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Abstract: Conditional power based on classical Brownian motion (BM) has been widely used in
sequential monitoring of clinical trials, including those with the covariate adaptive randomization
design (CAR). Due to some uncontrollable factors, the sequential test statistics under CAR procedures
may not satisfy the independent increment property of BM. We confirm the invalidation of BM when
the error terms in the linear model with CAR design are not independent and identically distributed.
To incorporate the possible correlation structure of the increment of the test statistic, we utilize the
fractional Brownian motion (FBM). We conducted a comparative study of the conditional power
under BM and FBM. It was found that the conditional power under FBM assumption was mostly
higher than that under BM assumption when the Hurst exponent was greater than 0.5.

Keywords: Hurst exponent; covariate-adaptive randomization trial; sequential monitoring; Brown-
ian motion; fractional Brownian motion; conditional power; drift parameters

1. Introduction

Clinical trials, aiming to evaluate the safety and efficacy of drugs and medical de-
vices in target populations, play an important role in the development of public health
and medicine [1]. Adaptive randomized clinical design improves the trial, based on the
accumulated data and changing environment, making clinical trials more efficient, flexible,
and ethically reasonable [2].

The treatment effects estimated from unadjusted models may not be appropriate when
the covariates are not balanced. Meanwhile, some covariates, such as elevated values of
biomarkers that were found to affiliate with disease status in the translational research,
may be critical in determining the treatment effects in clinical trials [3]. For example,
biomarker HR23B is closely related to and used to indicate the effectiveness of histone
deacetylase inhibitors-based therapy for tumors [4]. To address the problem of covariate
imbalance, a useful tool is the Covariate Adaptive Randomization (CAR) procedure in
which participants are assigned to different treatment groups based on previous partici-
pants’ assignment, previous participants’ covariates, and current participants’ covariates,
such that the asymmetries across the subgroups are minimized [5]. Although the complete
randomization is good at eliminating the selection bias, the CAR design is a more reason-
able comprise between reducing the selection bias and balancing covariates assignments [6].
The rigorous theory of covariate adaptive randomized clinical trials has been developed
more recently [7]. Thereafter, progress has been made in research on statistical inference
with CAR designs [8,9].

Traditionally, classical Brownian motion (BM) is a fundamental theory for monitoring
outcome effects in clinical trials, including those with CAR designs [10–14]. It has been
proved that the sequential test statistics of covariate adaptive clinical trials follow Brownian
motion asymptotically under some regularized conditions [15].
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A condition of performing the hypothesis testing of covariate adaptive randomized
clinical trials is that the underlying error terms are independent and identically distributed
(iid). In addition, independent increments are a property of classical Brownian motion [16].
However, the independent increment property of the test statistics may not be completely
met in some situations. For example, some patients may enter the trial during the same
season; some patients may be treated by the same hospital or the same physician. Therefore,
the error terms from the model may be correlated and follow special covariance patterns.
Given the situation that most of the previous theoretical research into sequential monitoring
of CAR designs was based on the Brownian motion assumption, it is necessary to explore
the stochastic properties of the sequential monitoring process when error structures are not
independent and identically distributed. We propose fractional Brownian motion (FBM)
as a more valid tool to investigate the outcomes of clinical trials with correlated error
structures.

FBM, annotated as “BH(t)”, is a Gaussian process with E(BH(t)) = 0, and Cov(BH(s),
BH(t)) = 1

2 (t
2H + s2H−

∣∣t− s
∣∣2H) , where the Hurst coefficient (H), in the range of 0 < H < 1,

is a parameter of the FBM, describing the long-term dependence of the process [17–19].
FBM is a Markov process when H = 1/2 [20,21]. The maximum likelihood estimation
(MLE) method was proposed for estimating the Hurst coefficient underlying FBM in clinical
trials [22]. The log likelihood function of the observed value of BH = (BH(t1), . . . BH(tn))

t

was Ln(BH , H) = −nlog(2π)/2 − log|∑(H)|/2− BH
tΣ−1(H)BH/2, where ∑(H) is the

variance covariance matrix of BH [22].
In this paper, comprehensive simulations of the sequential monitoring of CAR proce-

dures were conducted to investigate the breakdown of BM when the independent increment
assumption was not met. We further calculated the conditional power (CP) under the null
hypothesis, with the BM assumption and with the FBM assumption, respectively.

