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Abstract: Numerical methods for spectral space-fractional elliptic equations are studied. The bound-
ary value problem is defined in a bounded domain of general geometry, Ω ⊂ Rd, d ∈ {1, 2, 3}.
Assuming that the finite difference method (FDM) or the finite element method (FEM) is applied
for discretization in space, the approximate solution is described by the system of linear algebraic
equations Aαu = f, α ∈ (0, 1). Although matrix A ∈ RN×N is sparse, symmetric and positive definite
(SPD), matrix Aα is dense. The recent achievements in the field are determined by methods that
reduce the original non-local problem to solving k auxiliary linear systems with sparse SPD matrices
that can be expressed as positive diagonal perturbations of A. The present study is in the spirit of
the BURA method, based on the best uniform rational approximation rα,k(t) of degree k of tα in the
interval [0, 1]. The introduced additive BURA-AR and multiplicative BURA-MR methods follow the
observation that the matrices of part of the auxiliary systems possess very different properties. As
a result, solution methods with substantially improved computational complexity are developed.
In this paper, we present new theoretical characterizations of the BURA parameters, which gives
a theoretical justification for the new methods. The theoretical estimates are supported by a set of
representative numerical tests. The new theoretical and experimental results raise the question of
whether the almost optimal estimate of the computational complexity of the BURA method in the
form O(N log2 N) can be improved.

Keywords: fractional elliptic equations; BURA method; computational complexity

1. Introduction

The basic assumption about the fractional diffusion phenomenon is that the Brownian
motion hypothesis is violated. In the case of isotropic homogeneous media, such processes
are described by the fractional Laplacian. A natural and easy-to-comprehend presentation
of fractional Laplacian in the whole space Rd, d = 1, 2, 3 can be derived through the Fourier
transform. Serious (not only computational) challenges appear when the equation is posed
in a bounded domain Ω, equipped with the correct boundary conditions, and the related
boundary value problem is considered. There exist at least two different and not equivalent
definitions of fractional Laplacian [1,2]. They follow the spectral and the Riesz formulations,
respectively. Some recent comparison results between those two approaches are presented
in [3], where the difference of the asymptotes of boundary layers is analyzed in detail.

In this paper, we consider the spectral fractional elliptic equation with power α ∈ (0, 1),
which is in the form

Aαu(x) = f (x), (1)
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where A is a self-adjoint elliptic operator in Ω, satisfying homogeneous Dirichlet bound-
ary conditions. The non-local operator Aα is defined via the spectral decomposition of
A, namely

Aαu =
∞

∑
j=1

λα
j (u, ψj)ψj, (2)

where λj > 0 are the eigenvalues, respectively, ψj are the corresponding normalized
eigenfunctions of A, and (...) is the L2 inner product.

Let ωh be a uniform rectangular mesh, and the finite difference method (FDM) using
a standard (2d + 1)-stencil is applied for approximating the operator A . Then, the FDM
discretization of (1) leads to a system of linear algebraic equations with respect to the mesh
functions u and f in the form

Aαu = f. (3)

Here, A ∈ RN×N is a sparse, symmetric and positive definite (SPD) matrix, and

Aαu =
N

∑
j=1

λα
j,h(u, Ψj,h)Ψj,h. (4)

As in the continuous case, {λj,h}N
j=1 is the spectrum of A, and the eigenvectors Ψj,h

are normalized with respect to the Euclidean dot product (...). Similar construction is
applicable when the finite element method (FEM), using a quasi uniform triangulation
Th, is applied. In this case, A = M−1K, where K and M are the FEM stiffness and mass
matrices, respectively, and A is SPD with respect to the scalar product generated by the
mass matrix. In what follows, we assume that linear finite elements are used.

The recent achievements in the numerical solution of spectral fractional elliptic equa-
tions are determined by the class of methods that are applicable to multidimensional
domains Ω of general geometry; see [4,5], the references therein, as well as the most recent
paper [6]. Although there are several rather different approaches there, all the obtained
algorithms reduce the original non-local problem to solving k auxiliary linear systems with
sparse SPD matrices that can be expressed as some diagonal perturbations of A in the form
A− diI, di < 0, i = 1, . . . k. Thus, all these methods can be interpreted as certain rational
approximations of degree k [4,7], i.e., A−α ≈ r̃α,k(A). In this context, the advantages of the
BURA method [4,5,8,9] follow directly by its definition, as being the best uniform rational
approximation rα,k of degree k for tα in [0, 1].

Introducing the BURA method [9], the modified Remez algorithm was applied to
derive rα,k. However, it faces serious difficulties regarding the computational stability for
larger k and smaller α. The results obtained in the last few years largely overcome this prob-
lem. For example, in [7], the Chebfun implementation of the adaptive Antoulas-Anderson
(AAA) algorithm is applied, where the representation of the rational approximant in
barycentric form and greedy selection of the support points is used to approximate z−α

for z ∈ [λ1,h, λN,h]. Further progress in this direction has been made in [10] (see [11] for
the related software implementation). The algorithm (BRASIL) is based on the introduced
barycentric rational interpolation. The new algorithms and software tools for stable com-
putation of best uniform rational approximations for larger degrees k provide promising
opportunities with respect to further expansions of the application of the BURA technology
and its better understanding and interpretation.

The next four publications [12–15] are in the spirit of further development of methods
based on best uniform rational approximations.

Solving time-fractional differential equations is considered in [13], where the spectrum
of the fractional Laplace kernel is approximated with a rational function, applying the
AAA algorithm. Stability and convergence properties of the proposed numerical scheme
are studied. Moreover, the developed algorithm is efficiently applied to a time-fractional
Cahn–Hilliard problem.
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A class of Reduced Basis Methods (RBM) is studied in [12]. Based on the developed
theory, the equivalence between RBM and Rational Krylov Methods (RKM) is analyzed
in [14]. Then a unified RKM framework for the spectral fractional in space and fractional
in time problems is proposed in [15].

The methods discussed above have a strong impact on the development of efficient
solution methods for fractional diffusion problems beyond the scalar elliptic case (see,
e.g., [4]). Such results are presented in the more recent papers [16,17], where nonlinear and
time-dependent fractional diffusion-in-space problems are considered, respectively. In this
spirit, the results are also presented in [18], where a tensor numerical method for optimal
control problems constrained by a fractional elliptic operator is developed.

In many studies, the needed degree k for obtaining the targeted accuracy of r̃α,k(A) is
considered as a measure for the computational efficiency of the method. This holds true
under the assumption that the complexity of the method is O(kN). In the case of a large
scale unstructured matrix A, this means that some iterative method of optimal complexity
O(N) is used for solving the auxiliary systems. Obviously, these auxiliary systems possess
very different properties. More recently [19], it was found that for larger k, part of the
coefficients −di can be extremely large. This observation motivates the proposed reduced
sum modification of the additive BURA method, called BURA-AR.

In this paper, we present new theoretical characterizations of the BURA parameters,
which gives theoretical justification of the BURA-AR method and the newly proposed
reduced product multiplicative BURA-MR method. In this way, a significant improve-
ment in computational complexity is achieved. The presented numerical results can be
used as direct practical receipts for optimizing the computational complexity, depending
on the fractional power α. The new theoretical and experimental results raise the ques-
tion of whether the current state-of-the-art almost-optimal estimate of the computational
complexity of the BURA method in the form O(N(log N)2) can be improved.

