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Abstract: In this paper, we consider a new type of degenerate derangement polynomial and number,
which shall be called the degenerate derangement polynomials and numbers of the second kind.
These concepts are motivated by Kim et al.’s work on degenerate derangement polynomials and
numbers. We investigate some properties of these new degenerate derangement polynomials and
numbers and explore their connections with the degenerate gamma distributions for the case λ ∈
(−1, 0). In more detail, we derive their explicit expressions, recurrence relations, and some identities
involving our degenerate derangement polynomials and numbers and other special polynomials and
numbers, which include the fully degenerate Bell polynomials, the degenerate Fubini polynomials,
and the degenerate Stirling numbers of the first and the second kinds. We also show that those
polynomials and numbers are connected with the moments of some variants of the degenerate
gamma distributions. Moreover, we compare the degenerate derangement polynomials and numbers
of the second kind to those of Kim et al.
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1. Introduction

A derangement is a permutation with no fixed points. In other words, a derangement
is a permutation of the elements of a set that leaves no elements in their original places.
The number of derangements of a set of size n is called the n-th derangement number and
denoted by dn. It was Pierre Rémonde de Motmort who initiated the study of counting
derangements in 1708 (see [1]).

Carlitz was the first one who studied degenerate versions of some special polynomials
and numbers, namely the degenerate Bernoulli polynomials and numbers and degenerate
Euler polynomials and numbers. In recent years, the study of various degenerate versions
of some special polynomials and numbers regained the interests of quite a few mathemati-
cians and yielded many interesting arithmetical and combinatorial results. It is remarkable
that the study of degenerate versions is not just limited to polynomials, but can be extended
to transcendental functions such as gamma functions (see [2,3]).

As is well known, the generating function of the derangement numbers dn (see [1,4–8])
is given by

1
1− t

e−t =
∞

∑
n=0

dn
tn

n!
. (1)

From (1), we note (see [6–9]) that

dn = n!
n

∑
i=0

(−1)i

i!
, (n ≥ 0). (2)
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The derangement polynomials dn(x) (see [7,8]) are defined by the generating function as

1
1− t

e(x−1)t =
∞

∑
n=0

dn(x)
tn

n!
. (3)

By (3), we get for n ≥ 0,

dn(x) =
n

∑
l=0

(
n
l

)
dl xn−l (4)

= n!
n

∑
l=0

(x− 1)l

l!
.

Clearly, we have dn(0) = dn.
For any nonzero real number λ, the degenerate exponential function ex

λ(t) (see [2,10–13])
is defined as

ex
λ(t) = (1 + λt)

x
λ =

∞

∑
n=0

(x)n,λ

n!
tn, (5)

where (x)0,λ = 1, (x)n,λ = x(x − λ) . . . (x − (n− 1)λ), (n ≥ 1). For brevity, we denote
e1

λ(t) by eλ(t). From (5), we can derive the inversion function of eλ(t) (see [6,14]) given by

logλ(t) =
1
λ
(tλ − 1), eλ(logλ(t)) = t.

In light of (3), Kim et al. [15] considered the degenerate derangement polynomials
which are given by

1
1− t

ex−1
λ (t) =

∞

∑
n=0

dn,λ(x)
tn

n!
. (6)

When x = 0, dn,λ = dn,λ(0) are called the degenerate derangement numbers.
The degenerate Stirling numbers of the second kind (see [14]) given either by

(x)n,λ =
n

∑
l=0

S2,λ(n, l)(x)l , (n ≥ 0),

or by
1

m!
(eλ(t)− 1)m =

∞

∑
n=m

S2,λ(n, m)
tn

n!
, (m ≥ 0),

where (x)0 = 1, (x)n = x(x− 1) . . . (x− n + 1), (n ≥ 1).
Recall that from [3,14] that the degenerate Stirling numbers of the first kind are defined

either by

(x)n =
n

∑
l=0

S1,λ(n, l)(x)l,λ, (n ≥ 0),

or by
1

m!
(

logλ(1 + t)
)m

=
∞

∑
n=m

S1,λ(n, m)
tn

n!
, (m ≥ 0).