Section 2 of this paper includes the test statistics and theoretical properties under
covariate adaptive randomized clinical trials with correlated error structures. In Section 3,
results from numerical simulations are provided to estimate the Hurst exponents for
sequential monitoring of CAR procedures when error structures are not iid. Conditional
powers are calculated and compared between BM and FBM assumptions in Section 4.
Conclusions and discussions are found in Section 5.

2. Covariate-Adaptive Randomized Clinical Trials with Correlated Error Structures

Assume there is a two-arm randomized sequential clinical trial with covariate adaptive
designs. µ1 and µ2 are parameters for group 1 and group 2, measuring the main effects
of the treatment in each group, respectively. Ii are the indicator variables for ith patient
assigned to the different treatment groups, i = 1, 2, . . . N. When Ii = 1, the patient is
assigned to the treatment group 1; when Ii = 0, the patient is assigned to the treatment
group 2. Let Yi be the response outcomes of the model. Xi, 1 . . . Xi, p are covariates. β1 . . .
βp are unknown parameters for the covariates. p is the number of covariates besides µ1
and µ2. The expectation of X is equal to 0. All covariates are independent from each other.
εi′s denote the error terms that are correlated. N is the total sample size.

Yi = µ1 Ii + µ2(1− Ii) + β1Xi, 1 + . . . + βpXi, p + εi i = 1, . . . , N (1)

E(Xk) = 0, for k = 1, 2, . . . , p

Xi, k’s are covariates independent with the error terms εi.
Indicator Ii are also independent with the error terms εi.

Let Y = (Y1, Y2, . . . , YN)
T , β = (µ1, µ2, β1, . . . , βp)

T , ε = (ε1, ε2, . . . , εN)
T
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X =


I1 1− I1 X1, 1 · · · X1, p

I2
...

IN

1− I2 X2, 1 · · · X2, p
...

... . . .
...

1− IN XN, 1 · · · XN, p


The expression (1) can be synthesized to the matrix form: Y = Xβ + ε.
The hypothesis for testing the treatment effect is:

H0 : µ1 − µ2 = 0 vs. HA : µ1 − µ2 6= 0

When error terms are independent and normally distributed, the statistics for testing
the main outcome effect at the time point t can be denoted as [7]:

Z∗t =
Lβ̂∗(t)√

σ̂∗(t)2L(X(bNtc)TX(bNtc))
−1

LT
(2)

B∗H(t) =
√

tLβ̂∗(t)√
σ̂∗(t)2L(X(bNtc)TX(bNtc))

−1
LT

(3)

β̂∗(t) = (X(bNtc)TX(bNtc))
−1

X
(
bNtc)TY(bNtc)

)
(4)

σ̂2∗(t) = (Y(bNtc)− X(bNtc)β̂∗(t))
T(Y(bNtc)− X(bNtc)β̂(t)∗

)
/(bNtc − p− 2) (5)

Under null hypothesis with equal treatment effect, we have:

L = (1,−1, 0, . . . , 0)t = n/N, n < N, t ∈ [0, 1]

b·c is denoted as the floor function.
When using the statistic (2), the sequential monitoring process with multiple interim

analyses is considered. For example, the investigator may evaluate the test statistics after
every 100 patients finish the study in a 4000 patients’ clinical trial. Z1 is the statistic test for
patients 1–100; Z2 is for patients 1–200; . . . ; Z40 is for patients 1–4000. Each test statistic Z
value is different from others, with different recruited patient numbers at that time point.

