
fractal and fractional

Article

Analytic Fuzzy Formulation of a Time-Fractional
Fornberg–Whitham Model with Power and
Mittag–Leffler Kernels

Saima Rashid 1 , Rehana Ashraf 2, Ahmet Ocak Akdemir 3, Manar A. Alqudah 4,*, Thabet Abdeljawad 5,6,*
and Mohamed S. Mohamed 7

����������
�������

Citation: Rashid, S.; Ashraf, R.;

Akdemir, A.O.; Alqudah, M.A.;

Abdeljawad, T.; Mohamed, M.S.

Analytic Fuzzy Formulation of a

Time-Fractional Fornberg–Whitham

Model with Power and Mittag–Leffler

Kernels. Fractal Fract. 2021, 5, 113.

https://doi.org/10.3390/

fractalfract5030113

Academic Editors: Muhammad

Yaseen and Asifa Tassaddiq

Received: 12 August 2021

Accepted: 2 September 2021

Published: 8 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Government College University, Faisalabad 38000, Pakistan;
saimarashid@gcuf.edu.pk

2 Department of Mathematics, Lahore College Women University, Lahore 54000, Pakistan;
rehana.ashraf@jhang.lcwu.edu.pk

3 Department of Mathematics, Faculty of Science and Letters, Agri Ibrahim Cecen University,
Agri 04100, Turkey; aocakakdemir@gmail.com

4 Department Mathematical Sciences, Faculty of Sciences, Princess Nourah Bint Abdulrahman University,
P.O. Box 84428, Riyadh 11671, Saudi Arabia

5 Department of Mathematics and General Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
6 China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
7 Department of Mathematics, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;

m.saaad@tu.edu.sa
* Correspondence: maalqudah@pnu.edu.sa (M.A.A.); tabdeljawad@psu.edu.sa (T.A.)

Abstract: This manuscript assesses a semi-analytical method in connection with a new hybrid fuzzy
integral transform and the Adomian decomposition method via the notion of fuzziness known as the
Elzaki Adomian decomposition method (briefly, EADM). Moreover, we use the aforesaid strategy
to address the time-fractional Fornberg–Whitham equation (FWE) under gH-differentiability by
employing different initial conditions (IC). Several algebraic aspects of the fuzzy Caputo fractional
derivative (CFD) and fuzzy Atangana–Baleanu (AB) fractional derivative operator in the Caputo
sense, with respect to the Elzaki transform, are presented to validate their utilities. Apart from that, a
general algorithm for fuzzy Caputo and AB fractional derivatives in the Caputo sense is proposed.
Some illustrative cases are demonstrated to understand the algorithmic approach of FWE. Taking
into consideration the uncertainty parameter ζ ∈ [0, 1] and various fractional orders, the convergence
and error analysis are reported by graphical representations of FWE that have close harmony with
the closed form solutions. It is worth mentioning that the projected approach to fuzziness is to verify
the supremacy and reliability of configuring numerical solutions to nonlinear fuzzy fractional partial
differential equations arising in physical and complex structures.

Keywords: Elzaki transform; Hukuhara difference; Caputo fractional derivative; Atangana–Baleanu
fractional derivative operator; Mittag–Leffler kernel; Fornberg–Whitham equation

1. Introduction

Recently, fractional calculus (FC) theory has shown incredible capabilities for describ-
ing the dynamical behavior and memory-related properties of scientific structures and
procedures. Fractional differential equations (FDEs) have been developed by researchers to
investigate and interpret natural phenomena in a variety of domains. FC theory comprises
numerous generalizations in terms of non-local properties of fractional operators, expanded
degree of independence, and maximum information application, and these features only
arise in fractional order processes, not in integer-order mechanisms. Some scholars have
recently investigated a series of innovative mathematical models using distinct local and
non-local fractional derivative operators (see, [1–12]).
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Recently, many innovative fractional derivative operators beyond the singular kernel
have been explored, such as the Mittag–Leffler function [13] and exponential function [14].
In particular, researchers who would like to develop and address a real-life problem
have recommended fractional operators, see [15]. Problems involving these operators can
be solved quickly and reliably because they include a non-singular kernel. Numerical
algorithms can also be conducted conveniently regarding the integral transforms of these
fractional formulations. Many authors have investigated fractional operators, as evidenced
by the references [16,17] and those cited therein.

Modeling uncertain problems with fuzzy set theory is a useful method. As a conse-
quence, fuzzy notions have been employed to model a wide range of natural processes.
Specifically, fuzzy partial differential equations (PDEs) have been exploited in a wide
range of scientific domains, including patteren formation theory, engineering, population
dynamics, control systems, knowledge-based systems, image processing, power engineer-
ing, industrial automation, robotics, consumer electronics, artificial intelligence/expert
systems, management, and operations research. However, the notion of fuzzy set theory
has a strong connection with fractional calculus, due to its crucial aspects in various scien-
tific disciplines [18]. In 1978, Kandel and Byatt [19] contemplated the idea of fuzzy DEs,
then Agarwal et al. [20] were the first to address fuzziness and the Riemann–Liouville
differentiability notion under the Hukuhara differentiability. Fuzzy set theory and FC
incorporate several numerical approaches that enable a more in-depth understanding of
complicated systems while also reducing the amount of computational cost involved in
the solution process. In the case of FPDEs, finding accurate analytical solutions is a diffi-
cult task. To cope with this challenge, several numerical methods have been expounded
to obtain the analytical solutions of PDES and ODEs, such as the Adomian decomposi-
tion method (ADM) [21], q-homotopy analysis method (q-HAM) [22], pseudo spectral
method (PSM) [23], Laguerre wavelets collocation method (LWCM) [24], new Legendre-
Wavelets decomposition method (NLWDM) [25], etc. Fuzzy FPDEs have expanded in
prominence over the last decade as a result of their vast applicability and significance in
analyzing the behavior of complex geometries. Recently, Hoa et al. [26,27] investigated
the gH-differentiability with a Katugampola fractional derivative in the Caputo sense and
employed fuzzy FDEs. Salahshour et al. [28] expounded the H-differentiability with the
Laplace transform to solve the FDEs. Ahmad et al. [29] studied the third order fuzzy dis-
persive PDEs in the Caputo, Caputo–Fabrizio, and Atangana–Baleanu fractional operator
frameworks. Shah et al. [30] presented the evolution of one dimensional fuzzy fractional
PDEs. For more details, see [31–34] and the references cited therein.

Accessing the influence of PDEs for external potential has been extensively applied as
a model for the evaluation of multiple challenges. The Fornberg–Whitham (FW) model is an
important complex formulation in mathematical physics. The FWE [35,36] is presented as

∂f
∂ϑ
− ∂3f

∂ϑ∂`2
1
+

∂f
∂`1

= f
∂3f
∂`3

1
− f

∂f
∂`1

+ 3
∂f
∂`1

∂2f
∂`2

1
, (1)

where the fluid velocity is expressed by f(`1, ϑ) along with `1 as the spatial co-ordinate
and ϑ denoting time. In 1978, Fornberg and Whitham [35,36] contemplated a solution

f(`1, ϑ) = δ exp
(
`1
2 −

4ϑ
3

)
with an arbitrarily defined constant of α. The FWE has been

discovered to need peakon outcomes as a model for controlling wave heights and wave
break frequency. Recently, various sorts of FWE models in physics have been investigated
by Abidi and Omrani [37], Gupta and Singh [38], Lu [39], Sakar et al. [40], Chen et al. [41],
Yin et al. [42], Zhou and Tian [43], He et al. [44], Fan et al. [45], Jiang and Bi [46].

This research creates a modified fuzzy EADM framework to assess the fuzzy time
fractional FWE. The approximate analytical solutions for various fractional Brownian
movements, as well as standard motion, are derived using the uncertainty parameter in
ICs. Graphically, the diversity of approximate results is illustrated, and the error estimate
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demonstrates the validity of the approximate analytical solutions. In the time fractional
operator form, this equation can be expressed as

∂αf
∂ϑα
− ∂3f

∂ϑ∂`2
1
+

∂f
∂`1

= f
∂3f
∂`3

1
− f

∂f
∂`1

+ 3
∂f
∂`1

∂2f
∂`2

1
, (2)

subject to ICs f(`1, 0) = exp
( `1

2
)

and cosh2 ( `1
4
)
, and α ∈ (0, 1] is the order of the time

fractional derivative. It is remarkable that the exact traveling wave solution of FWE subject
to IC f(`1, ϑ) = 0.75 exp

( 3`1−2ϑ
6

)
has been investigated in [38].

In order to simplify the approach to solving ODEs and PDEs in the time domain,
Tarig Elzaki [47] introduced a new transform known as ET in 2001. This innovative
transform is a refinement of existing transforms (Laplace and Sumudu) that can help
determine the analytical solutions of PDEs in a similar fashion to the Laplace and Sumudu
transformations.

The ADM is a semi-analytical approach to solving linear-nonlinear FDEs by advanta-
geously creating a functional series solution, initially presented by Adomian [48]. Later,
this approach was used with numerous transformations (such as the Sumudu, Aboodh,
Laplace, and Mohand transforms), as shown in [49–58].