In this paper, we consider a new type of degenerate derangement polynomial and
number, which shall be called the degenerate derangement polynomials and numbers
of the second kind. These concepts are motivated by Kim et al.’s work on degenerate
derangement polynomials and numbers in [15]. We investigate some properties of these
new degenerate derangement polynomials and numbers and explore their connections
with the degenerate gamma distributions for the case λ ∈ (−1, 0). In more detail, we
derive their explicit expressions, recurrence relations, and some identities involving our
degenerate derangement polynomials and numbers and other special polynomials and
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numbers, which include the fully degenerate Bell polynomials, the degenerate Fubini
polynomials, and the degenerate Stirling numbers of the first and the second kinds. We
also show that those polynomials and numbers are connected with the moments of some
variants of the degenerate gamma distributions. Moreover, we compare the degenerate
derangement polynomials and numbers of the second kind to those of Kim et al.

2. Degenerate Derangement Polynomials of the Second Kind

We try to degenerate the exponential function part of derangement polynomials in (3),
slightly different way of (6). We consider the degenerate derangement polynomials of the
second kind d∗n,λ(x), which are given by

1
1− t

eλ((x− 1)t) =
∞

∑
n=0

d∗n,λ(x)
tn

n!
. (7)

When x = 0, d∗n,λ = d∗n,λ(0) are called the degenerate derangement numbers of the
second kind.

From (5) and (7), we can express the n-th degenerate derangement polynomials of the
second kind by the usual polynomials of degree n. This can be compared to the expression
of the derangement polynomials dn(x) in (4).

∞

∑
n=0

d∗n,λ(x)
tn

n!
=

∞

∑
l=0

tl
∞

∑
m=0

(x− 1)m(1)m,λ
tm

m!
(8)

=
∞

∑
n=0

(
n!

n

∑
m=0

(x− 1)m(1)m,λ

m!

)
tn

n!
.

Comparing the coefficients on both sides of (8), we express the n-th degenerate de-
rangement polynomials of the second kind, as the polynomials of degree n.

Proposition 1. For n ≥ 0, we have

d∗n,λ(x) = n!
n

∑
l=0

(x− 1)l(1)l,λ

l!
.

In particular, for x = 0, we obtain

d∗n,λ = n!
n

∑
l=0

(−1)l(1)l,λ

l!
= n!

n

∑
l=0

〈−1〉l,λ
l!

,

where 〈x〉0,λ = 1, 〈x〉n,λ = n(x + λ) . . . (x + (n− 1)λ), (n ≥ 1).

We can compare the expressions of the n-th degenerate derangement numbers of the
second kind in Proposition 1 to the n-th derangement numbers in (2). Now, we observe that

eλ((x− 1)t) = 1 +
∞

∑
n=1

(
d∗n,λ(x)− nd∗n−1,λ(x)

)
tn

n!
. (9)

From (5) and (9), we have for n ≥ 1 that

(x− 1)n(1)n,λ = d∗n,λ(x)− nd∗n−1,λ(x), (10)

and
〈−1〉n,λ = d∗n,λ − nd∗n−1,λ.
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In addition, by (7), we get

d∗n,λ(x) =
n

∑
l=0

(
n
l

)
d∗l,λxn−l(1)n−l,λ, (n ≥ 0). (11)

Therefore, by (10) and (11), we obtain the identities, which can be compared to those in
([15], Theorem 2).

Theorem 1. The following identities hold true:

d∗n,λ(x) =
n

∑
l=0

(
n
l

)
d∗l,λxn−l(1)n−l,λ, (n ≥ 0),

(x− 1)n(1)n,λ = d∗n,λ(x)− nd∗n−1,λ(x), (n ≥ 1),

〈−1〉n,λ = d∗n,λ − nd∗n−1,λ, (n ≥ 1).

Replacing t by 1− eλ(t) in (7), we get

eλ

(
(x− 1)(1− eλ(t))

)
= eλ(t)

∞

∑
l=0

d∗l,λ(x)
1
l!
(
1− eλ(t)

)l (12)

=
∞

∑
m=0

(1)m,λ

m!
tm

∞

∑
j=0

j

∑
l=0

(−1)ld∗l,λ(x)S2,λ(j, l)
tj

j!