It was indicated that the test statistic Z score at each time point in (2) followed normal
distribution under the null hypothesis [7]. Interim normalized Z value can be transformed
into B-value B(H) as BH(t) = Ztt1/2. The sequential statistics test BH in the model (3)
converges to asymptotically Brownian motion [12]. Both conclusions above were based on
the assumption of error terms iid in the model. In some cases, the independent increment
property of the test statistic may be invalid when error terms ε′s of linear model (1) are
correlated. Nonetheless, people may ignore the covariance in the error terms and still
use the original classical hypothesis test, with error terms independent and identically
distributed. This scenario is called misspecification in our study. * used in the above
Equations (2)–(5) were the mis-specified test equations and parameters, distinguished from
the classical original hypothesis test formula when ε′s are iid.

If the sequential test statistics B∗H(t) converge to a standard Brownian motion,

Cov(Z∗ti
, Z∗tj

) =
√

ti/tj 0 ≤ ti ≤ tj ≤ 1 [23]. Then Cov(B∗H(ti), B∗H
(
tj
)
)

p→ ti since

B∗H(t) = Z∗t
√

t. However, based on the theoretical derivation in Yang [15], the covariance
of B∗H(ti) and B∗H(tj) could not converge to the minimum of ti and tj under the null
hypothesis in misspecification scenarios. The conclusion demonstrated that B∗H(t) in
sequential test statistics (3) was not asymptotically standard Brownian motion under the
misspecification scenarios.
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3. Simulations for Misspecification Scenarios

Since the sequential test statistics cannot converge to asymptotically Brownian motion
when error terms are correlated, we propose a larger class of fractional Brownian motion
for the stochastic structure of the test statistic. Maximum likelihood method was used to
estimate the Hurst exponents of the FBM for the sequential monitoring processes under
the misspecification assumption. If the mean estimation of H values deviates significantly
from 0.5, the sequential monitoring processes would be confirmed as not converging to
BM. Error terms in the model (1) were assumed to follow specific correlated patterns.
Increments of fractional Brownian motion, defined as Wi = BH(ti)− BH(ti−1), were used
in the error terms ε of our simulations [24]. fbm() function in the R software is a way to
create one dimension FBM series BH(t) [25]. Covariance of the increments of fractional
Brownian motion is:

Cov(u, v) =
1
2
{|u− (v + 1)|2H+|v− (u + 1)|2H − 2|u− v|2H} (6)

Incorrect estimators (4) and (5) and incorrect classical hypothesis test statistics (2) were
used to build the sequential monitoring processes without considering the covariance terms.

In the Equation (1), p1, p2 are the probability of success respectively in the Bernoulli
distribution when the covariates X1, X2 are binary variables. µ1, µ2, β1, β2, p1, p2 were set
up as 0.5, 0.5, 1, 1, 0.5, 0.5, respectively. 1000 replications were used for all the simulations.
Patients were assumed to be sequentially randomized into two treatment groups by the
block randomization (BR) (by blockrand() function in R software), stratified permuted
block randomization (SPB) [26], and Pocock and Simon minimization designs (PS) [27]
in the simulation studies consecutively. No covariate, two discrete covariates, and two
continuous covariates situations were illustrated under misspecification scenarios in the
simulation studies.

Assume 4000 patients were recruited in a clinical trial study with uniformly distributed
enter time. An interim analysis would be done after every 100 new patients had finished
the study. In total, 40 interim results were obtained. The maximum likelihood method was
used to estimate the Hurst exponent (H) for normalized BH value from the sequential test
(3) in the entire paper. When H= 0.5, this indicated an uncorrelated process, corresponding
to classical Brownian motion. It was shown that BH has a long range dependence property
when 0.5 < H <1 [28,29].

The mean and standard deviation of Hurst exponent estimations were tabulated in
Table 1, in which another Hurst estimation method proposed by Peltler Lévy Véhel was
used to validate the MLE results [30]. Two Hurst estimation methods reached similar
results. The distribution of the estimates of H is close to normal distribution. The visual
histograms are shown in Figures 1–3. Mean estimated H values from the misspecification
scenarios in Table 1 and Figures 1–3 deviated from 0.5. All test of statistical significance test
proved this conclusion with p value less than 0.0001 by t-test (Student’s t-Test) function in R
software. According to the theoretical derivation results and simulation results, sequential
test statistics do not follow a Brownian motion in the covariate adaptive randomized
clinical trials sequential monitoring processes when error terms are correlated. Models
with different covariate types reached similar conclusions.
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Table 1. Hurst exponent estimations for covariate adaptive randomized clinical trials, ε’s ~increments of FBM,
µ1, µ2, β1, β2, p1, p2 (0.5, 0.5, 1, 1, 0.5, 0.5).