Owing to the above propensity, configuring the exact solution of nonlinear fuzzy
fractional PDEs is an ever challenging task. In this paper, our intention is to establish an
efficacious algorithm for generating estimated solutions of fuzzy fractional FWE, the gen-
eral FWE arising in wave breaking subject to uncertainty in IC by EADM that models the
dynamics of the system being analyzed. The EADM is merged with the Elzaki transform
(ET), and the ADM is known as the Elzaki Adomian decomposition method (EADM).
This novel method is applied to examining fractional-order FW models. The findings of
a particular test case are evaluated in terms of showing that the proposed technique is
viable. The findings of the fractional-order with an uncertainty factor are determined by ad-
vanced tools and methods. The convergence analysis for EADM was also briefly discussed.
The FW model was leveraged to generate synthesized trajectories. In a simulation study,
we illustrate the applicability and effectiveness of the offered algorithmic strategies for
determining numerical solutions. Several fuzzy fractional orders of linear and non-linear
PDEs can be addressed using the proposed method.

2. Preliminaries

This section clearly exhibits some major features connected to the stream of fuzzy
(F) set theory and FC, as well as certain key findings about ET. For more details, we refer
to [59].

Definition 1 ([60,61]). We say that Ω : R 7→ [0, 1] is a F number, if it holds the subsequent
assumptions:

1. Ω is normal (for some `10 ∈ R; Ω(`10) = 1);
2. Ω is upper semi continuous;
3. Ω(`1ϑ + (1− ϑ)`2) ≥

(
Ω(`1) ∧Ω(`2)

)
∀ϑ ∈ [0, 1], `1, `2 ∈ R,, i.e., Ω is convex;

4. cl
{
`1 ∈ R, Ω(`1) > 0

}
is compact.

Definition 2 ([60]). We say that a F number Ω is a ζ-level set described as

[Ω]ζ =
{

f ∈ R : Ω(f) ≥ ζ
}

, (3)

where ζ ∈ [0, 1] and f ∈ R.

Definition 3 ([60]). The parameterized version of a F number is denoted by
[
Ω(ζ), Ω̄(ζ)

]
such

that ζ ∈ [0, 1] satisfies the subsequent assumptions:

1. Ω(ζ) is non-decreasing, left continuous, bounded over (0, 1] and left continuous at 0.
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2. Ω̄(ζ) is non-increasing, right continuous, bounded over (0, 1] and right continuous at 0.
3. Ω(ζ) ≤ Ω̄(ζ).

Moreover, ζ is known to be a crisp number if Ω(ζ) = Ω̄(ζ) = ζ.

Definition 4 ([59]). For ζ ∈ [0, 1] and χ to be a scalar, assume that there are two F numbers
f̃ = (f, f̄), φ̃ = (φ, φ̄), then the addition, subtraction and scalar multiplication, respectively, are
stated as

1. f̃⊕ φ̃ =
(
f(ζ)⊕ φ(ζ), f̄(ζ)⊕ φ̄(ζ)

)
;

2. f̃	 φ̃ =
(
f(ζ)	 φ(ζ), f̄(ζ)	 φ̄(ζ)

)
;

3. χ� f̃ =

{
(χ� f, χ� f̄) χ ≥ 0,
(χ� f̄, χ� f) χ < 0.

Suppose the set D̃ is a domain of F-valued mapping Θ. Let us introduce the mappings
Θ(., ., ζ), Θ̄(., ., ζ): D̃ 7→ R, ∀ zeta ∈ [0, 1]. These mappings are said to be the left and right
℘-level mappings of the map Θ.

Definition 5 ([28]). Suppose a F mapping Θ : Ẽ × Ẽ 7→ R with two F numbers f̃ = (f, f̄),
φ̃ = (φ, φ̄), then the Θ-distance between f̃ and φ̃ is represented as

Θ(f̃, φ̃) = sup
ζ∈[0,1]

[
max

{
|f(ζ)− φ(ζ)|, |f̄(ζ)− φ̄(ζ)|

}]
. (4)

Definition 6 ([28]). Consider a F mapping Θ : D̃ 7→ Ẽ, is said to be continuous at (a0, b0) ∈ D̃
if for every ε > 0 and there is δ > 0 such that

d(Θ(a, b), Θ(a0, b0)) < ε; whenever|a− a0|+ |b− b0| < δ. (5)

If Θ is continuous for each (a, b) ∈ D̃, we say that Θ is continuous on D̃.

Definition 7 ([62]). Let β1, β2 ∈ Ẽ, if β3 ∈ Ẽ and β1 = β2 + β3. TheH-difference β3 of β1 and
β2 is denoted as β1 	H β2. Observe that β1 	H β2 6= β1 + (−1)β2.

Now suppose β1, β2 ∈ Ẽ, then β1 	 _gHβ2 = β3 ⇔
(i) β3 = (β1(ζ)− β

2
(ζ), β̄1(ζ)− β̄2(ζ)).

or

(ii) β3 = (β̄1(ζ)− β̄2(ζ), β1(ζ)− β
2
(ζ)).

The following Lemma demonstrates the link between the gH-difference and the Hous-
droff distance.

Lemma 1 ([63]). For all β1, β2 ∈ Ẽ, then

d(β1, β2) = sup
ζ∈[0,1]

∥∥[β1]
ζ 	 gH[β2]

ζ
∥∥, (6)

where, for an interval [a, b], the norm is ‖[a, b]‖ = max
{
|a|, |b|

}
.

Definition 8 ([64]). Suppose Θ : D̃ 7→ Ẽ and (`0, ϑ) ∈ D̃. Then Θ is said to be strongly
generalized Hukuhara differentiable on (ζ0, ϑ) (gH-differentiable) if ∃ an element ∂θ(`0,ϑ)

∂` ∈ Ẽ such
that the following holds:

(i) For all h̄ > 0 of sufficiently small size, the subsequent gH-differences exist:

Θ(`0 + h̄, ϑ)	 gHΘ(`0, ϑ), Θ(`0, ϑ)	 gHΘ(`0 − h̄, ϑ)
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and the following limits hold:

lim
h̄ 7→0

Θ(`0 + h̄, ϑ)	 gHΘ(`0, ϑ)

h̄
= lim

h̄ 7→0

Θ(`0, ϑ)	 gHΘ(`0 − h̄, ϑ)

h̄
=

∂θ(`0, ϑ)

∂`
.

(ii) For all h̄ > 0 of sufficiently small size, the subsequent gH-differences exist:

Θ(`0, ϑ)	 gHΘ(`0 + h̄, ϑ), Θ(`0 − h̄, ϑ)	 gHΘ(`0, ϑ)

and the following limits hold:

lim
h̄ 7→0

Θ(`0, ϑ)	 gHΘ(`0 + h̄, ϑ)

−h̄
= lim

h̄ 7→0

Θ(`0 − h̄, ϑ)	 gHΘ(`0, ϑ)

−h̄
=

∂θ(`0, ϑ)

∂`
.

Lemma 2 ([65]). Consider that Θ:D̃ 7→ Ẽ is a continuous F -valued mapping and Θ(`, ϑ) =
(Θ(`, ϑ, ζ), Θ̄(`, ϑ, ζ)), ∀ζ ∈ [0, 1]. Then

(i) If Θ(`, ϑ) is (i)-partial differentiable for ` (i.e., Θ is partial differentiable for ` under the
meaning of Definition 8 (i)), then

∂Θ(`, ϑ)

∂`
=

(
∂Θ(`, ϑ)

∂`
,

∂Θ̄(`, ϑ)

∂`

)
, (7)

(ii) If Θ(`, ϑ) is (i)-partial differentiable for ` (i.e., Θ is partial differentiable for ` under the
meaning of Definition 8 (ii)), then

∂Θ(`, ϑ)

∂`
=

(
∂Θ̄(`, ϑ)

∂`
,

∂Θ(`, ϑ)

∂`

)
. (8)

Definition 9 ([28]). Assume that a F mapping f ∈ CF[0, d1]
⋂
LF[0, d1] is represented in param-

eterized version as f =
[
fζ(ϑ), f̄ζ(ϑ)

]
, ζ ∈ [0, 1] and ϑ0 ∈ (0, d1), then CFD in the F sense is

stated as [
Dαf(ϑ0)

]
ζ
=
[
Dαf(ϑ0),Dα f̄(ϑ0)

]
, ζ ∈ (0, ζ], (9)

where q = [ζ].