=
∞

∑
n=0

( n

∑
j=0

j

∑
l=0

(
n
j

)
(1)n−j,λ(−1)ld∗l,λ(x)S2,λ(j, l)

)
tn

n!
.

Here S2,λ(n, l) fo (n ≥ l), are the degenerate Stirling numbers of the second kind.
Alternatively, (12) is also given by

eλ

(
(x− 1)(1− eλ(t))

)
=

∞

∑
m=0

(x− 1)m(1)m,λ
1

m!
(
1− eλ(t)

)m (13)

=
∞

∑
n=0

( n

∑
m=0

(x− 1)m〈−1〉m,λS2,λ(n, m)

)
tn

n!
.

Therefore, by (12) and (13), we obtain the following theorem, which can be compared
to ([15], Theorem 2).

Theorem 2. For n ≥ 0, we have

n

∑
j=0

j

∑
l=0

(
n
j

)
(1)n−j,λ(−1)ld∗l,λ(x)S2,λ(j, l) =

n

∑
j=0

(x− 1)j〈−1〉j,λS2,λ(n, j).

Recently, Kim et al. [12] introduced the degenerate Fubini polynomials Fn,λ(y) as

1
1− y(eλ(t)− 1)

=
∞

∑
n=0

Fn,λ(y)
tn

n!
. (14)
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Note that lim
λ→0

Fn,λ(y) = Fn(y) are the ordinary Fubini polynomials (see [16]). Replac-

ing t by eλ(t)− 1 in (7), we get

1
2− eλ(t)

eλ

(
(x− 1)(eλ(t)− 1)

)
=

∞

∑
l=0

d∗l,λ(x)
1
l!
(
eλ(t)− 1

)l (15)

=
∞

∑
n=0

( n

∑
l=0

S2,λ(n, l)d∗l,λ(x)
)

tn

n!
.

In terms of (14), we note that (15) is also given by

1
2− eλ(t)

eλ

(
(x− 1)(eλ(t)− 1)

)
(16)

=
∞

∑
l=0

Fl,λ(1)
tl

l!

∞

∑
m=0

(x− 1)m(1)m,λ
1

m!
(
eλ(t)− 1

)m

=
∞

∑
l=0

Fl,λ(1)
tl

l!

∞

∑
j=0

j

∑
m=0

(x− 1)m(1)m,λS2,λ(j, m)
tj

j!

=
∞

∑
n=0

( n

∑
l=0

l

∑
m=0

(
n
l

)
Fn−l,λ(1)(x− 1)m(1)m,λS2,λ(l, m)

)
tn

n!
.

Therefore, by (15) and (16), we obtain the following theorem, which give the expression
of the linear combination of the degenerate derangement polynomials of the second kind
and the degenerate Stirling numbers of the second kind. This can be compared to those in
([15], Theorem 4).

Theorem 3. For n ≥ 0, we have

n

∑
l=0

S2,λ(n, l)d∗l,λ(x) =
n

∑
l=0

l

∑
m=0

(
n
l

)
Fn−l,λ(1)(x− 1)m(1)m,λS2,λ(l, m).

Replacing t by logλ(1 + t) in (14) with y = 1, the following is known in ([15], (2.11))

1
1− t

=
∞

∑
l=0

Fl,λ(1)
1
l!
(

logλ(1 + t)
)l (17)

=
∞

∑
n=0

( n

∑
l=0

Fl,λ(1)S1,λ(n, l)
)

tn

n!
.

Writing the left-hand side of (17) differently, we have

1
1− t

=

(
1

1− t
eλ(−t)

)
e−1

λ (−t) (18)

=
∞

∑
l=0

d∗l,λ
tl

l!

∞

∑
m=0
〈1〉m,λ

tm

m!

=
∞

∑
n=0

( n

∑
l=0

(
n
l

)
d∗l,λ〈1〉n−l,λ

)
tn

n!
.

