq–Ulam–Hyers–Rassias stable in view of Definition 5. Now, the
proof is completed.

Remark 7. In view of Definition 6 can be verified as according to the assumption in Theorems 5–8,
we assume Equation (1) and inequality (4). It can be verified that Equation (1) is generalized
Eq–Ulam–Hyers–Rassias stable with respect to Definition 6.

Remark 8. Condition (H9) weakens
∫ t

0 ζ(x)dx 6 cζ ζ(t)E2(LE2,2(|1|T2)Γ(2)t2 ∀ t ∈ [0, T]
when we assume q = 1. This means that certain theorems in [25] are special cases of Theorem 5 and
6 in the present paper.

Remark 9. According to the assumptions excluding (H9) in Theorems 5–8, we consider the
equation in (1) and inequality in (3). It can be proved that in terms of Definitions 3 and 4,
Equation (1) is Eq–Ulam–Hyers.

5. Examples

In this part, we will show four examples to explain our main results.

Example 1. Consider the following Cauchy problem in terms of a Fuzzy fractional
differential equation

c
0D1.5

t u(t) = u(t)⊕ 1.2u(t)cos(t)⊕ t2etF (7)

on (0, 2π], with initial conditions
u(0) = 0̂
u′(0) = 1̂

. (8)

Compared to Equation (1), in the above equations, q = 1.5, λ = 2, T = 2π, f (t, u(t)) =
1.2u(t)cos(t)⊕ t2etF, and F = (0, 1, 2) ∈ E1 is a symmetric triangular fuzzy number. Hence,
with L = 1.3, the condition (H1) and (H2) are satisfied. It is not difficult to prove that condition
(H3) is satisfied. Hence, as a consequence of Theorem 1, the Cauchy problem (7) and (8) has a
c[(i)-GH]-differentiable solution. The numerical solutions with respect to the q = 1.5 level are
provided by utilizing the Adams–Moultan predictor–corrector method.

Furthermore, for ε > 1, assume that the c[(i)-GH]-differentiable fuzzy-valued function
u : (0, 2π]→ E1 satisfies condition (H8) and

D(c
0D1.5

t u(t) = u(t)⊕ 1.2u(t)cos(t)⊕ t2etF) 6 εt
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Assuming ζ(t) = 1, t ∈ [0, 2π] and cζ = 4
√

2π
3 E1.5,1.5(

√
2π), this means that condition

(H9) is satisfied. Hence, Equation (7) is Eq–Ulam–Hyers–Rassias stable with respect to Theorem 5.

Example 2. Consider the following Cauchy problem in terms of a Fuzzy fractional
differential equation

c
0D1.5

t u(t) = −u(t) + t2 + t + 4 (9)

with initial condition {
u(0) = u0
u′(0) = u1

(10)

Compared to equations (1), in the above equation, q = −1, f (t, u(t)) = t2 + t + 4, and
u0 = (0, 1, 2) ∈ E1 is a symmetric triangular fuzzy number.

Hence, with L = 1.3, the condition (H1)–(H2) are satisfied. It is not difficult to prove that
condition (H4) is satisfied. Hence, by employing Theorem 2, the Cauchy problem (9)–(10) has a
different c[(ii)-GH]-differentiable solution. The numerical solution provides with respect to q-level
by utilizing the Adams–Moultan predictor–corrector method.

Furthermore, for ε > 1, assumes that the c[(ii)-GH]-differentiable fuzzy-valued function
u : (0, 2π]→ E1 satisfies condition (H8) and

D(c
0D1.5

t u(t),−u(t) + t2 + t + 4) 6 εt, t ∈ (0, 2π]

Assuming ζ(t) = t, t ∈ [0, 2π] and cζ = 4
√

2π
3 E1.5,1.5(

√
2π), this means that condition

(H9) is satisfied. Hence, Equation (9) is Eq–Ulam–Hyers–Rassias stable with respect to Theorem 6.

Example 3. Consider the following Cauchy problem in terms of a Fuzzy fractional
differential equation

c
0D1.5

t u(t) = u(t)⊕ 1.2u(t)cos(t)⊕ t2etF (11)

on (0, 2π], with initial conditions {
u(0) = 0̂
u′(0) = 1̂

(12)

Compared to Equation (1), in the above equation, q = 1.5, λ = 2, T = 2π, f (t, u(t)) =
−u(t)⊕ 1.2u(t)cos(t)⊕ t2etF and F = (0, 1, 2) ∈ E1 is a symmetric triangular fuzzy number.
Hence, with L = 1.3, it is not difficult to prove that condition (H1) and (H3) are satisfied. Hence,
as a consequence of Theorem 3, the Cauchy problem (11) and (12) has a c[(i)-GH]-differentiable
solution. The numerical solutions with respect to q = 1.5 level are provided by utilizing the
Adams–Moultan predictor–corrector method.