[
Dαf(ϑ0)

]
=

1
Γ(q− α)

[ ϑ∫
0

(ϑ− `1)
q−α−1 dq

d`q
1

f(`1)d`1

]
ϑ=ϑ0

,

[
Dα f̄(ϑ0)

]
=

1
Γ(q− α)

[ ϑ∫
0

(ϑ− `1)
q−α−1 dq

d`q
1

f̄(`1)d`1

]
ϑ=ϑ0

. (10)

2.1. A Fuzzy Elzaki Transform for Fuzzy Caputo Fractional Derivative and a Fuzzy
Atangana–Baleanu Fractional Derivative Operator

Definition 10. Consider f̃ to be continuous F-valued mapping and assume that exp
(−ϑ

ω

)
� f̃(ϑ)

is an improper fuzzy Riemann-integrable on [0, ∞) and then
∞∫
0

exp
(−ϑ

ω

)
� f̃(ϑ)dϑ is said to be

the fuzzy Elzaki transform and is described over the set of mappings:

M =
{

f(ϑ) : ∃z, p1, p2 > 0,
∣∣f(ϑ)∣∣ < ze

|ϑ|
pi , i f ϑ ∈ (−1)i × [0, ∞)|

}
. (11)
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where z is a finite number, but p1, p2 may be finite or infinite, then the fuzzy Elzaki transform is
described as

E
{

f̃(ϑ)
}
= Q(ω) = ω

∞∫
0

e−
ϑ
ω � f̃(ϑ)dϑ, ϑ ≥ 0, ω ∈ [p1, p2]. (12)

Remark 1. In (12), f̃ hold the cases of the decreasing diameter f and the increasing diameter f̄ of
a fuzzy mapping f. Moreover, when ω = 1, then the fuzzy Elzaki transform reduces to a Laplace
transform.

The parameterized version of f̃(ϑ) is defined as

ω

∞∫
0

e−
ϑ
ω f̃(ϑ)dϑ =

[
ω

∞∫
0

e−
ϑ
ω f(ϑ)dϑ, ω

∞∫
0

e−
ϑ
ω f̄(ϑ)dϑ

]
. (13)

Thus,

E
[
f(ϑ, ζ)

]
=
[
E
[
f(ϑ, ζ)

]
,E
[
f̄(ϑ, ζ)

]]
. (14)

2.2. Some Algebraic Properties of Fuzzy Elzaki Transform

Here, our first result is the following theorem.

Theorem 1. Assume that an integrable fuzzy valued mapping f̃(q)(ϑ) and f̃(ϑ) is the primitive of
f̃(q)(ϑ) on [0, ∞), then

E
[
f̃(q)(ϑ)

]
= (

1
ω
)q �E

[
f̃(ϑ)

]
	

q−1

∑
κ=0

ω2−q+κ � f̃(κ)(0). (15)

The first few terms of (15) are represented as follows:

E
[
f̃′(ϑ)

]
= (

1
ω
)�Q(ω)	ω� f̃(0),

E
[
f̃′′(ϑ)

]
= (

1
ω
)2 �Q(ω)−ω� f̃′(0)	 f̃(0). (16)

Proof. Assume that ζ ∈ [0, 1] is arbitrary, and then we deduce

(
1
ω
)q �E

[
f̃(ϑ)

]
	

q−1

∑
κ=0

ω2−q+κ � f̃(κ)(0)

=

(
(

1
ω
)q �E

[
f̄(ϑ; ζ)

]
	

q−1

∑
κ=0

ω2−q+κ � f̄(κ)(0; ζ), (
1
ω
)q �E

[
f(ϑ; ζ)

]
	

q−1

∑
κ=0

ω2−q+κ � f(κ)(0; ζ)

)
. (17)

In view of (14), we have

(
1
ω
)n �E

[
f̃(ϑ)

]
	

q−1

∑
κ=0

ω2−q+κ � f̃(κ)(0)

=

(
E
[
f̄(q)(ϑ; ζ)

]
,E
[
f(q)(ϑ; ζ)

])
. (18)
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By mathematical induction, (15) holds for q = κ and, utilizing (18), we have

E
[
(f̃κ(ϑ))′

]
=

1
ω
�E

[
f̃κ(ϑ)

]
	 f̃κ(0)

=
1
ω
�
[
(

1
ω
)κ �E

[
f̃(ϑ)

]
	

κ−1

∑
=0

ω2−κ+ � f̃()(0)
]
	 ˜f(κ)(0)

= (
1
ω
)κ+1 �E

[
f̃(ϑ)

]
	

κ

∑
=0

ω1−+κ � f̃()(0). (19)

Consequently, (15) is truewhen q = κ + 1. This completes the proof.

Our next result is the convolution property of the fuzzy Elzaki transform.

Theorem 2. Assume that two integrable fuzzy-valued mappings f̃1(ϑ) and f̃2(ϑ), with their
respective fuzzy Elzaki transforms Q1(ω) and Q2(ω), respectively, then

E
[(

f̃1 ∗ f̃2
)
(ϑ)
]
= ω−1 �Q1(ω)�Q2(ω), (20)

where the convolution of f̃1 ∗ f̃2 is defined as

ϑ∫
0

f̃1(τ)� f̃2(ϑ− τ)dτ =

ϑ∫
0

f̃1(ϑ− τ)� f̃2(τ)dτ. (21)

Proof. Utilizing (13), (20) and (21), we have

E
[ ϑ∫

0

f̃1(τ)� f̃2(ϑ− τ)dτ

]
= ω

∞∫
0

exp
(
− ϑ

ω

)
�
( ϑ∫

0

f̃1(τ)� f̃2(ϑ− τ)dτ

)
dτ. (22)

Exchanging the order and limit of the integrals, we have

E
[ ϑ∫

0

f̃1(τ)� f̃2(ϑ− τ)dτ

]
= ω

∞∫
0

(
f̃(τ)�

∞∫
τ

exp
(
− ϑ

ω

)
� f̃2(ϑ− τ)dϑ

)
dτ. (23)

Substituting θ = ϑ− τ, we have

∞∫
τ

exp
(−ϑ

ω

)
� f̃2(ϑ− τ)dϑ =

∞∫
0

exp
(−(θ + τ)

ω

)
� f̃2(θ)dθ

= exp
(
− τ

ω

)
�

∞∫
0

exp
(
− θ

ω

)
� f̃2(θ)dθ

= exp
(
− τ

ω

)
� 1

ω
�Q2(ω). (24)

Thus, we conclude

E
[ ϑ∫

0

f̃1(τ)� f̃2(ϑ− τ)dτ

]
=

∞∫
0

f̃1(τ)� exp
(
− τ

ω

)
�Q2(ω)dτ

= ω−1 �Q1(ω)�
[ ∞∫

0

f̃1(τ)� exp
(
− τ

ω

)
dτ

]
= ω−1 �Q2(ω)�Q1(ω). (25)
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Theorem 3. (Inverse fuzzy Elzaki transform.) Consider the mapping f(ϑ) ∈ M and Q(ω) to
be the fuzzy Elzaki transform of the mapping f(ϑ), then the inverse transforms E−1 are presented
as follows:

E−1[Q(ω)
]

= lim
b1 7→∞

1
2πι
�

a1+ιb1∫
a1−ιb1

Q
( 1

ω

)
� exp(ϑω)�ωdω

= ∑ residues o f
[
Q
( 1

ω

)
� exp(ϑω)�ω

]
. (26)

Adopting the idea of Allahviranloo et al. [66], here, we illustrate the fuzzy Elzaki
transform of Caputo and generalize the Hukuhara derivative gHDα

ϑf(ϑ).

Theorem 4. Consider an integrable fuzzy-valued mapping gHDα
ϑ f̃(ϑ) and f(ϑ) is the primitive of

gHDα
ϑ f̃(ϑ) defined on [0, ∞), then the CFD operator of order α satisfies

E
[

gHDα
ϑ f̃(ϑ)

]
=
( 1

ω

)α
�E

[
f̃(ϑ)

]
	

q−1

∑
κ=0

ω2−α+κ � f̃(κ)(0), q− 1 < α ≤ 1. (27)

Proof. By means of Definition 10 and Theorem 2, we have

gHDα
ϑ f̃(ϑ) =

1
Γ(q− α)

�
ϑ∫

0

(ϑ− τ)q−α−1 � ∂q f̃ (τ)
∂τq dτ

=
1

Γ(q− α)
� f̃(q) � ϑq−α−1. (28)

Again, in view of Definition 10 and Theorem 1, we obtain

gHDα
ϑ f̃(ϑ) =

1
Γ(q− α)

�E
[
ϑq−α−1 � ˜f(q)(ϑ)

]
=
( 1

ω

)α
�E

[
f̃(ϑ)

]
	

q−1

∑
κ=0

ω2−α+κ � f̃(κ)(0). (29)

Using the fact that ζ ∈ [0, 1], and the result provided by Salahhshour et al. [67], we have

( 1
ω

)α
�E

[
f̃(ϑ)

]
	

q−1

∑
κ=0

ω2−α+κ � f̃(κ)(0)

=

(( 1
ω

)α
E
[
f(ϑ; ζ)

]
−

q−1

∑
κ=0

ω2−α+κf(κ)(0; ζ),
( 1

ω

)α
E
[
f̄(ϑ wp)

]
−

q−1

∑
κ=0

ω2−α+κ f̄(κ)(0; ζ)

)
. (30)

This completes the proof.

Next we illustrate the linearity property of yjr fuzzy Elzaki transform.