The rest of the paper is organized as follows. Some basic definitions, error esti-
mates, and additive and multiplicative representations of the BURA algorithm are given
in Section 2. BURA’s stabilized calculations for larger k are discussed in the next section.
It includes a comparative analysis of the theoretical error estimates and the accuracy of
BURA, computed using the BRASIL software. Important theoretical results are presented
in Section 4. The obtained characterization of the BURA parameters includes interlacing
inequalities and asymptotic cluster analysis. The BURA-AR and BURA-MR methods are
introduced in the next section. It is shown how to optimize the new parameter l in order to
obtain the best computational complexity for a given target accuracy and given a priori
estimates of the extreme eigenvalues λ1,h and λN,h. The numerical results presented in
Section 6 confirm the efficiency of the developed computational technology. The considered
large-scale 3D numerical tests illustrate the influence of the fractional power α depending
on the smoothness of the right-hand side f (x). Brief concluding remarks are given at
the end.

2. The BURA Method

The abbreviation BURA stands for best uniform rational approximation. Let us
consider the min-max problem: find rα,k ∈ R(k, k) such that

max
t∈[0,1]

|tα − rα,k(t)| = min
rk(t)∈R(k,k)

max
t∈[0,1]

|tα − rk(t)|, α ∈ (0, 1),

where rk(t) = Pk(t)/Qk(t), Pk and Qk are polynomials of degree k. Then the error Eα,k of
the k-BURA element rα,k is defined as

Eα,k := max
t∈[0,1]

|tα − rα,k(t)|. (5)
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A sharp estimate of Eα,k is derived in [20]:

Eα,k = 4α+1 sin(απ)e−2π
√

αk. (6)

Following [5] we introduce the approximation of A−α in the form

A−α ≈ λ−α
1,h rα,k(λ1,hA−1),

and then
uk = λ−α

1,h rα,k(λ1,hA−1)f, (7)

where uk is the BURA numerical solution of the linear algebraic system (3). In other words,
uk is the BURA approximation of the solution u(x) of the fractional elliptic Equation (1).

The following error estimate of the BURA method holds true.

Property 1 (see [5] p. 19). Let Ω ⊂ R2, and let the lumped mass linear finite elements for
discretization in space be used. Then

‖A−α f − uh,k‖L2 ≤ C(h2α + h1+γ)‖ f ‖H1+γ(Ω) + λ−α
1,h Eα,k‖ f ‖L2 , (8)

and therefore
‖A−α f − uh,k‖L2 ≤ C(h2α + h1+γ + e−2π

√
kα)‖ f ‖H1+γ(Ω), (9)

with γ > 0, and C independent of h and k. Here uh,k is the FEM function corresponding to the
BURA approximation uk.

Remark 1. The equivalence of the lumped linear FEM and FDM discretizations on uniform
rectangle meshes allows obtaining analogues of the error estimates (9)–(11) for the case of the finite
difference method.

As noted in [5], for Ω ⊂ Rd, d = 1, 3, the estimates (8) and (9) remain valid provided
that 1 + γ is replaced by d/2 + γ. In this way, in the more interesting three-dimensional
case, one can obtain the error bounds

‖A−α f − uh,k‖L2 ≤ C(h2α + h3/2+γ)‖ f ‖H3/2+γ(Ω) + λ−α
1,h Eα,k‖ f ‖L2 , (10)

that is
‖A−α f − uh,k‖L2 ≤ C(h2α + h3/2+γ + e−2π

√
kα)‖ f ‖H3/2+γ(Ω), (11)

where Ω ⊂ R3.
An additive or multiplicative representation of the rational function rα,k(1/z) can be

used for implementation of the BURA method. Till now, the first one is preferred, but in
this paper we will analyze both of them independently. The additive representation relies
on the partial fraction decomposition of rα,k, while the multiplicative one deals with the
factorization of rα,k:

r̃α,k(z) := rα,k(1/z) = c̃0 +
k

∑
i=1

c̃i

z− d̃i
= c̃0

k

∏
i=1

z− ξ̃i

z− d̃i
, (12)

where c̃i > 0 and d̃i, ξ̃i < 0. In these ways, the BURA method reads as

uk = λ−α
1,h

[
c̃0I+

k

∑
i=1

(λ1,h c̃i)(A− λ1,hd̃iI)−1

]
f,

uk = λ−α
1,h c̃0

k

∏
i=1

[
(A− λ1,h ξ̃iI)(A− λ1,hd̃iI)−1

]
f.

(13)
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Thus, the BURA method for numerical solution of the fractional differential Equation (1)
requires the solving of k auxiliary linear systems with sparse SPD matrices, which are
positive diagonal shifts of the FEM/FDM matrix A.

The unified view of the methods for solving Equation (1) as a rational approximation [4,7]
leads to a general understanding of the degree k as a measure for computational efficiency.
Thus, for the computational complexity of the BURA method, we accept that the following
asymptotic estimate holds true:

N BURA
α,k = O(kN). (14)

This is valid if a method with optimal computational complexity is used to solve the
auxiliary linear systems that appear in (13). In the multidimensional case, this means
that such an iterative solver is applied. In our numerical tests, we used the Boomer-
AMG implementation from HYPRE [21] of the algebraic multigrid preconditioner in the
PCG framework.

The further analysis is based on the error estimates (9)–(11). From there, choosing
properly the mesh parameters h and the BURA order k, the contributions of the discretiza-
tion and the BURA approximation to the total error are balanced. In this way, the following
almost optimal computational complexity of the BURA algorithms is obtained

N BURA
α,k = O(N(log N)2). (15)

Improving the computational efficiency of the BURA method is the central focus of
this paper. The analysis of the BURA parameters, and in particular of the coefficients d̃i,
determining the diagonal shifts of A in (13), is behind the developed approach.

3. BURA: Stabilized Computations for Large k

In [4], a modified Remez algorithm (see [22]) was used for the computation of the
BURA element of a degree up to ten. This algorithm is very time consuming and because
of the difficulties related to the computational stability for large k’s in [19], we used the Best
Rational Approximation by Successive Interval Length (BRASIL) [11] to get the BURA of
degree 85. Here, we computed the error of the rational approximation of the function tα in
the interval [0, 1] obtained using the BRASIL software version 1.2.1. We used the following
options in baryrat.brasil:

tol = 2−52 convergence criterion tolerance;
npi = −30 30 iterations of golden section search per interval;
maxiter =10,000 the maximum number of iterations.

The BRASIL algorithm is based on a barycentric representation of the rational approxima-
tion of the form

r(BR)
α,k (t) =

∑k
i=0

wi
t−ti

fi

∑k
i=0

wi
t−ti

.

In order to obtain the coefficients of the simple additive representation (12), we first find the
roots {ξi}k

i=1 and the poles {di}k
i=1 of the above barycentric representation. This is already

implemented in the baryrat package by solving a corresponding eigenvalue problem using
arithmetical precision of 100 decimal places (provided by the mpmath Python package).
Since we are interested in r̃α,k(z) = rα,k(z−1) our roots and poles will be {ξ̃i = ξ−1

i }
k
i=1 and

{d̃i = d−1
i }

k
i=1, respectively. Therefore, we can straightforwardly compute d̃i. To find the

values of the c̃i coefficients in (12), we then solve the following linear system
1 (1− d̃1)

−1 · · · (1− d̃k)
−1

1 (ξ̃1 − d̃1)
−1 · · · (ξ̃1 − d̃k)

−1

...
...