Therefore, by (7), (17) and (18), we obtain the following theorem.

Theorem 4. For n ≥ 0, we have

n! =
n

∑
l=0

Fl,λ(1)S1,λ(n, l) =
n

∑
l=0

(
n
l

)
d∗l,λ〈1〉n−l,λ =

n

∑
l=0

(
n
l

)
d∗l,λ(x)(1− x)n−l(1)n−l,λ.
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By using Theorem 4 and ([15] Theorem 2.5), we can compare our degenerate derange-
ment polynomials of the second kind to those of polynomials in [15].

Corollary 1. For n ≥ 0, we have

n

∑
l=0

(
n
l

)
d∗l,λ〈1〉n−l,λ =

n

∑
l=0

(
n
l

)
d∗l,λ(x)(1− x)n−l(1)n−l,λ

=
n

∑
l=0

(
n
l

)
dl,λ(1)n−l,λ =

n

∑
l=0

(
n
l

)
dl,λ(x)(1− x)n−l,λ.

Recently, Kim-Kim [10] considered the fully degenerate Bell polynomials given by

eλ

(
x(eλ(t)− 1)

)
=

∞

∑
n=0

Beln,λ(x)
tn

n!
. (19)

Replacing t by logλ(1 + t) and x by x− 1 in (19), we get

eλ((x− 1)t) =
∞

∑
m=0

Belm,λ(x− 1)
1

m!
(

logλ(1 + t)
)m (20)

=
∞

∑
m=0

Belm,λ(x− 1)
∞

∑
n=m

S1,λ(n, m)
tn

n!

=
∞

∑
n=0

( n

∑
m=0

Belm,λ(x− 1)S1,λ(n, m)

)
tn

n!
.

Obviously, (20) is also given by

eλ((x− 1)t) =
∞

∑
n=0

(x− 1)n(1)n,λ
tn

n!
. (21)

Therefore, by (20) and (21), we obtain an identity

(x− 1)n(1)n,λ =
∞

∑
m=0

Belm,λ(x− 1)S1,λ(n, m). (22)

The following identity comes directly from (22).

Beln,λ(x− 1) =
n

∑
m=0

(1)m,λ(x− 1)mS2,λ(n, m). (23)

We can see that (22) and (23) are mutual inversion formulae. We record these as theorem.

Theorem 5. For n ≥ 0, we have

(x− 1)n(1)n,λ =
n

∑
m=0

Belm,λ(x− 1)S1,λ(n, m),

and

Beln,λ(x− 1) =
n

∑
m=0

(1)m,λ(x− 1)mS2,λ(n, m).

When x = 2 in Theorem 5, we obtain the known result in [15].
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Corollary 2 ([15], Theorem 2.6). For n ≥ 0, we have

(1)n,λ =
n

∑
m=0

Belm,λS1,λ(n, m),

and

Beln,λ =
n

∑
m=0

(1)m,λS2,λ(n, m).

Combining (7) and (20)

∞

∑
n=0

d∗n,λ(x) =
1

1− t
eλ((x− 1)t) (24)

=

(
∞

∑
j=0

j!
tj

j!

)(
∞

∑
l=0

l

∑
m=0

Belm,λ(x− 1)S1,λ(l, m)
tl

l!

)

=
∞

∑
n=0

( n

∑
l=0

l

∑
m=0

(
n
l

)
(n− l)!Belm,λ(x− 1)S1,λ(l, m)

)
tn

n!
.

Therefore, by (24) we obtain an expression for the n-th degenerate derangement poly-
nomials of the second kind by the linear combination of the degenerate Bell polynomials
and the degenerate Stirling numbers of the first kind.

Corollary 3. For n ≥ 0, we have

d∗n,λ(x) =
n

∑
l=0

l

∑
m=0

(
n
l

)
(n− l)!Belm,λ(x− 1)S1,λ(l, m).