Theorem 5. Assume that there are two continuous fuzzy valued-mappings f̃1(ϑ) and f̃2(ϑ) with
real constants c1 and c2,, then

E
[
c1 � f̃1(ϑ)⊕ c2 � f̃2(ϑ)

]
= c1 �E

[
f̃1(ϑ)

]
+ c2 �E

[
f̃2(ϑ)

]
. (31)
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Proof. Consider ζ ∈ [0, 1] to be arbitrarily fixed. Then, by means of (13), we have

E
[
c1 � f̃1(ϑ)⊕ c2 � f̃1(ϑ)

]
= ω

∞∫
0

(
a1 � f̃1(ϑ)⊕ c2 � f̃2(ϑ)

)
� exp

(−ϑ

ω

)
dϑ

= ω

∞∫
0

c1 � f̃1(ϑ)� exp
(−ϑ

ω

)
dϑ⊕ω

∞∫
0

c2 � f̃2(ϑ)� exp
(−ϑ

ω

)
dϑ

=

(
c1 �ω

∞∫
0

f̃1(ϑ)� exp
(−ϑ

ω

)
dϑ

)
⊕
(

c2 �ω

∞∫
0

f̃1(ϑ)� exp
(−ϑ

ω

)
dϑ

)

= c1 �
(

ω

∞∫
0

f1(ϑ; ζ)� exp
(−ϑ

ω

)
dϑ, ω

∞∫
0

f̄1(ϑ; ζ)� exp
(−ϑ

ω

)
dϑ

)

⊕ c2 �
(

ω

∞∫
0

f2(ϑ; ζ)� exp
(−ϑ

ω

)
dϑ, ω

∞∫
0

f̄2(ϑ; ζ)� exp
(−ϑ

ω

)
dϑ

)
= c1 �E

[
f̃1(ϑ)

]
+ c2 �E

[
f̃2(ϑ)

]
, (32)

This completes the proof.

Definition 11. Consider f ∈ CF[0, d̄1]
⋂
LF[0, d̄1] such that f(ϑ) =

[
f(ϑ, ζ), f̄(ϑ, ζ)

]
, ζ ∈ [0, 1],

then the Elzaki transform of fuzzy CFD of order α ∈ (0, 1] is described as follows:

E
[
(Dαf(ϑ))ζ

]
=
[
E[Dαf(ϑ, ζ)],E[Dα f̄(ϑ, ζ)]

]
, (33)

where

E[Dαf(ϑ, ζ)] =
1

ωα
E[f(ϑ, ζ)]−

q−1

∑
κ=0

f(κ)(`1; ζ)ω2−α+κ , α ∈ (q− 1, q],

E[Dα f̄(ϑ, ζ)] =
1

ωα
E[f̄(ϑ, ζ)]−

q−1

∑
κ=0

f̄(κ)(`1; ζ)ω2−α+κ , α ∈ (q− 1, q]. (34)

Definition 12. Consider f̃(ϑ) ∈ H̃1(0, T) and α ∈ [0, 1], then the αth-order variable Atangana–
Baleanu derivative under (i)—gH differentiability of f̃ in the Caputo sense is stated as[

ABCDα
(i)−gH f̃(ϑ0; ζ)

]
=
[

ABCDα
(i)−gHf(ϑ0; ζ), ABCDα

(i)−gH f̄(ϑ0; ζ)
]
, ζ ∈ [0, 1], (35)

where

ABCDα
(i)−gHf(ϑ0; ζ) =

N (α)

1− α

[ ϑ∫
0

f′(i)−gH(`1)Eα

[−α(ϑ− `1)
α

1− α

]
d`1

]
ϑ=ϑ0

,

ABCDα
(i)−gH f̄(ϑ0; ζ) =

N (α)

1− α

[ ϑ∫
0

f̄′(i)−gH(`1)Eα

[−α(ϑ− `1)
α

1− α

]
d`1

]
ϑ=ϑ0

, (36)

whereN (α) denotes the normalize function that equals 1 when α is assumed to be 0 and 1. Further-
more, we suppose that type (i)—gH exists. So here is no need to consider (ii)—
gH differentiability.

Yauvaz and Abdeljawad [68] defined the ABC fractional derivative operator in the
Elzaki sense. Furthermore, we extend the idea of a fuzzy ABC fractional derivative in the
Elzaki transform sense as follows:
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Definition 13. Consider f ∈ CF[0, d̄1]
⋂
LF[0, d̄1] such that f(ϑ) =

[
f(ϑ, ζ), f̄(ϑ, ζ)

]
, ζ ∈ [0, 1],

then the Elzaki transform of fuzzy ABC of order α ∈ [0, 1] is described as follows:

E
[
( ABCDαf(ϑ))ζ

]
=
[
E[ ABCDαf(ϑ, ζ)],E[ ABCDα f̄(ϑ, ζ)]

]
, (37)

where

E[ ABCDαf(ϑ, ζ)] =
ωN (α)

αωα + 1− α

[
E[f(ϑ, ζ)]

ω
−ωf(0)

]
,

E[ ABCDα f̄(ϑ, ζ)] =
ωN (α)

αωα + 1− α

[
E[f̄(ϑ, ζ)]

ω
−ωf̄(0)

]
. (38)

3. Proposed Algorithm

Here, the general methodology of obtaining the numerical results of one-dimensional
fractional FWE involving the CFD and ABC fractional derivative operator in the fuzzy ET
is investigated.

The parameterized version of (2) is presented as

∂α

∂ϑα f(`1, ϑ; ζ) = ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)− ∂
∂`1

f(`1, ϑ; ζ) + f(`1, ϑ; ζ) ∂3

∂`3
1
f(`1, ϑ; ζ)

−f(`1, ϑ; ζ) ∂
∂`1

f(`1, ϑ; ζ) + 3 ∂
∂`1

f(`1, ϑ; ζ) ∂2

∂`2
1
f(`1, ϑ; ζ),

f(`1, 0) = g(`1; ζ),
∂α

∂ϑα f̄(`1, ϑ; ζ) = ∂3

∂`2
1∂ϑ

f̄(`1, ϑ; ζ)− ∂
∂`1

f̄(`1, ϑ; ζ) + f̄(`1, ϑ; ζ) ∂3

∂`3
1
f̄(`1, ϑ; ζ)

−f̄(`1, ϑ; ζ) ∂
∂`1

f̄(`1, ϑ; ζ) + 3 ∂
∂`1

f̄(`1, ϑ; ζ) ∂2

∂`2
1
f̄(`1, ϑ; ζ),

f̄(`1, 0) = ḡ(`1; ζ).

(39)

Employing ET on both sides of the first preceding case of (39) by utilizing the fuzzy
CFD, we have

E
[
f(`1, ϑ; ζ)

]
= E

[
∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)− ∂

∂`1
f(`1, ϑ; ζ) + f(`1, ϑ; ζ)

∂3

∂`3
1

f(`1, ϑ; ζ)

−f(`1, ϑ; ζ)
∂

∂`1
f(`1, ϑ; ζ) + 3

∂

∂`1
f(`1, ϑ; ζ)

∂2

∂`2
1

f(`1, ϑ; ζ)

]
(40)

subject to the IC f(`1, 0) = g(`1), we have

1
ωα

E
[
f(`1, ϑ; ζ)

]
−

q−1

∑
κ=0

f(κ)(`1; ζ)ω2−α+κ = E
[

∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)− ∂

∂`1
f(`1, ϑ; ζ) + f(`1, ϑ; ζ)

∂3

∂`3
1

f(`1, ϑ; ζ)

−f(`1, ϑ; ζ)
∂

∂`1
f(`1, ϑ; ζ) + 3

∂

∂`1
f(`1, ϑ; ζ)

∂2

∂`2
1

f(`1, ϑ; ζ)

]
,
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or, accordingly, we have

E
[
f(`1, ϑ; ζ)

]
= ω2g(`1; ζ) + ωαE

[
∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)− ∂

∂`1
f(`1, ϑ; ζ) + f(`1, ϑ; ζ)

∂3

∂`3
1

f(`1, ϑ; ζ)

−f(`1, ϑ; ζ)
∂

∂`1
f(`1, ϑ; ζ) + 3

∂

∂`1
f(`1, ϑ; ζ)

∂2

∂`2
1

f(`1, ϑ; ζ)

]
. (41)

Again, applying ET on both sides of the first preceding case of (39) by utilizing the fuzzy
ABC fractional derivative, we have

E
[
f(`1, ϑ; ζ)

]
= ω2g(`1; ζ) +

(
αωα + 1− α

N (α)

)
E
[

∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)− ∂

∂`1
f(`1, ϑ; ζ)

+f(`1, ϑ; ζ)
∂3

∂`3
1

f(`1, ϑ; ζ)− f(`1, ϑ; ζ)
∂

∂`1
f(`1, ϑ; ζ) + 3

∂

∂`1
f(`1, ϑ; ζ)

∂2

∂`2
1

f(`1, ϑ; ζ)

]
. (42)

The unknown series solution is expressed as

f(`1, ϑ; ζ) =
∞

∑
q=0

f(`1, ϑ; ζ), (43)

and the nonlinear terms are decomposed as

N 1(`1, ϑ; ζ) =
∞

∑
q=0
Aq(`1, ϑ; ζ) = f(`1, ϑ; ζ)