. . .
...

1 (ξ̃k − d̃1)
−1 · · · (ξ̃k − d̃k)

−1




c̃0
c̃1
...

c̃k

 =


r(BR)

α,k (1)
0
...
0

.
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For the solution of the above linear system, we have also used the mpmath package with a
precision of 100 decimal places.

Let us also note that here we are using a modified convergence criterion for the BRASIL
algorithm to ensure that the algorithm converges for large values of k without tinkering
with the tolerance. The BRASIL algorithm first computes the errors

δi = max
t∈(ti−1,ti)

|tα − r(BR)
α,k (t)|

for each interval between the interpolation points. Convergence is then decided, based on
comparing the deviation of the errors in each interval to the tolerance

maxi δi
mini δi

− 1 < ε.

The issue with the above is that ε has to be changed for different values of k. When the
errors become very small, the arithmetical error in computing the deviation becomes
significant and the algorithm stops converging for small values of ε. Instead of only looking
at the deviation, we are checking the product of the maximum error and the deviation

max
i

δi

(
maxi δi
mini δi

− 1
)
≤ 2−52.

The idea is to automatically get as close to the BURA as double-precision floating point
arithmetics would allow.

The errors for the values of α = 1
4 , 1

2 , 3
4 are presented in Figure 1. We compare these

errors with the theoretical estimate (6) of the BURA error from [20]. It is easy to see that the
computed errors are very close to the theoretical estimate when the estimate is greater than
the double-precision accuracy. The comparison shows that the theoretical estimate of the
error is sharp.
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4. Theoretical Characterizations of the Parameters of BURA
4.1. In the Unit Interval t ∈ [0, 1]

The multiplicative and the additive representations of rα,k(t) are the following:

rα,k(t) = c0

k

∏
i=1

t− ξi
t− di

= c0 +
k

∑
i=1

ci
t− di

. (16)

Note that due to limt→∞ rα,k(t) = c0, the coefficients c0 in both formulas above coincide.

Theorem 1 (see [20,23]). For arbitrary α ∈ (0, 1) and k ∈ N the following holds true:

(a) The zeros and the poles of rα,k are real, negative, and interlacing:

0 > ξ1 > d1 > ξ2 > d2 > · · · > ξk > dk > −∞ (17)

(b) The error function εα,k(t) := tα − rα,k(t) has exactly 2k + 2 extreme points η1, η2, . . . , η2k+2
on [0, 1], such that

0 = η1 < η2 < · · · < η2k+2 = 1, εα,k(ηi) = (−1)iEα,k, i = 1, . . . , 2k + 2. (18)

(c) The number of poles and zeros of rα,k on any given closed subinterval [a, b] ⊆ R<0 grows like√
k as k→ ∞, i.e., for all −∞ ≤ a ≤ b < 0

lim
k→∞

1√
k

card{ξi ∈ [a, b]} = lim
k→∞

1√
k

card{di ∈ [a, b]} =
√

α

π

∫ |a|
|b|

dt
t
√

1 + t
. (19)

(d) The number of extreme points of εα,k on any given closed subinterval [a, b] ⊆ (0, 1] grows like√
k as k→ ∞, i.e., for all 0 < a ≤ b ≤ 1

lim
k→∞

1√
k

card{ηi ∈ [a, b]} = 2
√

α

π

∫ b

a

dt
t
√

1− t
. (20)

Lemma 1. Let α ∈ (0, 1). As k→ ∞, almost all poles and zeros of rα,k, as well as extreme points
of εα,k tend to the origin.

Proof. Fix m ∈ N. We will show that for every ε > 0 there exists a K = K(ε), such that for
all k > K we have −ε < dm < ξm < 0. The result for the extreme points is analogous.

Indeed, consider an arbitrary ε > 0. Applying (19) with a = −∞ and b = −ε, we
derive that there exists a δ = δ(ε) > 0 and a K′ = K′(δ), such that for all k > K′

1√
k

card{di ∈ (−∞,−ε]} ≤
√

α

π

∫ +∞

ε

dt
t
√

1 + t
+ ε

<

√
α

π

∫ +∞

ε
t−3/2dt + ε =

(
2
√

α

π
√

ε
+ ε

)
.

Thus, for all k > K′

card{di ∈ (−ε, 0)} = k− card{di ∈ (−∞,−ε]} ≥ k−
√

k
(

2
√

α

π
√

ε
+ ε

)
. (21)

Since

lim
k→∞

k−
√

k
(

2
√

α

π
√

ε
+ ε

)
= +∞ ∃ K′′ : k−

√
k
(

2
√

α

π
√

ε
+ ε

)
> m, ∀k > K′′.

Taking K = max(K′, K′′), combining (21) with (17) completes the proof.
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Remark 2. Unlike (6), the integral constants in (19) and (20) are not sharp for smaller k, meaning
that K � 1 in the proof of Lemma 1. Therefore, (21) is not a reliable approximant for practical
applications, where k = O(10).

Lemma 2. Let α ∈ (0, 1), k ∈ N. Consider the additive representation of rα,k from (16). Then

0 <
ci
di

< 2(−di)
α, ∀i : di ≥ −1. (22)

Proof. From (16) we have

c0

k

∏
i=1

t− ξi
t− di

= c0 +
k

∑
i=1

ci
t− di

=
c0 ∏k

i=1(t− di) + ∑k
i=1 ci ∏j 6=i(t− dj)

∏k
i=1(t− di)

.

Fix i ∈ {1, . . . , k}. Comparing the numerators of the two rational functions at t = di we
derive

ci = c0(di − ξi)∏
j 6=i

di − ξ j

di − dj
. (23)

From (17) (di − ξ j)/(di − dj) > 0, ∀j 6= i, and di − ξi < 0. Further, rα,k(t) > 0 for all t > ξ1,
thus c0 = limt→∞ rα,k(t) > 0. Therefore, ci < 0, thus ci/di > 0 and the lower bound of (22)
holds true for all i = 1, . . . , k.

According to (18) εα,k(0) = −Eα,k, meaning that

Eα,k = rα,k(0) = c0 −
k

∑
i=1

ci
di

⇒ c0 = Eα,k +
k

∑
i=1

ci
di

.

Therefore the additive representation of rα,k can be rewritten in the form

rα,k(t) = Eα,k +
k

∑
i=1

(
ci
di

+
ci

t− di

)
= Eα,k +

k

∑
i=1

ci
di

[
t

t− di

]
. (24)

Let i ∈ {1, . . . , k} be such that di ≥ −1. Then −di ∈ (0, 1], thus |εα,k(−di)| ≤ Eα,k.
In particular εα,k(−di) ≥ −Eα,k, which is equivalent to

(−di)
α ≥ rα,k(−di)− Eα,k =

1
2

ci
di

+ ∑
j 6=i

cj

dj

[
di

di + dj

]
>

1
2

ci
di

.

This provides the upper bound for (22). The proof is completed.