The following is observed in ([15], (2.16))

1
1− t

= e−1
λ

(
logλ(1− t)

)
=

∞

∑
m=0

(−1)m,λ
1

m!
(

logλ(1− t)
)m (25)

=
∞

∑
m=0

(−1)m,λ

∞

∑
n=m

(−1)nS1,λ(n, m)
tn

n!
=

∞

∑
n=0

( n

∑
m=0

(−1)m,λ(−1)nS1,λ(n, m)

)
tn

n!
.

From Theorem 4 and (25), we obtain

n! = (−1)n
n

∑
m=0

(−1)m,λS1,λ(n, m) =
n

∑
m=0

(
n
m

)
d∗m,λ(x)(1− x)n−m(1)n−m,λ.

We have the following identities, where the first identity comes from (25) and the
second one from Theorem 5. Comparing Corollary 1 and (25), we obtain which can compare
the degenerate derangement polynomials of the second kind to the degenerate derange
polynomials in (6).

Corollary 4. For n ≥ 0, we have

(−1)n ∑n
m=0(−1)m,λS1,λ(n, m) = ∑n

m=0 (
n
m)d
∗
m,λ(x)(1− x)n−m(1)n−m,λ = ∑n

m=0 (
n
m)dm,λ(x)(1− x)n−m,λ.
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Replacing t by logλ(1− t) and x by x− 1 in (19), we get

eλ((x− 1)(−t)) =
∞

∑
k=0

Belk,λ(x− 1)
1
k!
(

logλ(1− t)
)k

=
∞

∑
k=0

Belk,λ(x− 1)
∞

∑
n=k

S1,λ(n, k)(−1)n tn

n!
(26)

=
∞

∑
n=0

( n

∑
k=0

Belk,λ(x− 1)S1,λ(n, k)(−1)n
)

tn

n!
.

We remark that (26) is alternatively given by

eλ((x− 1)(−t)) = e−1
−λ((x− 1)t) =

∞

∑
n=0

(−1)n,−λ(x− 1)n tn

n!
. (27)

Thus, from (26) and (27), we have for n ≥ 0 the relation

(−1)n
n

∑
k=0

Belk,λ(x− 1)S1,λ(n, k) = (x− 1)n(−1)n,−λ. (28)

In particular, x = 2 in (28) we have ([15], Theorem 6).
Replacing t by 1− e−λ(t) and x by x− 1 in (7), we get

e−1
−λ(t)eλ

(
(x− 1)(1− e−λ(t))

)
=

∞

∑
m=0

d∗m,λ(x)
(−1)m

m!
(
e−λ(t)− 1

)m (29)

=
∞

∑
m=0

d∗m,λ(x)(−1)m
∞

∑
n=m

S2,−λ(n, m)
tn

n!

=
∞

∑
n=0

( n

∑
m=0

d∗m,λ(x)(−1)mS2,−λ(n, m)

)
tn

n!
.

An alternative expression of (29) is given by

e−1
−λ(t)eλ

(
(x− 1)(1− e−λ(t))

)
= e−1

−λ(t)e
x−1
−λ

(
e−λ(t)− 1

)
(30)

=
∞

∑
l=0

(−1)l,−λ
tl

l!

∞

∑
m=0

(x− 1)m,−λ
1

m!
(e−λ(t)− 1)m tm

m!

=
∞

∑
n=0

( n

∑
m=0

(
n
m

)
(x− 1)m,−λS2,−λ(n, m)(−1)n−m,−λ

)
tn

n!
.

From (29) and (30), we have for n ≥ 0 that

n

∑
m=0

(−1)md∗m,λ(x)S2,−λ(n, m) =
n

∑
m=0

(
n
m

)
(x− 1)m,−λS2,−λ(n, m)(−1)n−m,−λ. (31)

Therefore, by (28) and (31), we obtain an expression of the linear combination of the
degenerate derangement polynomials of the second kind which the coefficients of the
degenerate Stirling numbers with −λ.