∂3

∂`3
1

f(`1, ϑ; ζ),

N 2(`1, ϑ; ζ) =
∞

∑
q=0
Bq(`1, ϑ; ζ) = f(`1, ϑ; ζ)

∂

∂`1
f(`1, ϑ; ζ),

N 3(`1, ϑ; ζ) =
∞

∑
q=0
Cq(`1, ϑ; ζ) =

∂

∂`1
f(`1, ϑ; ζ)

∂2

∂`2
1

f(`1, ϑ; ζ), (44)

where Aq,Bq and Cq are known to be the Adomian polynomial are presented as

Aq =
1
q!

dq

dλq

[
N 1

( ∞

∑
q=0

λqfq(`1, ϑ; ζ)

)]
λ=0

,

Bq =
1
q!

dq

dλq

[
N 2

( ∞

∑
q=0

λqfq(`1, ϑ; ζ)

)]
λ=0

,

Cq =
1
q!

dq

dλq

[
N 3

( ∞

∑
q=0

λqfq(`1, ϑ; ζ)

)]
λ=0

. (45)

Now, (41) and (42), respectively, can be expressed as

E
[ ∞

∑
q=0

f(`1, ϑ; ζ)

]
= ω2g(`1; ζ) + ωαE

[ ∞

∑
q=0

(
∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)

)
q
−

∞

∑
q=0

(
∂

∂`1
f(`1, ϑ; ζ)

)
q

+
∞

∑
q=0
Aq(`1, ϑ; ζ)−

∞

∑
q=0
Bq(`1, ϑ; ζ) + 3

∞

∑
q=0
Cq(`1, ϑ; ζ)

]
(46)

and
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E
[ ∞

∑
q=0

f(`1, ϑ; ζ)

]
= ω2g(`1; ζ) +

(
αωα + 1− α

N (α)

)
E
[ ∞

∑
q=0

(
∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)

)
q
−

∞

∑
q=0

(
∂

∂`1
f(`1, ϑ; ζ)

)
q

+
∞

∑
q=0
Aq(`1, ϑ; ζ)−

∞

∑
q=0
Bq(`1, ϑ; ζ) + 3

∞

∑
q=0
Cq(`1, ϑ; ζ)

]
. (47)

Applying the inverse ET on (46) and comparing terms by terms on both sides, we have

f0(`1, ϑ; ζ) = E−1
[
ω2g(`1; ζ)

]
,

f1(`1, ϑ; ζ) = E−1
[

ωαE
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

1
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
1
+A1(`1, ϑ; ζ)−B1(`1, ϑ; ζ)

+3C1(`1, ϑ; ζ)
]]

,

f2(`1, ϑ; ζ) = E−1
[

ωαE
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

2
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
2
+A2(`1, ϑ; ζ)−B2(`1, ϑ; ζ)

+3C2(`1, ϑ; ζ)
]]

,

...

fq+1(`1, ϑ; ζ) = E−1
[

ωαE
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

q
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
q
+Aq(`1, ϑ; ζ)−Bq(`1, ϑ; ζ)

+3Cq(`1, ϑ; ζ)
]]

.

Again, applying the inverse ET on (47) and comparing terms by terms on both sides,
we have

f0(`1, ϑ; ζ) = E−1
[
ω2g(`1; ζ)

]
,

f1(`1, ϑ; ζ) = E−1
[(

αωα + 1− α

N (α)

)
E
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

0
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
0
+A0(`1, ϑ; ζ)

−B0(`1, ϑ; ζ) + 3C0(`1, ϑ; ζ)
]]

,

f2(`1, ϑ; ζ) = E−1
[(

αωα + 1− α

N (α)

)
E
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

1
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
1
+A1(`1, ϑ; ζ)

−B1(`1, ϑ; ζ) + 3C1(`1, ϑ; ζ)
]]

,

...

fq+1(`1, ϑ; ζ) = E−1
[(

αωα + 1− α

N (α)

)
E
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

q
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
q
+Aq(`1, ϑ; ζ)

−Bq(`1, ϑ; ζ) + 3Cq(`1, ϑ; ζ)
]]

.

Hence, the required series solution is expressed as

f(`1, ϑ; ζ) = f0(`1, ϑ; ζ) + f1(`1, ϑ; ζ) + ... . (48)
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Repeating the same procedure for the upper case of (39). Therefore, we mention the
solution in the parameterized version as follows:{

f(`1, ϑ; ζ) = f0(`1, ϑ; ζ) + f1(`1, ϑ; ζ) + ... ,
f̄(`1, ϑ; ζ) = f̄0(`1, ϑ; ζ) + f̄1(`1, ϑ; ζ) + ... .

(49)

4. Test Examples and Their Physical Interpretation

In this note, we demonstrate the series solutions with the aid of EADM concerning
different initial conditions by employing fuzzy Caputo and ABC fractional derivative
operators, respectively.
Firstly, we surmise the FW model (2) by considering EADM.

Problem 1. Assume the one-dimension fuzzy fractional FW model with fuzzy ICs is represented
as follows:

∂α

∂ϑα
f̃(`1, ϑ; ζ) =

∂3

∂`2
1∂ϑ

f̃(`1, ϑ; ζ)	 ∂

∂`1
f̃(`1, ϑ; ζ)⊕ f̃(`1, ϑ; ζ)� ∂3

∂`3
1

f̃(`1, ϑ; ζ)

	f̃(`1, ϑ; ζ)� ∂

∂`1
f̃(`1, ϑ; ζ)⊕ ∂

∂`1
f̃(`1, ϑ; ζ)� ∂2

∂`2
1

f̃(`1, ϑ; ζ),

f̃(`1, 0) = χ̃(ζ)� exp
( `1

2
)
, (50)

where χ̃(ζ) = [χ(ζ), χ̄(ζ)] = [ζ − 1, 1− ζ] for ζ ∈ [0, 1] is a fuzzy number.

Proof. The parameterized version of the problem (50) is expressed as follows

∂α

∂ϑα f(`1, ϑ; ζ) = ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)− ∂
∂`1

f(`1, ϑ; ζ) + f(`1, ϑ; ζ) ∂3

∂`3
1
f(`1, ϑ; ζ)

−f(`1, ϑ; ζ) ∂
∂`1

f(`1, ϑ; ζ) + ∂
∂`1

f(`1, ϑ; ζ) ∂2

∂`2
1
f(`1, ϑ; ζ),

f(`1, 0) = χ(ζ) exp
( `1

2
)
,

∂α

∂ϑα f̄(`1, ϑ; ζ) = ∂3

∂`2
1∂ϑ

f̄(`1, ϑ; ζ)− ∂
∂`1

f̄(`1, ϑ; ζ) + f̄(`1, ϑ; ζ) ∂3

∂`3
1
f̄(`1, ϑ; ζ)

−f̄(`1, ϑ; ζ) ∂
∂`1

f̄(`1, ϑ; ζ) + ∂
∂`1

f̄(`1, ϑ; ζ) ∂2

∂`2
1
f̄(`1, ϑ; ζ),

f̄(`1, 0) = χ̄(ζ) exp
( `1

2
)
.

(51)

Case I. (For the fuzzy Caputo fractional derivative)
Here, we obtain the EADM solution for the first case of (51) by using the fuzzy Caputo

fractional derivative operator.
Taking into consideration the procedure described in Section 3, we have

1
ωα

E
[
f(`1, ϑ; ζ)

]
−

q−1

∑
κ=0

f(κ)(`1; ζ)ω2−α+κ

= E
[

∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)− ∂

∂`1
f(`1, ϑ; ζ) + f(`1, ϑ; ζ)

∂3

∂`3
1

f(`1, ϑ; ζ)

−f(`1, ϑ; ζ)
∂

∂`1
f(`1, ϑ; ζ) +

∂

∂`1
f(`1, ϑ; ζ)

∂2

∂`2
1

f(`1, ϑ; ζ)

]
.

Simple computations result in

f(`1, ϑ; ζ) = (ζ − 1) exp
( `1

2
)
+E−1

[
ωαE

[
∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)− ∂

∂`1
f(`1, ϑ; ζ) + f(`1, ϑ; ζ)

∂3

∂`3
1

f(`1, ϑ; ζ)

−f(`1, ϑ; ζ)
∂

∂`1
f(`1, ϑ; ζ) +

∂

∂`1
f(`1, ϑ; ζ)

∂2

∂`2
1

f(`1, ϑ; ζ)

]]
. (52)
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Let us surmise the infinite sum f(`1, ϑ; ζ) =
∞
∑

q=0
fq(`1, ϑ; ζ), (q = 0, 1, 2, ...) accompanying

it with (45) and affirming the non-linearity. Therefore, (52) takes the form

∞

∑
q=0

fq(`1, ϑ; ζ) = (ζ − 1) exp
( `1

2
)
+E−1

[
ωαE

[ ∞

∑
q=0

( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

q
−

∞

∑
q=0

( ∂

∂`1
f(`1, ϑ; ζ)

)
q

+
∞

∑
q=0
Aq −

∞

∑
q=0
Bq + 3

∞

∑
q=0
Cq

]]
. (53)

The first few Adomian polynomials are

Aq

(
f

∂3

∂`3
1

f
)
=


f0

∂3

∂`3
1
f0, q = 0,

f0
∂3

∂`3
1
f1 + f1

∂3

∂`3
1
f0, q = 1,

f1
∂3

∂`3
1
f2 + f1

∂3

∂`3
1
f1 + f2

∂3

∂`3
1
f0, q = 2,

Bq

(
f

∂

∂`1
f
)
=


f0

∂
∂`1

f0, q = 0,

f0
∂

∂`1
f1 + f1

∂
∂`1

f0, q = 1,

f1
∂

∂`1
f2 + f1

∂
∂`1

f1 + f2
∂

∂`1
f0, q = 2,

Cq

( ∂

∂`1
f

∂2

∂`2
1

f
)
=


∂

∂`1
f0

∂2

∂`2
1
f0, q = 0,

∂
∂`1

f0
∂2

∂`2
1
f1 +

∂
∂`1

f1
∂2

∂`2
1
f0, q = 1,

∂
∂`1

f1
∂2

∂`2
1
f2 +

∂
∂`1

f1
∂2

∂`2
1
f1 +

∂
∂`1

f2
∂2

∂`2
1
f0, q = 2.