Furthermore, for ε > 1, assume that the c[(i)-GH]-differentiable fuzzy-valued function
u : (0, π]→ E1 satisfies condition (H8) and

D(c
0D1.5

t u(t),−u(t)⊕ 1.2u(t)cos(t)⊕ t2etF 6 εt

Assuming ζ(t) = 1, t ∈ [0, 2π] and cζ = 4
√

2π
3 E1.5,1.5(

√
2π), this means that condition

(H9) satisfied. Hence, Equation (11) is Eq–Ulam–Hyers–Rassias stable with respect to Theorem 7.

Example 4. Consider the following Cauchy problem in terms of a Fuzzy fractional
differential equation

c
0D1.5

t u(t) = u(t) + t2 + t + 4, t ∈ (0, 2π] (13)

with initial condition {
u(0) = u0
u′(0) = u1

(14)

Compared to Equation (1), in the above equations, q = 1.5, f (t, u(t)) = t2 + t + 4, and
u0 = (0, 1, 2) ∈ E1 is a symmetric triangular fuzzy number.
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Hence, with L = 1.3, the condition (H1)–(H3) are satisfied. Notice Ch1.5(x)− Sh1.5(x) > 1
and Ch1.5(x)− Sh1.5(x) < 1 for u ∈ (0, 2π]. It is not difficult to prove that condition (H5)–(H7)
are satisfied. Hence, as a consequence of Theorem 4, the Cauchy problem (13) and (14) has a unique
c[(ii)-GH]-differentiable solution. The numerical solutions with respect to the q = 1.5 level are
provided by utilizing the Adams–Moultan predictor–corrector method.

Furthermore, for ε > 1, assume that the c[(ii)-GH]-differentiable fuzzy-valued function
u : (0, 2π]→ E1 satisfies condition (H8) and

D(c
0D1.5

t u(t), u(t) + t2 + t + 4) 6 εt, t ∈ (0, 2π]

Assuming ζ(t) = t, t ∈ [0, 2π] and cζ = 4
√

2π
3 E1.5,1.5(

√
2π), this means that condition

(H9) satisfied. Hence, Equation (13) is Eq–Ulam–Hyers–Rassias stable with respect to Theorem 8.

6. Graphical Presentation

We used the Adams–Bashforth–Moulton technique to acquire the numerical solution
for this fractional differential equation for graphical representation of the solution of
the problem presented in Equations (7), (9), (11) and (13). For simulation, the modified
predictor–corrector scheme is used to examine the effect and contribution of the time-
delayed factor. A graphical representation of the solution with different variations of
the time delay factor, as well as other parameters, is made to check and demonstrate the
stability of the model under consideration. We are able to see the Ulam–Hyers stability of
varied accuracies and delays from the numerical data. The system will attain Ulam–Hyers
stability more quickly with greater accuracy. This is also true when the number of delays
increases. Figures 1–4 show the stability of the system (7), (9), (11) and (13) for various time
delays and fractional derivatives.

t

0 1 2 3

u

0

40

80

120
Solution of Example 1

F=0

F=1

F=2

Figure 1. Solution of Problems (7) and (8).
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t

0 1 2 3

u

0

5

10

15
Solution of Example 2

u
0
=0

u
0
=1

u
0
=2

Figure 2. Solution of Problems (9) and (10).

t

0 1 2 3

u

0

20

40

60

80

100
Solution of Example 3

F=0

F=1

F=2

Figure 3. Solution of Problems (11) and (12).

t

0 1 2 3

u

0

40

80

120
Solution of Example 4

u
0
 =1

u
0
 =2

u
0
 =3

Figure 4. Solution of Problems (13) and (14).
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7. Conclusions

This paper aims to define the uniqueness and existence of a group of nonlinear
fuzzy fractional differential equation of solutions to the Cauchy problem. Moreover, Eq–
Ulam-type stability of Equation (1) is observed by applying the inequality technique. We
obtain uniqueness and existence results with the help of nonlocal conditions of the Caputo
derivative. Moreover, future work may include broadening the idea indicated in this
task and familiarizing observability, and generalize other tasks. Ulam-type stability of
fuzzy fractional differential equations, similar to crisp situations for approximate solutions,
provides a reliable theoretical basis. This a fruitful area with wide research projects, and
it can bring about countless applications and theories. We have decided to devote much
attention to this area. Furthermore, it is fruitful to investigate stability problems in a
classical sense for the fuzzy fractional differential equation.
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