Theorem 6. For n ≥ 0, we have

n

∑
m=0

(−1)md∗m,λ(x)S2,−λ(n, m) =
n

∑
m=0

(
n
m

)
(x− 1)m,−λS2,−λ(n, m)(−1)n−m,−λ.
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By (7), we get
1

1 + t
e−λ(t) =

∞

∑
m=0

d∗m,−λ(−1)m tm

m!
. (32)

Replacing t by e−λ(t)− 1 in (32), we get

e−1
−λ(t) = e−λ

(
e−λ(t)− 1

)
=

∞

∑
m=0

d∗m,−λ(−1)m 1
m!
(
e−λ(t)− 1

)m (33)

=
∞

∑
m=0

d∗m,−λ(−1)m
∞

∑
j=m

S2,−λ(j, m)
tj

j!

=
∞

∑
j=0

( j

∑
m=0

d∗m,−λ(−1)mS2,−λ(j, m)

)
tj

j!
.

Alternatively, (33) is also given by

e−1
−λ(t)e−λ

(
e−λ(t)− 1

)
=

∞

∑
l=0

(−1)l,−λ
tl

l!

∞

∑
m=0

Belm,−λ(1)
tm

m!

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
Belm,−λ(−1)n−m,−λ

)
tn

n!
.

(34)

Therefore, by (33) and (34), we obtain a relation including d∗m,−λ and Belm,−λ.

Theorem 7. For n ≥ 0, we have

n

∑
m=0

(−1)md∗m,−λS2,−λ(n, m) =
n

∑
m=0

(
n
m

)
Belm,−λ(−1)n−m,−λ.

When we compare Theorem 7 and ([15], (2.33)) we have an identity, one is expressed
by the degenerate derangement numbers of the second kind and the other is expressed by
the degenerate derangement numbers.

Corollary 5. For n ≥ 0, we have

n

∑
m=0

(−1)md∗m,−λS2,−λ(n, m) =
n

∑
m=0

(−1)mdm,λS2,−λ(n, m).

From (33), we observe that

e−λ

(
e−λ(t)− 1

)
= e−λ(t)

∞

∑
m=0

d∗m,−λ(−1)m
∞

∑
j=m

S2,−λ(j, m)
tj

j!
(35)

=
∞

∑
k=0

(1)k,−λ
tk

k!

∞

∑
j=0

( j

∑
m=0

d∗m,−λ(−1)mS2,−λ(j, m)

)
tj

j!

=
∞

∑
n=0

( n

∑
j=0

n

∑
m=0

(
n
j

)
(1)n−j,−λd∗m,−λ(−1)mS2,−λ(j, m)

)
tn

n!
.

Accordingly, it follows that

e−1
λ

(
1− e−λ(t)

)
= e−λ

(
e−λ(t)− 1

)
=

∞

∑
n=0

Beln,−λ(1)
tn

n!
. (36)

Therefore, by (35) and (36), we obtain the following theorem.
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Theorem 8. For n ≥ 0, we have

Beln,−λ =
n

∑
j=0

j

∑
m=0

(
n
j

)
(1)n−j,−λ(−1)md∗m,−λS2,−λ(j, m).

We have an identity, one is expressed by d∗n,λ and the other is dn,λ. i.e., the degenerate
derangement numbers of the second kind are by −λ and the degenerate derangement
numbers are by λ.

Corollary 6. For n ≥ 0, we have

∑n
j=0 ∑

j
m=0 (

n
j)(1)n−j,−λ(−1)mdm,λS2,−λ(j, m) = ∑n

j=0 ∑
j
m=0 (

n
j)(1)n−j,−λ(−1)md∗m,−λS2,−λ(j, m).

For r ∈ N, we define the degenerate derangement polynomials of the second kind of
order r which are given by

1
(1− t)r eλ((x− 1)t) =

∞

∑
n=0

d∗(r)n,λ (x)
tn

n!
. (37)

When x = 0, d∗(r)n,λ = d∗(r)n,λ (0) are called the degenerate derangement numbers of the
second kind of order r.

For the case r = 1, d∗n,λ(x) = d∗(1)n,λ (x) are the degenerate derangement polynomials of
the second kind in (7). From (37), we note that

∞

∑
n=0

d∗(r)n,λ (x)
tn

n!
=

∞

∑
m=0

(
r + m− 1

m

)
tm

∞

∑
l=0

(x− 1)l(1)l,λ
tl

l!
(38)

=
∞

∑
n=0

(
n!

n

∑
l=0

(x− 1)l(1)l,λ

l!