(54)

then (53) simplifies to

f0(`1, ϑ; ζ) = (ζ − 1) exp
( `1

2
)
,

f1(`1, ϑ; ζ) = E−1
[

ωαE
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

0
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
0
+A0 −B0 + 3C0

]]
= − ζ − 1

2
exp

( `1

2

) ϑα

Γ(α + 1)
,

f2(`1, ϑ; ζ) = E−1
[

ωαE
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

1
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
1
+A1 −B1 + 3C1

]]
=
−(ζ − 1)

8
exp

( `1

2
) ϑ2α−1

Γ(2α)
+

(ζ − 1)
4

exp
( `1

2
) ϑ2α

Γ(2α + 1)
,

f3(`1, ϑ; ζ) = E−1
[

ωαE
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

2
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
2
+A2 −B2 + 3C2

]]
=
−(ζ − 1)

32
exp

( `1

2
) ϑ3α−2

Γ(3α− 1)
+

(ζ − 1)
8

exp
( `1

2
) ϑ3α−1

Γ(3α)
− (ζ − 1)

8
exp

( `1

2
) ϑ3α

Γ(3α + 1)
,

... .

By implementing a similar technique, the remaining terms of fq (q ≥ 4) of the EADM
solution can be simply determined. Furthermore, when the iterative process expands,
the accuracy of the obtained solution improves dramatically, and the deduced solution
moves closer to the precise result. Finally, we have come up with the following answers in
a series form

f(`1, ϑ, ζ) = f0(`1, ϑ, ζ) + f1(`1, ϑ, ζ) + f1(`1, ϑ, ζ) + ... ,

such that

f(`1, ϑ, ζ) = f0(`1, ϑ, ζ) + f1(`1, ϑ, ζ) + f1(`1, ϑ, ζ) + ... ,

f̄(`1, ϑ, ζ) = f̄0(`1, ϑ, ζ) + f̄1(`1, ϑ, ζ) + f̄1(`1, ϑ, ζ) + ... .
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Consequently, we have

f(`1, ϑ, ζ) = (ζ − 1) exp
( `1

2
)
− ζ − 1

2
exp

( `1

2

) ϑα

Γ(α + 1)

− (ζ − 1)
8

exp
( `1

2
) ϑ2α−1

Γ(2α)
+

(ζ − 1)
4

exp
( `1

2
) ϑ2α

Γ(2α + 1)

− (ζ − 1)
32

exp
( `1

2
) ϑ3α−2

Γ(3α− 1)
+

(ζ − 1)
8

exp
( `1

2
) ϑ3α−1

Γ(3α)
− (ζ − 1)

8
exp

( `1

2
) ϑ3α

Γ(3α + 1)
... ,

f̄(`1, ϑ, ζ) = (1− ζ) exp
( `1

2
)
− 1− ζ

2
exp

( `1

2

) ϑα

Γ(α + 1)

− (1− ζ)

8
exp

( `1

2
) ϑ2α−1

Γ(2α)
+

(1− ζ)

4
exp

( `1

2
) ϑ2α

Γ(2α + 1)

− (1− ζ)

32
exp

( `1

2
) ϑ3α−2

Γ(3α− 1)
+

(1− ζ)

8
exp

( `1

2
) ϑ3α−1

Γ(3α)
− (1− ζ)

8
exp

( `1

2
) ϑ3α

Γ(3α + 1)
... . (55)

Case II. (For the fuzzy Atangana–Baleanu Caputo fractional derivative)
Here, we obtain the EADM solution for the first case of (51) by the using fuzzy ABC

fractional derivative operator.
Taking into consideration the procedure described in Section 3, we have

E
[
f(`1, ϑ; ζ)

]
= ω2f(κ)(`1; ζ) +

(
αωα + 1− α

N (α)

)
E
[

∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)− ∂

∂`1
f(`1, ϑ; ζ)

+f(`1, ϑ; ζ)
∂3

∂`3
1

f(`1, ϑ; ζ)− f(`1, ϑ; ζ)
∂

∂`1
f(`1, ϑ; ζ) +

∂

∂`1
f(`1, ϑ; ζ)

∂2

∂`2
1

f(`1, ϑ; ζ)

]
.

Simple computations result in

f(`1, ϑ; ζ) = (ζ − 1) exp
( `1

2
)
+E−1

[(
αωα + 1− α

N (α)

)
E
[

∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)− ∂

∂`1
f(`1, ϑ; ζ)

+f(`1, ϑ; ζ)
∂3

∂`3
1

f(`1, ϑ; ζ)− f(`1, ϑ; ζ)
∂

∂`1
f(`1, ϑ; ζ) +

∂

∂`1
f(`1, ϑ; ζ)

∂2

∂`2
1

f(`1, ϑ; ζ)

]]
. (56)

Let us surmise the infinite sum f(`1, ϑ; ζ) =
∞
∑

q=0
fq(`1, ϑ; ζ), (q = 0, 1, 2, ...) accompanying

it with (45) and affirming the non-linearity. Therefore, (52) takes the form

∞

∑
q=0

fq(`1, ϑ; ζ) = (ζ − 1) exp
( `1

2
)

+E−1

[(
αωα + 1− α

N (α)

)
E
[ ∞

∑
q=0

( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

q
−

∞

∑
q=0

( ∂

∂`1
f(`1, ϑ; ζ)

)
q

+
∞

∑
q=0
Aq −

∞

∑
q=0
Bq + 3

∞

∑
q=0
Cq

]]
. (57)
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Utilizing the Adomian polynomials described in (54), then (57) simplifies to

f0(`1, ϑ; ζ) = (ζ − 1) exp
( `1

2
)
,

f1(`1, ϑ; ζ) = E−1
[(

αωα + 1− α

N (α)

)
E
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

0
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
0
+A0 −B0 + 3C0

]]
= − ζ − 1

2N (α)
exp

( `1

2

)[ αϑα

Γ(α + 1)
+ (1− α)

]
,

f2(`1, ϑ; ζ) = E−1
[(

αωα + 1− α

N (α)

)
E
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

1
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
1
+A1 −B1 + 3C1

]]
=
−(ζ − 1)
8N 2(α)

exp
( `1

2
)[ α2ϑ2α−1

Γ(2α)
+ α(α− 1)

ϑα−1

Γ(α)
+ α

ϑα

Γ(α + 1)
+ (1− α)

]
+

(ζ − 1)
4N 2(α)

exp
( `1

2
)[ α2ϑ2α

Γ(2α + 1)
+ 2α(1− α)

ϑα

Γ(α + 1)
+ (1− α)2

]
,

f3(`1, ϑ; ζ) = E−1
[(

αωα + 1− α

N (α)

)
E
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

2
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
2
+A2 −B2 + 3C2

]]

=
−(ζ − 1)
32N 3(α)

exp
( `1

2
)


4α3ϑ3α

Γ(3α+1) −
2α3ϑ3α−1

Γ(3α)
− α3ϑ3α−2

Γ(3α−1) + 2α2(5− 2α) ϑ2α

Γ(2α+1)

−2α2(1− α) ϑ2α−1

Γ(2α)
− α2(1− α) ϑ2α−2

Γ(2α−1) + α(1− α)(7− 6α) ϑα−1

Γ(α)

+2(1− α)(1− 2α),

...

By implementing a similar technique, the remaining terms of fq (q ≥ 3) of the EADM
solution can be simply determined. Furthermore, when the iterative process expands,
the accuracy of the obtained solution improves dramatically, and the deduced solution
moves closer to the precise result. Finally, we have come up with the following answers in
a series form

f(`1, ϑ, ζ) = f0(`1, ϑ, ζ) + f1(`1, ϑ, ζ) + f1(`1, ϑ, ζ) + ... ,

such that

f(`1, ϑ, ζ) = f0(`1, ϑ, ζ) + f1(`1, ϑ, ζ) + f1(`1, ϑ, ζ) + ... ,

f̄(`1, ϑ, ζ) = f̄0(`1, ϑ, ζ) + f̄1(`1, ϑ, ζ) + f̄1(`1, ϑ, ζ) + ... .