Remark 3. All conducted numerical experiments indicate that the power α in the upper bound
of (22) is the asymptotic behavior for i = 1 as k→ ∞. Furthermore, the difference 2(−di)

α − ci
di

monotonically increases with i, meaning that the sharpness of the estimate decreases.

Corollary 1. Let α ∈ (0, 1), k ∈ N. Consider the multiplicative representation of rα,k from
(16). Then

0 < c0(ξi − di) < 2(−di)
1+α ∏

j>i

di − dj

di − ξ j
, ∀i : di ≥ −1.
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Proof. Again, the lower bound holds true for all i = 1, . . . , k, due to Theorem 1. For the
upper bound, we combine (23) and (22) to derive

2(−di)
α > c0

ξi − di
−di

∏
j 6=i

di − ξ j

di − dj
⇒ c0(ξi − di) < 2(−di)

1+α ∏
j 6=i

di − dj

di − ξ j

< 2(−di)
1+α ∏

j>i

di − dj

di − ξ j
.

For the last inequality, we apply (17) and conclude that

0 <
di − dj

di − ξ j
< 1, ∀ j < i.

4.2. In the Semi-Infinite Interval z ∈ [1,+∞)

r̃α,k(z) := rα,k(1/z) = c̃0

k

∏
i=1

z− ξ̃i

z− d̃i
= c̃0 +

k

∑
i=1

c̃i

z− d̃i
. (25)

The following relations between the parameters hold true:

d̃i =
1
di

; ξ̃i =
1
ξi

; η̃i =
1
ηi

; c̃i = −
ci

d2
i

; c̃0 = Eα,k, i = 1, . . . , k. (26)

The last identity is due to c̃0 = limz→∞ r̃α,k(z) = rα,k(0), while the others are straightforward.
According to Section 4.1 and (26), we have the following properties of the parameters,

related to r̃α,k for all choices of α ∈ (0, 1):

0 > d̃k > ξ̃k > d̃k−1 > ξ̃k−1 > · · · > d̃1 > ξ̃1 > −∞

1 = η̃2k+2 < η̃2k+1 < · · · < η̃2 < η̃1 = +∞

lim
k→∞

d̃m = lim
k→∞

ξ̃m = −∞, lim
k→∞

η̃m = +∞, ∀m ∈ N

Furthermore c̃i > 0, ∀i = 0, 1, . . . , k;
c̃i

d̃i
= − ci

di
, ∀i = 1, . . . , k.

(27)

5. The BURA-AR and the BURA-MR Methods

In Figures 2 and 3, we illustrate the behavior of the poles d̃i of r̃α,k(z) in (25), where
α ∈ { 1

4 , 1
2 , 3

4} and k = 45, 70, respectively.
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Figure 2. The coefficients −d̃i in the rational approximation of degree 45 of z−α for the values of
α = 1

4 , 1
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4 .
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Figure 3. The coefficients −d̃i in the rational approximation of degree 70 of z−α for the values of
α = 1

4 , 1
2 .

One can see that for k = 45, the first part of the poles for α = 1
4 , 1

2 consists of extremely
large values (for α = 1

4 first nine coefficients are bigger than 1020). For k = 70 the situation
is: first 21 coefficients are bigger than 1020 for α = 1

4 and for α = 1
2 eight coefficients are

bigger than 1020. Furthermore, the asymptotic of the poles clustering towards −∞, based
on Theorem 1(c), is also well represented, as the order of the first pole for α = 1/4 is
approximately

√
1/2/

√
1/4 =

√
2 times larger than the order of the first pole for α = 1/2

and approximately
√

3/4/
√

1/4 =
√

3 times larger than the order of the first pole for
α = 3/4.

For extremely large values of −d̃i, the condition number of the matrices A− λ1,hd̃iI,
involved in (13), is practically equal to one. Of course, we do not need any preconditioning
for such well-conditioned matrices. Moreover, even solving such systems may not be the
right approach. This motivates us to investigate potential reduction on the number of linear
systems to be solved without losing BURA accuracy.

Let ` < k be chosen such that |d̃i| is very large for i = 1, . . . , `. Then we can define the
following rational approximations of z−α, both of degree k− `:

r̃A
α,k,`(z) = Eα,k −

`

∑
i=1

c̃i

d̃i
+

k

∑
i=`+1

c̃i

z− d̃i
,

r̃M
α,k,`(z) = Eα,k

`

∏
i=1

ξ̃i

d̃i

k

∏
i=`+1

z− ξ̃i

z− d̃i
.

Lemma 3. The following relations hold true for every α ∈ (0, 1), k ∈ N, and z ∈ [1, ∞):

r̃A
α,k,0(z) ≡ r̃α,k(z) ≡ r̃M

α,k,0(z); r̃A
α,k,k(z) ≡ c0 ≡ r̃M

α,k,k(z); r̃A
α,k,`(z) < r̃M

α,k,`(z),

for all intermediate values ` = 1, . . . , k− 1.

Proof. The first two relations r̃A
α,k,`(z) ≡ r̃M

α,k,`(z) for ` = 0, k are trivial. Now, let ` =

1, . . . , k− 1 be fixed. First we show that limk→∞ r̃A
α,k,`(z) < limk→∞ r̃M

α,k,`(z). Indeed, follow-
ing the notation from Section 4.1 let us define

r̄A
α,k,`(t) := c0 +

k

∑
i=`+1

ci
t− di

and r̄M
α,k,`(t) := c0

k

∏
i=`+1

t− ξi
t− di

= c0 +
k

∑
i=`+1

c̄i
t− di

.
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Then c̃A
0 := limz→∞ r̃A

α,k,`(z) = r̄A
α,k,`(0), while c̃M

0 := limz→∞ r̃M
α,k,`(z) = r̄M

α,k,`(0). Applying
(23), we obtain

ci = c̄i

`

∏
j=1

di − ξ j

di − dj
< c̄i, ∀i = `+ 1, . . . , k,

since ci, c̄i < 0 and (di − ξ j)/(di − dj) > 1 for j < i due to (17). Therefore

lim
z→∞

(r̃A
α,k,`(z)− r̃M

α,k,`(z)) =
k

∑
i=l+1

c̄i − ci
di

< 0.

Next, via expressing the two functions in the form

r̃A
α,k,`(z) = c̃A

0 +
k

∑
i=`+1

c̃i

z− d̃i
, respectively r̃M

α,k,`(z) = c̃M
0 +

k

∑
i=`+1

c̃M
i

z− d̃i
,

and applying (23) one more time, we conclude that for all 0 < ` < k and every i =
`+ 1, . . . , k

c̃i =

(
Eα,k

c̃M
0

`

∏
j=1

d̃i − ξ̃ j

d̃i − d̃j

)
c̃M

i =
`

∏
j=1

(
d̃j

ξ̃ j

d̃i − ξ̃ j

d̃i − d̃j

)
c̃M

i > c̃M
i ,

due to (27) and c̃i, c̃M
i > 0. Finally, for the function

e(z) := r̃A
α,k,`(z)− r̃M

α,k,`(z) = c̃A
0 − c̃M

0 +
k

∑
i=`+1

c̃i − c̃M
i

z− d̃i
,

we know that

e(0) = c0 − c0 = 0; e′(z) = −
k

∑
i=`+1

c̃i − c̃M
i

(z− d̃i)2
< 0 ⇒ e(z) < 0, z > 0.