(
r + n− l − 1

n− l

))
tn

n!
.

Comparing the coefficients on both sides of (38), we obtain the following theorem.

Theorem 9. For n ≥ 0, we have

d∗(r)n,λ (x) = n!
n

∑
l=0

(x− 1)l(1)l,λ

l!

(
r + n− l − 1

n− l

)
.

In particular, for x = 0, we have

d∗(r)n,λ = n!
n

∑
l=0

(−1)l(1)l,λ

l!

(
r + n− l − 1

n− l

)
.

3. Further Remarks

Let f (x) be the probability density function of the continuous random variable X,
and let g(x) be a real-valued function. Then the expectation of g(X), E[g(X)] (see [17]), is
defined by

E[g(X)] =
∫ ∞

−∞
g(x) f (x)dx.

A continuous random variable X, whose density function is given by

f (x) =

{
βe−βx (βx)α−1

Γ(α) , if x ≥ 0,
0, if x < 0,

for some β > 0 and α > 0, is said to be the gamma random variable with parameters α, β
and denoted by X ∼ Γ(α, β).



Fractal Fract. 2021, 5, 59 11 of 14

Let X ∼ Γ(1, 1). Then, for all t < 1, we have

E
[
eXt · eλ(−t)

]
= eλ(−t)

∫ ∞

0
exte−xdx

=
1

1− t
eλ(−t) =

∞

∑
n=0

d∗n,λ
tn

n!
. (39)

Clearly, we also have

E
[
eXteλ(−t)

]
=

∞

∑
n=0

( n

∑
m=0

(
n
m

)
〈−1〉n−m,λE[Xm]

)
tn

n!
. (40)

Therefore, by (39) and (40), we obtain the following equations.
For n ≥ 0, we have

n

∑
m=0

(
n
m

)
〈−1〉n−m,λE[Xm] = d∗n,λ,

and, more generally, we also have

n

∑
m=0

(
n
m

)
(x− 1)n−m(1)n−m,λE[Xm] = d∗n,λ(x).

Unless otherwise stated, for the rest of this section, we assume that λ ∈ (−1, 0). We
consider the degenerate gamma function Γ∗λ(x), which is initially defined for 0 < Re(s) <
− 1

λ by the following integral

Γ∗λ(s) =
∫ ∞

0
eλ(−t)ts−1dt, (41)

can be continued to a meromorphic function on C, whose only singularities are simple
poles at s = 0,−1,−2, . . . ,− 1

λ ,− 1
λ + 1,− 1

λ + 2, . . .. We get this idea from [2,3,15]. Thus, by
(41), we get

Γ∗λ(k) =
Γ(k)

(1)k+1,−λ
,
(

k ∈ N, λ ∈ (−1
k

, 0)
)

,

and, in particular, we have

Γ∗λ(1) =
1

1 + λ
.

A random variable X = Xλ is said to have the degenerate gamma distribution with
parameters α and β,

(
− 1

λ > α > 0, β > 0
)
, and denoted by X ∼ Γ∗λ(α, β), if its probability

density function has the form

fλ(x) =

{
1

Γ∗λ(α)
β(βx)α−1eλ(−βx), if x ≥ 0,

0, otherwise.

Note that d
dx ec
−λ(x) = cec+λ

−λ (x), for any constant c. Then, for X ∼ Γ∗λ(1, 1), we have

E
[
eλ(−(t + λ)X)

]
= (1 + λ)

∫ ∞

0
eλ(−(t + λ)x)eλ(−x)dx (42)

= (1 + λ)
∫ ∞

0
et−1+λ
−λ (x)dx = 1 + λ

1
1− t

eλ(−t)e−1
λ (−t)

= (1 + λ)
∞

∑
l=0

d∗l,λ
tl

l!

∞

∑
m=0

(−1)m(−1)m,λ
tm

m!