Consequently, we have

f(`1 , ϑ, ζ) = (ζ − 1) exp
( `1

2
)
− ζ − 1

2N (α)
exp

( `1

2

)[ αϑα

Γ(α + 1)
+ (1− α)

]
− (ζ − 1)

8N 2(α)
exp

( `1

2
)[ α2ϑ2α−1

Γ(2α)
+ α(α− 1)

ϑα−1

Γ(α)
+ α

ϑα

Γ(α + 1)
+ (1− α)

]
+

(ζ − 1)
4N 2(α)

exp
( `1

2
)[ α2ϑ2α

Γ(2α + 1)
+ 2α(1− α)

ϑα

Γ(α + 1)
+ (1− α)2

]

− (ζ − 1)
32N 3(α)

exp
( `1

2
)
×


4α3 ϑ3α

Γ(3α+1) −
2α3 ϑ3α−1

Γ(3α)
− α3 ϑ3α−2

Γ(3α−1) + 2α2(5− 2α) ϑ2α

Γ(2α+1)

−2α2(1− α) ϑ2α−1

Γ(2α)
− α2(1− α) ϑ2α−2

Γ(2α−1) + α(1− α)(7− 6α) ϑα−1

Γ(α)

+2(1− α)(1− 2α)

+ ... ,

f̄(`1 , ϑ, ζ) = (1− ζ) exp
( `1

2
)
− 1− ζ

2N (α)
exp

( `1

2

)[ αϑα

Γ(α + 1)
+ (1− α)

]
− (1− ζ)

8N 2(α)
exp

( `1

2
)[ α2ϑ2α−1

Γ(2α)
+ α(α− 1)

ϑα−1

Γ(α)
+ α

ϑα

Γ(α + 1)
+ (1− α)

]
+

(1− ζ)

4N 2(α)
exp

( `1

2
)[ α2ϑ2α

Γ(2α + 1)
+ 2α(1− α)

ϑα

Γ(α + 1)
+ (1− α)2

]

− (1− ζ)

32N 3(α)
exp

( `1

2
)
×


4α3 ϑ3α

Γ(3α+1) −
2α3 ϑ3α−1

Γ(3α)
− α3 ϑ3α−2

Γ(3α−1) + 2α2(5− 2α) ϑ2α

Γ(2α+1)

−2α2(1− α) ϑ2α−1

Γ(2α)
− α2(1− α) ϑ2α−2

Γ(2α−1) + α(1− α)(7− 6α) ϑα−1

Γ(α)

+2(1− α)(1− 2α)

+ ... . (58)
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In this analysis, Figure 1 demonstrates the insight into the influence of multiple layer
surface plots for Problem 1 correlated with the CFD and Elzaki transform in the fuzzy sense.
It is worth mentioning that the profile identifies the variation in the mapping f(`1, ϑ; ζ) on
space co-ordinate `1 with respect to ϑ and uncertainty parameter ζ ∈ [0, 1].

The graph illustrates that as, time progresses, the mapping f(`1, ϑ; ζ) will also increase.

• The effect of the proposed methodology on the mapping f(`1, ϑ; ζ) is displayed in
Figure 2a for the varying fractional orders α = 1, 0.85, 0.75, 0.55 by considering CFD
operator. It exhibits a relatively small increase in the mapping f(`1, ϑ; ζ) with the
decrease in f̄(`1, ϑ; ζ).

• The profile graph of Figure 2b demonstrates the lower and upper solution of varying
uncertainty when the fractional order is assumed to be α = 0.2 by proposing CFD
operator. It emphasizes a relatively small variation in the mapping f(`1, ϑ; ζ) with the
increase in f̄(`1, ϑ; ζ).

• The effect of the proposed methodology on the mapping f(`1, ϑ; ζ) is displayed in
Figure 3a for the varying fractional orders α = 1, 0.85, 0.75, 0.55 by considering the ABC
fractional derivative operator. It exhibits a relatively small increase in the mapping
f(`1, ϑ; ζ) with the decrease in f̄(`1, ϑ; ζ).

• The Profile graph of Figure 3b demonstrates the lower and upper solutions of varying
uncertainty when the fractional order is assumed to be α = 0.2 by proposing the
ABC fractional derivative operator. It emphasizes a relatively small variation in the
mapping f(`1, ϑ; ζ) with the increase in f̄(`1, ϑ; ζ).

• Figure 4 demonstrates the comparison analysis between the CFD operator and the
ABC fractional derivative operator for varying fractional order with uncertainty
κ ∈ [0, 1], exhibits that lower the solution profile for the ABC fractional operator has
strong ties with the upper solution as compared to the CFD operator.

• Figure 5 shows the comparison analysis between (f(`1, ϑ; ζ) and the exact solution),
(f̄(`1, ϑ; ζ) and exact solution), respectively, for three dimensional error plots by con-
sidering the CFD operator.

Furthermore, the offered approach does not provide a unique solution but will aid
scientists in selecting the best approximate solution. It is remarkable that the fuzzy ABC
fractional derivative operator has better performance than the CFD operators, because the
curves have a strong harmony with the integer-order graph in the ABC operator case.

Figure 1. A three-dimensional surface plot indicates the lower and upper solution f(`1, ϑ, ζ)

taking into consideration the fuzzy Caputo fractional derivative operator for Problem 1 when
α = 1, 0.85, 0.75, 0.55 with uncertainty ζ ∈ [0, 1].
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Figure 2. (a) A two-dimensional plot indicates the lower and upper solution f(`1, ϑ, ζ) taking into con-
sideration the fuzzy Caputo fractional derivative operator for Problem 1 when α = 1, 0.85, 0.75, 0.55
with uncertainty ζ ∈ [0, 1]. (b) A two-dimensional plot indicates the lower and upper solution
f(`1, ϑ, ζ) taking into consideration the fuzzy Caputo fractional derivative operator for Problem 1
when ζ = 1, 0.85, 0.75, 0.55 with the fractional order α = 0.2.
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Figure 3. Cont.
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Figure 3. (a) A two-dimensional plot indicates the lower and upper solution f(`1, ϑ, ζ) taking into
consideration the ABC fractional derivative operator for Problem 1 when α = 1, 0.85, 0.75, 0.55
with uncertainty ζ ∈ [0, 1]. (b) A two-dimensional plot indicates the lower and upper solution
f(`1, ϑ, ζ) taking into consideration the ABC fractional derivative operator for Problem 1 when
ζ = 1, 0.85, 0.75, 0.55 with fractional order α = 0.2.

Figure 4. A comparison three-dimensional plot indicates the lower and upper solution f(`1, ϑ, ζ)

taking into consideration the fuzzy Caputo and fuzzy ABC fractional derivative operators for
Problem 1 when ζ = 0.2 with fractional order α = 0.85.
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(a)

(b)
Figure 5. (a) A three-dimensional absolute error plot indicates the lower and exact solution (Remark 2)
of f(`1, ϑ, ζ) taking into consideration the fuzzy Caputo fractional derivative operator for Problem 1
when α = 0.85 with uncertainty ζ ∈ [0, 1]. (b)A three-dimensional absolute error plot indicates
the upper and exact solution (Remark 2) of f(`1, ϑ, ζ) taking into consideration the fuzzy Caputo
fractional derivative operator for Problem 1 when α = 0.85 with uncertainty ζ ∈ [0, 1].

Remark 2. When χ(ζ) = χ̄(ζ) = 1 along with α = 1, then both solutions of Problem 1 converge

to the integer-order solution f(`1, ϑ) = exp
(
`1
2 −

2ϑ
3

)
.

Problem 2. Assume the one-dimension fuzzy fractional FW model with fuzzy ICs is represented
as follows:

∂α

∂ϑα
f̃(`1, ϑ; ζ) =

∂3

∂`2
1∂ϑ

f̃(`1, ϑ; ζ)	 ∂

∂`1
f̃(`1, ϑ; ζ)⊕ f̃(`1, ϑ; ζ)� ∂3

∂`3
1

f̃(`1, ϑ; ζ)

	f̃(`1, ϑ; ζ)� ∂

∂`1
f̃(`1, ϑ; ζ)⊕ ∂

∂`1
f̃(`1, ϑ; ζ)� ∂2

∂`2
1

f̃(`1, ϑ; ζ),

f̃(`1, 0) = χ̃(ζ)� cosh2 ( `1

4
)
, (59)

where χ̃(ζ) = [χ(ζ), χ̄(ζ)] = [ζ − 1, 1− ζ] for ζ ∈ [0, 1] is a fuzzy number.
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Proof. The parameterized version of the problem (50) is expressed as follows

∂α

∂ϑα f(`1, ϑ; ζ) = ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)− ∂
∂`1

f(`1, ϑ; ζ) + f(`1, ϑ; ζ) ∂3

∂`3
1
f(`1, ϑ; ζ)

−f(`1, ϑ; ζ) ∂
∂`1

f(`1, ϑ; ζ) + ∂
∂`1

f(`1, ϑ; ζ) ∂2

∂`2
1
f(`1, ϑ; ζ),

f(`1, 0) = χ(ζ) cosh2 ( `1
4
)
,

∂α

∂ϑα f̄(`1, ϑ; ζ) = ∂3

∂`2
1∂ϑ

f̄(`1, ϑ; ζ)− ∂
∂`1

f̄(`1, ϑ; ζ) + f̄(`1, ϑ; ζ) ∂3

∂`3
1
f̄(`1, ϑ; ζ)

−f̄(`1, ϑ; ζ) ∂
∂`1

f̄(`1, ϑ; ζ) + ∂
∂`1

f̄(`1, ϑ; ζ) ∂2

∂`2
1
f̄(`1, ϑ; ζ),

f̄(`1, 0) = χ̄(ζ) cosh2 ( `1
4
)
.