The proof is completed.

Let δ < 1 be given. We can then introduce the error indicators

ẼA,δ
α,k,` = max

z∈[1,δ−1]
|z−α − r̃A

α,k,`(z)|, ẼM,δ
α,k,` = max

z∈[1,δ−1]
|z−α − r̃M

α,k,`(z)|.

Both functions r̃A
α,k,` and r̃M

α,k,` share the same poles and the error analysis performed later in
this section indicates that both reduction procedures could be used in practical applications.
They do not only stabilize the numerical computations but also improve the efficiency of
the BURA solver.

Motivated by the above observation, we replace the r̃α,k(A) in the BURA method for
solving the spectral fractional elliptic Equation (1) by either r̃A

α,k,`(A) or r̃M
α,k,`(A) and obtain

the following BURA-AR and BURA-MR formulations

uA
k,` = λ−α

1,h

[(
Eα,k −

`

∑
i=1

c̃i

d̃i

)
I+

k

∑
i=`+1

(λ1,h c̃i)(A− λ1,hd̃iI)−1

]
f;

uM
k,` = λ−α

1,h Eα,k

`

∏
i=1

ξ̃i

d̃i

k

∏
i=`+1

[
(A− λ1,h ξ̃iI)(A− λ1,hd̃iI)−1

]
f.

(28)

Using the BURA-AR and BURA-MR methods, we reduce the number of linear systems
that are to be solved from k to k− `, and thus we decrease the computational complexity of
the method.
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5.1. BURA-AR Error Analysis

Throughout this section, let δ, α, and k be fixed. We are interested in analyzing the
error indicator ẼA,δ

α,k,`. By triangle inequality, we have

ẼA,δ
α,k,` ≤ max

z∈[1,δ−1]

(
|z−α − r̃α,k(z)|+ |r̃A

α,k,`(z)− r̃α,k(z)|
)
≤ Eα,k + max

z∈[1,δ−1]
|r̃A

α,k,`(z)− r̃α,k(z)|,

so we need to estimate the second term. Applying (27) and Lemma 2, we derive

r̃A
α,k,`(z)− r̃α,k(z) =

l

∑
i=1

[
− c̃i

d̃i
− c̃i

z− d̃i

]
=

`

∑
i=1
− c̃i

d̃i

z
z− d̃i

=
`

∑
i=1

ci
di

diz
diz− 1

< 2
`

∑
i=1

|di|1+αz
|di|z + 1

< 2
`

∑
i=1
|di|1+αz < 2`|d`|1+αz.

Hence, we proved the following theorem:

Theorem 2. Let δ, α ∈ (0, 1) and k ∈ N. If ` ∈ N, such that |d`| ≤ 1, then

ẼA,δ
α,k,` ≤ Eα,k + 2`|d`|1+αδ−1.

As a byproduct, we also derived that whenever δ < η2k+1

Eα,k = ẼA,δ
α,k,0 < ẼA,δ

α,k,` < ẼA,δ
α,k,`′ < ẼA,δ

α,k,k = c0 − δα, ∀ 0 < ` < `′ < k; (29)

ẼA,δ
α,k,` < ẼA,δ′

α,k,`′ , ∀ 0 < δ′ < δ < η̃2k+1,

meaning that for fixed α and k, the error indicator ẼA,δ
α,k,` is a monotonically increasing

function with respect to ` and a monotonically decreasing function with respect to δ.
The proof relies on the observation that r̃A

α,k,`′(z) − r̃A
α,k,`(z) > 0, z > 0, proven in an

identical way as r̃A
α,k,`(z)− r̃α,k(z) > 0 above, together with (27) and (18) that imply

ε̃A
α,k,`(η̃2k+1)− Eα,k = ε̃A

α,k,`(η̃2k+1)− ε̃α,k(η̃2k+1) = r̃α,k(η̃2k+1)− r̃A
α,k,`(η̃2k+1) > 0.

Note that while dlog10(2`|d`|1+αδ−1)e ≤ blog10(Eα,k)c, the reduction error between
the BURA-AR method and the original BURA method is dominated by the BURA approx-
imation error Eα,k, thus the reduction process does not affect the overall accuracy of the
solver in any way. In practice, we observe that due to the large difference in the orders of
|di| for small i, the multiplier l can be omitted and

`

∑
i=1
|di|1+α ∼ |d`|1+α.

Corollary 2. Let u be the solution of the linear algebraic system (3) and uA
k,` be the additive reduced

BURA solution, corresponding to (28) with |d`| ≤ 1. Then∥∥∥u− uA
k,`

∥∥∥
2
<

(
Eα,k + 2`|d`|1+α λN,h

λ1,h

)
‖f‖2.

Example 1. Consider the fractional Laplacian problem with homogeneous Dirichlet boundary
conditions in the d dimensional unit cube, d ∈ {1, 2, 3}. Take the finite difference or lumped finite
element discretization of the problem on a uniform mesh with mesh-size h. It is well-known that the
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condition number of the matrix A generated in this way for the corresponding algebraic Equation (3)
behaves like

κ(A) =
λN,h

λ1,h
≈ h−2,

independent of the space dimensionality of the problem. According to (8), in order to balance
the discretization and the approximation BURA error, there is no practical point to take larger k
than the one that guarantees Eα,k = h−2. Now, in order to balance the reduction error with the
approximation one, applying Corollary 2, we conclude that all systems, corresponding to diagonal
shifts d̃i, such that

|d̃i| & h−
4

1+α , ∀α ∈ (0, 1), (30)

can be reduced in the numerical computation. Here, following (27), we used that d̃i = 1/di.
In particular, for α = 0.25 and h = 10−2, 10−3, 10−4 we can reduce all systems corresponding to
diagonal shifts that are higher or equal to 107, 1010, 1013, respectively. The results are summarized
in Table 1. We observe that the BURA-AR method can reduce more than 1/3 of the systems to
be solved without influencing the overall BURA error order when α = 0.25. As α increases, the
impact of BURA-AR on the computational efficiency decreases. Thus, for the considered example,
the results in Table 1 show that for α = 0.75, the recommended reduction is ` = 0. This is in
agreement with the significantly higher accuracy of BURA for α = 0.75, see Figure 1. In other
words, smaller k is needed to ensure a certain accuracy, and then a smaller reduction is applicable.

Table 1. Reduction possibilities for the homogeneous fractional Laplacian problem in the vicinity of
the theoretical estimate (30).

α h k = min{s : Eα,s < h2} ` = #{i : |d̃i| & h−
4

1+α }

0.25

10−2 12 4
10−3 24 9
10−4 40 15
10−5 61 23

0.5

10−2 7 1
10−3 13 2
10−4 21 2
10−5 32 3

0.75

10−2 4 0
10−3 9 0
10−4 14 0
10−5 21 0

Furthermore, for every α ∈ (0, 1), we can reduce all systems with diagonal shifts larger than
1016, as long as h ≥ 10−4, which usually holds true in practical applications.

5.2. BURA-MR Error Analysis

Again, let δ, α, and k be fixed. We are interested in analyzing the error indicator ẼM,δ
α,k,`.