MLE Estimation Peltler Lévy Véhel Hn,1 (1)

Designs Mean SD p Value Mean SD p Value

BR
No covariate 0.5921 0.0287 <0.0001 0.6056 0.0360 <0.0001
Two discrete 0.5898 0.0288 <0.0001 0.6077 0.0347 <0.0001

Two continuous 0.5915 0.0292 <0.0001 0.6067 0.0358 <0.0001

PS
No covariate 0.5504 0.0299 <0.0001 0.5608 0.0347 <0.0001
Two discrete 0.5503 0.0299 <0.0001 0.5607 0.0348 <0.0001

two continuous 0.5490 0.0300 <0.0001 0.5604 0.0351 <0.0001

SPB
No covariate 0.5568 0.0302 <0.0001 0.5685 0.0361 <0.0001
Two discrete 0.5567 0.0302 <0.0001 0.5694 0.0354 <0.0001

Two continuous 0.5576 0.0286 <0.0001 0.5691 0.0340 <0.0001
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4. Conditional Power for Covariate Adaptive Randomized Clinical Trials with
Correlated Error Structures

Test statistics derived from covariate adaptive randomized clinical trials do not follow
a Brownian motion in the sequential monitoring processes when ignoring the error term co-
variance patterns in the statistics test formula [15]. The independent increment property is
not satisfied under the misspecification assumption for the covariate adaptive randomized
clinical trials. Therefore, a more general form of stochastic process, fractional Brownian
motion, was proposed for the misspecification scenarios. In this section, conditional powers
were calculated and compared between the BM and the FBM methods.

Conditional power is the probability of rejecting the null hypothesis, given the interim
data results up to the time of interim analysis [31]. Conditional power is used for the
decisions regarding possible early termination, or proceeding to the original plan, or
increasing the sample sizes in the clinical trial interim analyses. The evaluation of the
conditional power can predict the long-term clinical trial study results based on the partially
observed data.

Under the null hypothesis of no treatment effect for the clinical trial, Zt is the sequential
test statistic at time t. Normalized Zt from the estimated of β(t) in the covariate adaptive
randomized clinical trial can be transformed to the B value as BH(t) = Ztt1/2. Assuming
time t > s, the conditional probability can be calculated with Brownian motion: CP =

P(Zt ≥ a|Zs = b) = 1− Φ( at1/2−bs1/2
√

t−s
) [10,32]. When the treatment effect is not equal in

two groups, Brownian motion would have a drift parameter θ. Brownian motion with drift
follows the normal distribution with mean θ(t− s) and variance (t− s). The conditional

power with drift is expressed as: CP = 1−Φ( at1/2−bs1/2−θ(t−s)√
t−s

) [10,33].
The conditional probability under null hypothesis in terms of FBM was proposed in

Lai et al. [34] expressed as:

CP = P(BH(tN) ≥ sN |BH(tn) = sn . . . BH(t2) = s2, BH(t1) = s1) = 1−Φ
(

sN − µHn

σHn

)
(7)

The conditional distribution in the Equation (7) is normally distributed as N(µHn , σ2
Hn

).
∑ is the variance- covariance matrix of BH(tN) and BH(tn) . . . BH(t2), BH(t1), denoted as

[ ∑11 ∑12
∑21 ∑22

]. ∑ is a symmetric matrix. µHn = ∑12 ∑−1
22 µn. σ2

Hn
= ∑11−∑12 ∑−1

22 ∑21. µn

= (BH(tn) . . . BH(t2), BH(t1))
t [34].