=
∞

∑
n=0

(1 + λ)
n

∑
l=0

d∗l,λ(−1)m(−1)m,λ

(
n
l

)
tn

n!
.
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Evidently, we also have

E
[
et+λ
−λ (X)

]
= E

[
eλ(−(t + λ)X)

]
= E

[
1

1− λX
(
1− λX

)− t
λ

]
=

∞

∑
n=0

E
[

1
1− λX

(
−1
λ

log(1− λX)

)n] tn

n!
. (43)

Therefore, from (42) and (43), we obtain the following theorem.

Theorem 10. For X ∼ Γ∗λ(1, 1), we have

E
[

1
1− λX

(
(−1)n

λ
log(1− λX)

)n]
= (1 + λ)

n

∑
l=0

d∗l,λ〈1〉n−l,λ

(
n
l

)
.

Now, we observe for n ≥ 0 that

(
log(1− λX)

)n
= n!

∞

∑
m=n

S1(m, n)
(−λ)m

m!
Xm,

where S1(n, m) are the Stirling numbers of the first kind, (see [18,19]). In turn, we have

E
[
(−1)n

1− λX

(
1
λ

log(1− λX)

)n]
= (−1)n n!

λn

∞

∑
m=n

S1(m, n)
(−λ)m

m!
E
[

Xm

1− λX

]
. (44)

From Theorem 10 and (44), we have for n ≥ 0 that

∞

∑
n=m

S1(n, m)
λm

m!
E
[

Xm

1− λX

]
= (1 + λ)

λn

n!

n

∑
l=0

d∗l,λ〈1〉n−l,λ

(
n
l

)
,

where X ∼ Γ∗λ(1, 1).
For X1, X2, . . . , Xr ∼ Γ(1, 1), assume that X1, X2, . . . , Xr are independent. Then,

we have

E
[
e(X1+X2+...+Xr)teλ((x− 1)t)

]
= E

[
eX1t]E[eX2t] . . . E

[
eXrt] · eλ((x− 1)t) (45)

=

(
1

1− t

)
×
(

1
1− t

)
× . . .×

(
1

1− t

)
︸ ︷︷ ︸

r−times

eλ((x− 1)t)

=
∞

∑
n=0

d∗(r)n,λ (x)
tn

n!
.

Alternatively, (45) is given by

E
[
e(X1+...+Xr)teλ((x− 1)t)

]
(46)

=
∞

∑
l=0

E
[
(X1 + . . . + Xr)

l] tl

l!

∞

∑
m=0

(x− 1)m(1)m,λ
tm

m!

=
∞

∑
n=0

( n

∑
l=0

(
n
l

)
E
[
(X1 + . . . + Xr)

l](x− 1)n−l(1)n−l,λ

)
tn

n!
.

By (45) and (46), we obtain for n ≥ 0 the expression

d∗(r)n,λ (x) =
n

∑
l=0

(
n
l

)
E
[
(X1 + . . . + Xr)

l](x− 1)n−l(1)n−l,λ.
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4. Conclusions

Motivated from the work of Kim et al. in [15], in this paper, we have dealt with
a new type of degenerate derangement polynomials, which are called the degenerate
derangement polynomials of the second kind d∗n,λ(x). Our polynomials are a degenerate
version of the derangement polynomials dn(x). We derived their explicit expressions,
recurrence relations, and some identities involving those polynomials and numbers and
other special polynomials and numbers such as the fully degenerate Bell polynomials,
the degenerate Fubini polynomials and the degenerate Stirling numbers of both kinds.
We also introduced the higher-order degenerate derangement polynomials of the second
kind. We also made a connection between degenerate derangement polynomials and our
polynomials by using degenerate Fubini numbers. Then, we explored the degenerate
gamma distributions as a degenerate version of the gamma distributions for the case
λ ∈ (−1, 0). We showed that the moments of distributions coming from some variants of
degenerate gamma distributions are related to the degenerate derangement polynomials
or the degenerate derangement numbers or the higher-order degenerate derangement
polynomials. In the Corollaries 1, 4 and 5, we compared our degenerate derangement
polynomials of the second kind to those polynomials in [15].
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