By triangle inequality, we have

ẼM,δ
α,k,` ≤ Eα,k +

l−1

∑
s=0

max
z∈[1,δ−1]

|r̃M
α,k,s+1(z)− r̃M

α,k,s(z)|,

where r̃M
α,k,0 ≡ r̃α,k. Since

r̃M
α,k,s+1(z)− r̃M

α,k,s(z) = r̃M
α,k,s(z)

[(
ξ̃s+1

d̃s+1
− 1

)
z

z− ξ̃s+1

]
> 0,
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ξ̃s+1/d̃s+1 − 1 = ds+1/ξs+1 − 1 > 0 (see (27)), and 1/(z− ξ̃s+1) is strictly monotonically
increasing for z ∈ [1, ∞) we conclude that

max
z∈[1,δ−1]

|r̃M
α,k,s+1(z)− r̃M

α,k,s(z)| < max
z∈[1,δ−1]

zr̃M
α,k,s(z)

(
ds+1 − ξs+1

ξs+1

ξs+1

ξ̃s+1 − 1

)
< max

z∈[1,δ−1]
zr̃M

α,k,k(z)(ξs+1 − ds+1) = δ−1c0(ξs+1 − ds+1)

< 2 ∏
j>s

ds − dj

ds − ξ j
|ds|1+αδ−1 = 2C(k, s)|ds|1+αδ−1,

where the constants

C(k, s) ≤ C(k, 1) =
k

∏
j=2

d1 − dj

d1 − ξ j
< ∞,

are uniformly bounded for fixed k. Moreover, (19) suggests that the zeros and the poles of
rα,k(t) are grouped into pairs, meaning that |ds − ξs+1| > ξs+1 − ds+1, thus

ds − dj

ds − ξ j
≤ ds − ds+1

ds − ξs+1
<

(2ξs+1 − ds+1)− ds+1

(2ξs+1 − ds+1)− ξs+1
= 2,

and C(k, s) < 2k−s. Analogously to Section 5.1, we proved the following theorem:

Theorem 3. Let δ, α ∈ (0, 1) and k ∈ N. If ` ∈ N, such that |d`| ≤ 1, then

ẼM,δ
α,k,` ≤ Eα,k + 2`C|d`|1+αδ−1,

where the constant C < +∞ depends solely on k.
Again, as a byproduct, we also derived that whenever δ < η2k+1

Eα,k = ẼM,δ
α,k,0 < ẼM,δ

α,k,` < ẼM,δ
α,k,`′ < ẼM,δ

α,k,k = c0 − δα, ∀ 0 < ` < `′ < k; (31)

ẼM,δ
α,k,` < ẼM,δ′

α,k,`′ , ∀ 0 < δ′ < δ < η̃2k+1,

meaning that for fixed α and k, the error indicator ẼM,δ
α,k,` is a monotonically increasing

function with respect to ` and a monotonically decreasing function with respect to δ.

Corollary 3. Let u be the solution of the linear algebraic system (3) and uM
k,` be the multiplicative

reduced BURA solution, corresponding to (28) with |d`| ≤ 1. Then∥∥∥u− uM
k,`

∥∥∥
2
<

(
Eα,k + 2`C|d`|1+α λN,h

λ1,h

)
‖f‖2.

5.3. BURA-AR and BURA-MR Comparison

To summarize, the following theoretical estimates and relations were established in
Section 5:
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Theorem 4. Let α ∈ (0, 1) and k ∈ N. Consider the BURA element rα,k(t) and take arbitrary
0 < δ < η2k+1, where η2k+1 is the extreme point of εα,k(t) before 1. Then

r̃α,k(z) < r̃A
α,k,1 < r̃A

α,k,2 < · · · < r̃A
α,k,k−1 < c0

r̃α,k(z) < r̃M
α,k,1 < r̃M

α,k,2 < · · · < r̃M
α,k,k−1 < c0

r̃A
α,k,`(z) < r̃M

α,k,`(z), ∀` = 1, . . . , k− 1

Eα,k < ẼA,δ
α,k,1 < ẼA,δ

α,k,2 < · · · < ẼA,δ
α,k,k−1 < c0 − δα

Eα,k < ẼM,δ
α,k,1 < ẼM,δ

α,k,2 < · · · < ẼM,δ
α,k,k−1 < c0 − δα

ẼA,δ
α,k,`(z) < ẼM,δ

α,k,`(z), ∀` = 1, . . . , k− 1.

Therefore, from a theoretical approximating point of view, the BURA-AR method always
outperforms the BURA-MR method, giving rise to smaller errors for a fixed number
of systems to be solved. Furthermore, in the BURA-MR method, apart from the k − `
algebraic systems, there are also k− ` matrix-vector multiplications (see (28)). On top of
that, the BURA-AR method allows for parallel, independent solutions of the algebraic
systems, while the BURA-MR method is a sequential one, as the solution of the previous
system becomes the right-hand side of the next one.

However, due to the interlacing property (17) and (27), the BURA-MR method seems to
be numerically stable, independently of the value of `. Moreover, based on the conducted
numerical experiments, we observe that the difference ẼM,δ

α,k,`(z) − ẼA,δ
α,k,`(z) decays as `

increases, so from an application point of view, the two methods are equally useful. This
topic will be addressed in the next section, where various experimental data are generated
and analyzed.

6. Numerical Experiments

In this section, two classes of numerical experiments are considered. The first one
aims at numerical validation of the theoretical foundations for the error indicator ẼA,δ

α,k,`,
derived in Section 5. Therefore, the experiments are in 1D and involve numerical and visual
comparison of z−α and r̃A

α,k,`(z) in the interval z ∈ [1, δ−1). A large value for k, namely
k = 70 is considered so that the reduction benefits of BURA-AR are better illustrated. The
decreasing effect of BURA-AR when α increases has already been commented on; therefore,
the focus here is mostly on α = {0.25, 0.5}. Here, and in what follows, the case α = 0.75
and k = 45 are included for completeness. The numerical data are summarized in Table 2.

For α = 0.25, k = 70 and δ = 10−12 the accuracy remains the same for all values of
` in the interval [0, 20]. The error doubles around ` = 25 and then starts to exponentially
grow. Such a behavior perfectly agrees with Theorem 2 and experimentally confirms
that as long as |d`|1+αδ−1 - Eα,k, the reduction process does not affect the order of ẼA,δ

α,k,`.
Indeed, we have that E0.25,70 ≈ 10−11, thus for |d`| ≤ 10−23·4/5 ≤ 10−19 we should be safe.
Checking the poles of r0.25,70 we get that d` < 10−19 for ` ≤ 23, while |d`| = O(10−18) for
` = {24, 25}. For α = 1

4 and δ = 10−8 the accuracy is not changed for all values of ` in the
interval [0, 29]. Again, this corresponds to |d`| ≤ 10−19·4/5 ≤ 10−16, which holds true for
all ` ≤ 28.

For α = 0.5 and k = 70, the observations are the same. For δ = 10−12, as long as
|d`| ≤ 10−27.5·2/3 = 10−55/3, the reduction does not affect the overall accuracy. This relation
holds true for ` ≤ 9. Then |d`| = O(10−19) for ` = {10, 11} and ẼA,δ

α,k,` slowly increases.