A two-stage simulation strategy was used to calculate the conditional power [35].
Recruited time t was divided into two parts by the time point ti. f ix, which resembled the
interim analysis time point in the real clinical trial. The first part before the time point
ti. f ix, which is called the fixed part, includes the already known data information. The
second part after the time point ti. f ix and until t = 1 is called the unknown part. The
empirical result was denoted as the analyzed data from ti. f ix to t = 1 by 1000 simulations.
It was assumed that the empirical results can respond the consequence at the end of the
whole clinical trial.

Based on the Formula (7), CPs with the assumptions of the BM and FBM were calcu-
lated respectively for the fixed part, from t = 0 to t = ti. f ix. In Formula (7), s1, s2,..., sn
are the observed values before tN . The mean µHn and σHn are described in the definition
of Equation (7). The conditional power was denoted as CP (BM) under BM assumption
with H = 0.5. If the conditional power was calculated under the FBM assumption with the
estimated H value by MLE approach, this was denoted as CP (FBM).

CP (empirical) was assumed to predict the results at the end of the whole clinical
trial (t = 1) with the formula CP (empirical)= Count (Z(tN) > 1.96)/1000. 1.96 is the
critical value for the hypothesis test with alpha = 0.05 at t = 1. CP (empirical), among
1000 replications, was treated as the standard criterion to compare with theoretical values
CP (BM) and CP (FBM) [35]. Scatter plots for CP (BM), CP (FBM) and empirical CPs
virtually demonstrated the consistency between the theoretical and empirical data.
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Scenarios were simulated when a Brownian motion showed a mean shift upwards
with drift. Assume that B(t) is a standard Brownian motion process. A new Brownian
motion process U(t) with drift would be shown as U(t) = θt + σ2B(t), t ≥ 0. θ is the drift
parameter. Assuming σ2 = 1, different parameters (θ = 0, 0.5, 1, 1.5, 2) were illustrated
in the conditional power simulation processes. µHn in the equation (7) corresponded
with the drift parameters in the simulations. In addition, different interim time points,
ti. f ix = 0.7, 0.8, 0.9, were evaluated respectively.

In this section, a total sample size of 4000 participants was illustrated with 40 interim
time points, although the actual number of interim analyses is much fewer. The error
terms of the model were not independent and identically distributed but were assumed
to follow increments of fractional Brownian motion with the Hurst exponent H = 0.9. In
this study, BH(t) were calculated first from sequential monitoring test statistics (3) under
misspecification scenarios. H values were calculated based on the BH(t). Then, conditional
powers were performed using Equation (7) with BH(t) from sequential processes.

We evaluated the performances of CP (BM) and CP (FBM), compared with CP (empir-
ical) under different drift parameters and ti. f ix time points in Tables 2–8. Figures 4–9 were
the scatter plots with x axis representing the theoretical CPs and y axis representing the
empirical CPs. Green dots in the figures are the CP (FBM), while red dots are the CP (BM).
Based on the results from the Tables, the mean estimations of the Hurst coefficients deviated
away from 0.5 under different scenarios. Assuming the treatment effects are equal between
two groups with drift parameter θ = 0, CPs are small and close to 0. CPs increased dra-
matically along with the increase in drift parameter values. Different ti. f ix = 0.7, 0.8, 0.9
resume the interim analysis time points in the simulations. CPs increased as ti. f ix time
values increased, since the interim analysis time point is closer to the end of the trial. When
H > 0.5, most of the CP (FBM) values were greater than CP (BM) values. From all Tables,
the majority of CP (FBM) values matched the CP (empirical) values better than the CP
(BM) values.

Table 2. CPs under misspecification scenarios: ε’s~increments of FBM, H = 0.9, drift = 0.

µ1, µ2, β1,β2, p1,p2 ti.fix = 0.7 Designs CP (Empirical) CP (BM) CP (FBM) H

(0.5, 0.5) No covariate
BR 0.0059 0.0062 0.0059 0.5890
PS 0.0094 0.0093 0.0093 0.5494

SPB 0.0093 0.0095 0.0093 0.5569

(0.5, 0.5, 1, 1, 0.5, 0.5) Two discrete
BR 0.0043 0.0049 0.0041 0.5875
PS 0.0094 0.0093 0.0093 0.5494

SPB 0.0123 0.0120 0.0123 0.5550

(0.5, 0.5, 1, 1) Two continuous
BR 0.0050 0.0053 0.0050 0.5883
PS 0.0139 0.0137 0.0141 0.5477

SPB 0.0079 0.0081 0.0078 0.5583

Table 3. CPs under misspecification scenarios: ε’s~increments of FBM, H = 0.9, drift = 0.5.

µ1, µ2, β1,β2, p1,p2 ti.fix = 0.7 Designs CP (Empirical) CP (BM) CP (FBM) H

(0.5, 0.5) No covariate
BR 0.0816 0.0776 0.0817 0.5889
PS 0.0931 0.0903 0.0926 0.5494

SPB 0.0940 0.0903 0.0935 0.5568

(0.5, 0.5, 1, 1, 0.5, 0.5) Two discrete
BR 0.0824 0.0774 0.0812 0.5874
PS 0.0931 0.0903 0.0926 0.5493

SPB 0.1020 0.0987 0.1019 0.5549

(0.5, 0.5, 1, 1) Two continuous
BR 0.0760 0.0728 0.0758 0.5882
PS 0.1013 0.0982 0.1010 0.5476

SPB 0.0911 0.0879 0.0905 0.5582
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Table 4. CPs under misspecification scenarios: ε’s~increments of FBM, H = 0.9, drift = 1.

µ1, µ2, β1,β2, p1,p2 ti.fix = 0.7 Designs CP (Empirical) CP (BM) CP (FBM) H

(0.5, 0.5) No covariate
BR 0.3896 0.3647 0.3893 0.5887
PS 0.3861 0.3720 0.3852 0.5491

SPB 0.3868 0.3704 0.3864 0.5566

(0.5, 0.5, 1, 1, 0.5, 0.5) Two discrete
BR 0.3927 0.3666 0.3920 0.5872
PS 0.3861 0.3720 0.3851 0.5490

SPB 0.4011 0.3854 0.3996 0.5547

(0.5, 0.5, 1, 1) Two continuous
BR 0.3911 0.3630 0.3898 0.5880
PS 0.3831 0.3712 0.3820 0.5474

SPB 0.3854 0.3700 0.3855 0.5580

Table 5. CPs under misspecification scenarios: ε’s~increments of FBM, H = 0.9, drift = 2.

µ1, µ2, β1,β2, p1,p2 ti.fix = 0.7 Designs CP (Empirical) CP (BM) CP (FBM) H

(0.5, 0.5) No covariate
BR 0.9788 0.9685 0.9784 0.5878
PS 0.9587 0.9528 0.9586 0.5482

SPB 0.9618 0.9551 0.9619 0.5557

(0.5, 0.5, 1, 1, 0.5, 0.5) Two discrete
BR 0.9779 0.9670 0.9774 0.5863
PS 0.9587 0.9528 0.9586 0.5481

SPB 0.9634 0.9565 0.9629 0.5537

(0.5, 0.5, 1, 1) Two continuous
BR 0.9771 0.9670 0.9767 0.5870
PS 0.9570 0.9505 0.9567 0.5465

SPB 0.9667 0.9594 0.9665 0.5571

Table 6. CPs under misspecification scenarios: ε’s~increments of FBM, H = 0.9, drift = 1.5, ti.fix = 0.7.

µ1, µ2, β1,β2, p1,p2 ti.fix = 0.7 Designs CP (Empirical) CP (BM) CP (FBM) H

(0.5, 0.5) No covariate
BR 0.8100 0.7744 0.8081 0.5883
PS 0.7675 0.7507 0.7669 0.5487

SPB 0.7732 0.7533 0.7727 0.5562

(0.5, 0.5, 1, 1, 0.5, 0.5) Two discrete
BR 0.8010 0.7686 0.7997 0.5868
PS 0.7675 0.7507 0.7669 0.5487

SPB 0.7809 0.7616 0.7800 0.5543

(0.5, 0.5, 1, 1) Two continuous
BR 0.8111 0.7747 0.8089 0.5876
PS 0.7619 0.7451 0.7607 0.5470

SPB 0.7766 0.7569 0.7760 0.5576

Table 7. CPs under misspecification scenarios: ε’s~increments of FBM, H = 0.9, drift = 1.5, ti.fix = 0.8.