Finally, from the moment |d`| ≥ 10−18, ẼA,δ
α,k,` starts to exponentially grow. Analogously,

for δ = 10−8, the “critical order” for the poles is 16, with |d`| = O(10−16) for ` = {15, 16},
which agrees with the corresponding numbers in Table 2.
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Table 2. The accuracy ẼA,δ
α,k,` for α = 0.25, 0.5, 0.75.

k = 70 k = 45

` α = 0.25 α = 0.5 α = 0.75

δ = 10−8 δ = 10−12 δ = 10−8 δ = 10−12 δ = 10−8 δ = 10−12

0 1.434× 10−11 1.434× 10−11 5.345× 10−16 5.346× 10−16 9.944× 10−16 9.944× 10−16

1 1.434× 10−11 1.434× 10−11 5.345× 10−16 5.346× 10−16 9.944× 10−16 9.945× 10−16

2 1.434× 10−11 1.434× 10−11 5.339× 10−16 5.346× 10−16 9.944× 10−16 1.003× 10−15

3 1.434× 10−11 1.434× 10−11 5.339× 10−16 5.346× 10−16 9.944× 10−16 1.454× 10−15

4 1.434× 10−11 1.434× 10−11 5.339× 10−16 5.346× 10−16 9.954× 10−16 2.184× 10−14

5 1.434× 10−11 1.434× 10−11 5.339× 10−16 5.346× 10−16 1.014× 10−15 4.305× 10−13

6 1.434× 10−11 1.434× 10−11 5.339× 10−16 5.346× 10−16 1.356× 10−15 5.856× 10−12

7 1.434× 10−11 1.434× 10−11 5.339× 10−16 5.346× 10−16 8.247× 10−15 5.436× 10−11

8 1.434× 10−11 1.434× 10−11 5.345× 10−16 5.346× 10−16 7.553× 10−14 3.123× 10−10

9 1.434× 10−11 1.434× 10−11 5.345× 10−16 5.346× 10−16 6.478× 10−13 1.172× 10−09

10 1.434× 10−11 1.434× 10−11 5.345× 10−16 5.354× 10−16 4.983× 10−12 3.391× 10−09

11 1.434× 10−11 1.434× 10−11 5.345× 10−16 5.410× 10−16 3.467× 10−11 8.497× 10−09

12 1.434× 10−11 1.434× 10−11 5.345× 10−16 5.805× 10−16 2.200× 10−10 1.959× 10−08

13 1.434× 10−11 1.434× 10−11 5.345× 10−16 8.361× 10−16 1.275× 10−09 4.281× 10−08

14 1.434× 10−11 1.434× 10−11 5.348× 10−16 3.319× 10−15 6.644× 10−09 8.999× 10−08

15 1.434× 10−11 1.434× 10−11 5.363× 10−16 1.933× 10−14 3.011× 10−08 3.650× 10−07

16 1.434× 10−11 1.434× 10−11 5.446× 10−16 1.045× 10−13 1.133× 10−07 3.650× 10−07

17 1.434× 10−11 1.434× 10−11 5.864× 10−16 5.352× 10−13 3.462× 10−07 7.102× 10−07

18 1.434× 10−11 1.434× 10−11 7.889× 10−16 2.613× 10−12 8.829× 10−07 1.355× 10−06

19 1.434× 10−11 1.434× 10−11 1.739× 10−15 1.221× 10−11 1.974× 10−06 2.540× 10−06

20 1.434× 10−11 1.434× 10−11 6.009× 10−15 5.480× 10−11 4.039× 10−06 4.684× 10−06

21 1.434× 10−11 1.435× 10−11 2.430× 10−14 2.364× 10−10 7.801× 10−06 8.509× 10−06

22 1.434× 10−11 1.437× 10−11 1.000× 10−13 9.802× 10−10 1.448× 10−05 1.524× 10−05

23 1.434× 10−11 1.449× 10−11 4.039× 10−12 3.882× 10−09 2.616× 10−05 2.696× 10−05

24 1.434× 10−11 1.511× 10−11 1.587× 10−12 1.446× 10−08 4.627× 10−05 4.710× 10−05

25 1.434× 10−11 2.228× 10−11 6.068× 10−12 4.916× 10−08 8.049× 10−05 8.136× 10−05

26 1.434× 10−11 5.806× 10−11 2.260× 10−11 1.461× 10−07 1.381× 10−04 1.390× 10−04

27 1.435× 10−11 2.209× 10−10 8.210× 10−11 3.683× 10−07 2.343× 10−04 2.352× 10−04

28 1.440× 10−11 9.415× 10−10 2.913× 10−10 7.929× 10−07 3.932× 10−04 3.941× 10−04

29 1.460× 10−11 4.048× 10−09 1.010× 10−09 1.509× 10−06 6.536× 10−04 6.545× 10−04

Concerning α = 0.75 and k = 45, for δ = 10−8, the accuracy is preserved for ` ≤ 4,
while for δ = 10−12, it does not affect the computational efficiency.

Figure 4 shows a 1D comparison between the behavior of BURA-AR and BURA
approximations for k = 70, α = 0.25, 0.50, and for k = 45, α = 0.75 .

It can be seen that even in the case δ = 10−10, the accuracy ẼA,δ
α,70,` < 5× 10−11 for

` ≤ 29 and ` ≤ 17 is α = 1
4 and α = 1

2 , respectively. The values ` = 29 and ` = 17
are the minimum values that guarantee that all remaining poles of r̃A

0.25,70,` and r̃A
0.5,70,`,

respectively, are within the double-precision limit |d̃`| ≤ 252 ≈ 5× 1015. The monotonically
increasing behavior of r̃A

α,k,` when ` increases, documented in Theorem 4, is well illustrated
especially on the right plots, where z ∈ [2× 108, 1010].
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Figure 4. BURA-AR errors r̃A
α,k,`(z)− z−α, z ∈ [1, 109] (left) and z ∈ [2× 108, 1010] (right), for α = 1

4 ,
k=70, ` = 0, 15, 29 (top), α = 1

2 , k=70, ` = 0, 10, 17 (middle), and α = 3
4 , k=45, ` = 0, 2, 5 (bottom).

The second class of experiments is devoted to the 3D fractional Laplace problem with
homogeneous Dirichlet boundary conditions in the unit cube [0, 1]3. Uniform mesh with
mesh size h is considered, and matrix A in (3) is generated via lumped mass linear finite
elements discretization.

In the implementation of the additive version of BURA, we use equivalent represen-
tation of (13) in the spirit of (24) allowing us to solve auxiliary systems with sparse SPD
matrices only:

uk = λ−α
1,h

(
c̃0 −

k

∑
i=1

c̃i

d̃i

)
f +

[
k

∑
i=1

(
λ−α

1,h
c̃i

d̃i

)
K(K− λ1,hd̃iM̃)−1f

]
,

where K is the stiffness matrix and M̃ is the lumped mass matrix. Then, the corresponding
reduced additive BURA-AR algorithm reads as

uA
k,` = λ−α

1,h

(
c̃0 −

k

∑
i=1

c̃i

d̃i

)
f +

[
k

∑
i=`+1

(
λ−α

1,h
c̃i

d̃i

)
K(K− λ1,hd̃iM̃)−1f

]
.