µ1, µ2, β1,β2, p1,p2 ti.fix = 0.8 Designs CP (Empirical) CP (BM) CP (FBM) H

(0.5, 0.5) No covariate
BR 0.8705 0.8447 0.8697 0.5896
PS 0.8234 0.8120 0.8231 0.5491

SPB 0.8360 0.8214 0.8356 0.5568

(0.5, 0.5, 1, 1, 0.5, 0.5) Two discrete
BR 0.8571 0.8348 0.8568 0.5877
PS 0.8234 0.8120 0.8231 0.5490

SPB 0.8401 0.8260 0.8402 0.5558

(0.5, 0.5, 1, 1) Two continuous
BR 0.8701 0.8445 0.8695 0.5889
PS 0.8186 0.8071 0.8178 0.5476

SPB 0.8374 0.8224 0.8372 0.5577
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Table 8. CPs under misspecification scenarios: ε’s~increments of FBM, H = 0.9, drift = 1.5, ti.fix = 0.9.

µ1, µ2, β1,β2, p1,p2 ti.fix = 0.9 Designs CP (Empirical) CP (BM) CP (FBM) H

(0.5, 0.5) No covariate
BR 0.9041 0.8933 0.9041 0.5910
PS 0.8732 0.8658 0.8725 0.5496

SPB 0.8826 0.8746 0.8822 0.5576

(0.5, 0.5, 1, 1, 0.5, 0.5) Two discrete
BR 0.9052 0.8931 0.9049 0.5888
PS 0.8732 0.8658 0.8725 0.5495

SPB 0.8857 0.8781 0.8856 0.5563

(0.5, 0.5, 1, 1) Two continuous
BR 0.9107 0.9002 0.9108 0.5905
PS 0.8670 0.8609 0.8669 0.5482

SPB 0.8816 0.8739 0.8813 0.5574
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two discrete covariates with different ti.fix time points: (a) ti.fix = 0.7; (b) ti.fix = 0.8; (c) ti.fix = 0.9.
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(e) θ = 2.

5. Conclusions and Discussions

In this study, we investigated the sequential monitoring properties in covariate adap-
tive randomized clinical trials under the misspecification scenarios. We also performed



Fractal Fract. 2021, 5, 114 16 of 17

numerical simulations under various situations in which the mean estimates of Hurst
coefficient by MLE from the sequential test statistics under misspecification scenarios
deviated from 0.5. Brownian motion is satisfied only when H = 0.5. Therefore, the inde-
pendent increment assumption was violated and Brownian motion was not appropriate
for the sequential process. However, clinical researchers may not know the existence of the
covariance in the error terms, and hence use the original classical statistic test under the
misspecification scenarios, leading to non-Brownian motion trajectory of the test statistics
under sequential analysis. Therefore, it is necessary to estimate the Hurst coefficient.

We calculated conditional powers for covariate adaptive randomized clinical trials
with mis-specified error structures of the model under different covariate types, adaptive
designs, drift parameters, and interim time points. Conditional powers based on the
fractional Brownian motion (CP (FBM)) assumption resulted in better consistency with
the standard empirical value (CP (empirical)) than conditional powers under the classical
Brownian motion (CP (BM)) assumption. When the HMLE > 0.5, most conditional powers
under the FBM assumption were greater than the conditional powers under the classical
Brownian motion assumption. The fractional Brownian motion, incorporating a dependent
increment assumption, would be a reasonable approach for the clinical trial sequential
analyses. Even if the sequential procedure actually follows the Brownian motion, the
application of the fractional Brownian motion technique would still be useful, since BM is
a special case of FBM with H = 0.5.
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