For the right-hand side of problem (1) we investigate two choices, namely

f1(x, y, z) = sin(πx) sin(πy) sin(πz)− sin(2πx) sin(2πy) sin(2πz)

+ sin(3πx) sin(3πy) sin(3πz),
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which is a smooth function that agrees with the boundary conditions, and

f2(x, y, z) ≡ 1,

which gives rise to boundary layers and has been a subject of theoretical and experimental
investigations in numerous papers already (e.g., see [2] or [24]).

For the first choice, the exact continuous solution can be explicitly derived, thus the
error estimate (11) can be numerically computed (see Figure 5). For the second choice,
the BURA reduction errors

∥∥∥uk − uM
k,`

∥∥∥
2
/‖f‖2 and

∥∥∥uk − uA
k,`

∥∥∥
2
/‖f‖2 have been studied

(see Figures 6 and 7). The simulations were performed on coarse (h = 1/128) and finer
(h = 1/1024) meshes using for the auxiliary sparse SPD systems the BoomerAMG im-
plementation from HYPRE [21] of the algebraic multigrid preconditioner in the PCG
framework. The values α = {0.25, 0.5, 0.75} have been considered. Since the best possible
FEM accuracy is O(h2), the BURA method for α = 0.25 is set on degree k = 24, which
guarantees E0.25,24 ≈ 10−6, thus, in all numerical simulations, the BURA error will not
dominate over the error of discretization. For the corresponding degrees when α = 0.5
and α = 0.75, we choose k = 24/2 = 12 and k = 24/3 = 8, respectively, motivated by the
estimate (6).
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Figure 5. The overall error (11) for 3D homogeneous fractional Laplacian with smooth right-hand
side f on [0, 1]3. Uniform mesh with h = 1/128 (top) and h = 1/1024 (bottom) is used.

In Figure 6, we compare the BURA reduction errors for f2 to both the theoretical
estimate from Theorems 2 and 3 and the corresponding pure non-reduction error Eα,k,

related to ` = 0. All results agree with Theorem 4, as
∥∥∥uk − uM

k,`

∥∥∥
2
≥
∥∥∥uk − uA

k,`

∥∥∥
2

always

holds true. Further, we observe that the difference
∥∥∥uA

k,` − uM
k,`

∥∥∥
2

decreases when ` increases.
Finally, the error plots indicate that we can reduce half of the systems (` = 12) for α = 0.25,
one-quarter of the systems (` = 3) for α = 0.5, and one-eighth of the systems (` = 1) for
α = 0.75, without affecting the order of the overall BURA accuracy.
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Figure 6. The BURA reduction errors
∥∥∥uk − uM

k,`

∥∥∥
2
/‖f‖2 and

∥∥∥uk − uA
k,`

∥∥∥
2
/‖f‖2 vs. true non-

reductive errors Eα,k for 3D homogeneous fractional Laplacian with f ≡ 1 on [0, 1]3. Uniform
mesh with h = 1/128 is used.

In Figure 7, we compare the BURA reduction errors for f2 with h2—the best order of
the discretization error estimate. The idea of this experiment is that whenever the BURA
reduction error is below h2, then the total error estimate (11) should be dominated by
the error of discretization; thus, the reduction process should again not affect the overall
accuracy. We observe that for h = 1/128∼10−2, we can “safely” reduce 13 systems within
both BURA-AR and BURA-MR methods when α = 0.25. Analogously, we can “safely”
reduce 4 systems within both BURA-AR and BURA-MR methods when α = 0.5, and 3
and 2 systems, respectively, within the BURA-AR and BURA-MR methods, when α = 0.75.
When h = 1/1024∼10−3, we are within the “optimal” scenario depicted in Table 1 and,
as suggested in the last column of the rows corresponding to h = 10−3, we witness the
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possibility of exactly 9 system reductions for α = 0.25, exactly 2 system reductions for
α = 0.5, and even 1 system reduction for α = 0.75.
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Figure 7. The BURA reduction errors
∥∥∥uk − uM

k,`

∥∥∥
2
/‖f‖2 and

∥∥∥uk − uA
k,`

∥∥∥
2
/‖f‖2 for 3D homogeneous

fractional Laplacian with f ≡ 1 on [0, 1]3. Uniform mesh with h = 1/128 (top) and h = 1/1024
(bottom) is used.

Finally, in Figure 5, we conduct experiments analogous to Figure 6 but using the
smooth right-hand side f1 and estimating the total error (11). The level of potential systems
reduction is similar to that in the previous experiment. Moreover, we observe the balance
between the BURA error and the error of discretization around level h2, especially for finer
meshes. This is an indication that the theoretically derived order of discretization of h2α

in certain cases (smooth right-hand sides that agree on the boundary with the boundary
conditions and give rise to regular solutions) may be too pessimistic and that the upper
order estimate of h2, corresponding to classical, non-fractional diffusion, could be achieved,
independently of the choice of α.

7. Concluding Remarks

The newly obtained results significantly improve the computational efficiency of the
BURA method. The fact that practically all other methods for a numerical solution of
multidimensional spectral fractional-in-space diffusion problems in arbitrary domains
can be viewed as some rational approximation further enhances the advantages of the
new BURA-MR and BURA-AR methods. On the other hand, the proposed reduced
product/sum approach can be applied to many of the other existing methods, as well.
The new theoretical results and the presented proof-of-concept numerical tests open the
window for a wide range of real-life applications, including various problems beyond the
scalar elliptic case.

The number of auxiliary sparse SPD systems to be solved is applied as a measure of
computational efficiency in [9], where the BURA method is introduced. Then, this approach
is used in the comparative analysis of various other methods, which can be interpreted as
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a certain rational approximation of degree k of A−α. The theory of the BURA method does
not depend on the shape of the computational domain. This also applies to the methods
for which the unified approach from [7] is applicable. Based on this, in various papers,
one-dimensional numerical tests are considered to be fully representative. In theory, this is
correct, but in practice, it is not. The key point in the multidimensional case is that the SPD
matrix A is generally unstructured and large-scale. Thus, the implementation of methods
based on rational approximation of degree k naturally involves a certain iterative solver
of the related k auxiliary sparse SPD systems. In this spirit is the presented study on the
efficient implementation of the BURA method in the case of higher degrees k.

The idea of reducing BURA was firstly discussed in the short paper [19]. Here, we
analyzed two alternative methods: the recently proposed BURA-AR together with the new
BURA-MR. They are based on the additive and the multiplicative representations of BURA,
respectively. Although the two expressions are completely equivalent, the theoretical
estimates of the reduced sum BURA-AR and the reduced product BURA-MR, as well as
the corresponding numerical results, are different.

Until now, only the additive representation was used in the software implementation
of the BURA method for large-scale multidimensional problems. One of the reasons
for this is perhaps its better parallelization. Here, we show rather promising results for
the multiplicative variant of BURA and related BURA-MR methods. This resumes the
discussion of the advantages and disadvantages of both options.

The results of this study contribute to the strengthening of theoretical knowledge
and practical skills for a numerical solution of real-life fractional diffusion problems in
complex multidimensional domains. At the same time, there are still certain issues related
to computational stability that most likely need further understanding, interpretation
and treatment.

The development of computationally efficient BURA-AR and BURA-MR methods for
reaction-diffusion and time-dependent equations involving fractional-in-space diffusion
operators is among the priority topics for further research.

Finally, we observe that under certain assumptions, the computational complexity of
the reduced BURA can be improved to O(N log N).
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