(60)

Case I. (For the fuzzy Caputo fractional derivative)
Here, we obtain the EADM solution for the first case of (51) by using the fuzzy CFD operator.
Taking into consideration the procedure described in Section 3, we have

1
ωα

E
[
f(`1, ϑ; ζ)

]
−

q−1

∑
κ=0

f(κ)(`1; ζ)ω2−α+κ

= E
[

∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)− ∂

∂`1
f(`1, ϑ; ζ) + f(`1, ϑ; ζ)

∂3

∂`3
1

f(`1, ϑ; ζ)

−f(`1, ϑ; ζ)
∂

∂`1
f(`1, ϑ; ζ) +

∂

∂`1
f(`1, ϑ; ζ)

∂2

∂`2
1

f(`1, ϑ; ζ)

]
.

Simple computations result in

f(`1, ϑ; ζ) = (ζ − 1) cosh2 ( `1

4
)
+E−1

[
ωαE

[
∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)− ∂

∂`1
f(`1, ϑ; ζ) + f(`1, ϑ; ζ)

∂3

∂`3
1

f(`1, ϑ; ζ)

−f(`1, ϑ; ζ)
∂

∂`1
f(`1, ϑ; ζ) +

∂

∂`1
f(`1, ϑ; ζ)

∂2

∂`2
1

f(`1, ϑ; ζ)

]]
. (61)

Let us surmise the infinite sum f(`1, ϑ; ζ) =
∞
∑

q=0
fq(`1, ϑ; ζ) accompanying it with (45) and

affirming the non-linearity. Therefore, (63) takes the form

∞

∑
q=0

fq(`1, ϑ; ζ) = (ζ − 1) cosh2 ( `1

4
)
+E−1

[
ωαE

[ ∞

∑
q=0

( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

q
−

∞

∑
q=0

( ∂

∂`1
f(`1, ϑ; ζ)

)
q

+
∞

∑
q=0
Aq −

∞

∑
q=0
Bq + 3

∞

∑
q=0
Cq

]]
. (62)

Utilizing the Adomian polynomials described in (54), then (64) simplifies to
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f0(`1, ϑ; ζ) = (ζ − 1)
(1

2
+

1
2

cosh
( `1

2

))
,

f1(`1, ϑ; ζ) = E−1
[

ωαE
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

0
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
0
+A0 −B0 + 3C0

]]
= −11

32
(ζ − 1) sinh

( `1

2

) ϑα

Γ(α + 1)
,

f2(`1, ϑ; ζ) = E−1
[

ωαE
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

1
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
1
+A1 −B1 + 3C1

]]
=
−11
128

(ζ − 1) sinh
( `1

2
) ϑα

Γ(α + 1)
+

242(ζ − 1)
1024

cosh
( `1

2
) ϑ2α

Γ(2α + 1)
,

f3(`1, ϑ; ζ) = E−1
[

ωαE
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

2
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
2
+A2 −B2 + 3C2

]]
=
−11(ζ − 1)

512
sinh

( `1

2
) ϑα

Γ(α + 1)
+

242(ζ − 1)
2048

cosh
( `1

2
) ϑ2α

Γ(2α + 1)

−7986(ζ − 1)
49152

sinh
( `1

2
) ϑ3α

Γ(3α + 1)
,

... .

By implementing a similar technique, the remaining terms of fq (q ≥ 4) of EADM
solution can be simply determined. Furthermore, when the iterative process expands,
the accuracy of the obtained solution improves dramatically, and the deduced solution
moves closer to the precise result. Finally, we have come up with the following answers in
a series form

f(`1, ϑ, ζ) = f0(`1, ϑ, ζ) + f1(`1, ϑ, ζ) + f1(`1, ϑ, ζ) + ... ,

such that

f(`1, ϑ, ζ) = f0(`1, ϑ, ζ) + f1(`1, ϑ, ζ) + f1(`1, ϑ, ζ) + ... ,

f̄(`1, ϑ, ζ) = f̄0(`1, ϑ, ζ) + f̄1(`1, ϑ, ζ) + f̄1(`1, ϑ, ζ) + ... .

Consequently, we have

f(`1, ϑ, ζ) = (ζ − 1)
(1

2
+

1
2

cosh
( `1

2

))
− 231

32
(ζ − 1) sinh

( `1

2

) ϑα

Γ(α + 1)

+
363(ζ − 1)

1024
cosh

( `1

2
) ϑ2α

Γ(2α + 1)
− 7986(ζ − 1)

49152
sinh

( `1

2
) ϑ3α

Γ(3α + 1)
+ ... ,

f̄(`1, ϑ, ζ) = (1− ζ)
(1

2
+

1
2

cosh
( `1

2

))
− 231

32
(1− ζ) sinh

( `1

2

) ϑα

Γ(α + 1)

+
363(1− ζ)

1024
cosh

( `1

2
) ϑ2α

Γ(2α + 1)
− 7986(1− ζ)

49152
sinh

( `1

2
) ϑ3α

Γ(3α + 1)
+ ... .

Case II. (For the fuzzy Atangana–Baleanu Caputo fractional derivative)
Here, we obtain the EADM solution for the first case of (51) by using the fuzzy ABC

fractional derivative operator.
Taking into consideration the procedure described in Section 3, we have

E
[
f(`1, ϑ; ζ)

]
= ω2f(κ)(`1; ζ) +

(
αωα + 1− α

N (α)

)
E
[

∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)− ∂

∂`1
f(`1, ϑ; ζ)

+f(`1, ϑ; ζ)
∂3

∂`3
1

f(`1, ϑ; ζ)− f(`1, ϑ; ζ)
∂

∂`1
f(`1, ϑ; ζ) +

∂

∂`1
f(`1, ϑ; ζ)

∂2

∂`2
1

f(`1, ϑ; ζ)

]
.
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Simple computations result in

f(`1, ϑ; ζ) = (ζ − 1) cosh2 ( `1

4
)
+E−1

[(
αωα + 1− α

N (α)

)
E
[

∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)− ∂

∂`1
f(`1, ϑ; ζ)

+f(`1, ϑ; ζ)
∂3

∂`3
1

f(`1, ϑ; ζ)− f(`1, ϑ; ζ)
∂

∂`1
f(`1, ϑ; ζ) +

∂

∂`1
f(`1, ϑ; ζ)

∂2

∂`2
1

f(`1, ϑ; ζ)

]]
. (63)

Let us surmise the infinite sum f(`1, ϑ; ζ) =
∞
∑

q=0
fq(`1, ϑ; ζ) accompanying it with (45) and

affirming the non-linearity. Therefore, (63) takes the form

∞

∑
q=0

fq(`1, ϑ; ζ) = (ζ − 1) cosh2 ( `1

4
)
+E−1

[(
αωα + 1− α

N (α)

)
E
[ ∞

∑
q=0

( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

q

−
∞

∑
q=0

( ∂

∂`1
f(`1, ϑ; ζ)

)
q
+

∞

∑
q=0
Aq −

∞

∑
q=0
Bq + 3

∞

∑
q=0
Cq

]]
. (64)

Utilizing the Adomian polynomials described in (54), then (64) simplifies to

f0(`1, ϑ; ζ) = (ζ − 1)
( 1

2
+

1
2

cosh
( `1

2

))
,

f1(`1, ϑ; ζ) = E−1
[(

αωα + 1− α

N (α)

)
E
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

0
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
0
+A0 −B0 + 3C0

]]
= − 11

32
(ζ − 1) sinh

( `1

2

)[ αϑα

Γ(α + 1)
+ (1− α)

]
,

f2(`1, ϑ; ζ) = E−1
[(

αωα + 1− α

N (α)

)
E
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

1
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
1
+A1 −B1 + 3C1

]]
=
−11
128

(ζ − 1) sinh
( `1

2
)[ αϑα

Γ(α + 1)
+ (1− α)

]
+

242(ζ − 1)
1024

cosh
( `1

2
)[ α2ϑ2α

Γ(2α + 1)
+ 2α(1− α)

ϑα

Γ(α + 1)
+ (1− α)2

]
,

f3(`1, ϑ; ζ) = E−1
[(

αωα + 1− α

N (α)

)
E
[( ∂3

∂`2
1∂ϑ

f(`1, ϑ; ζ)
)

2
−
( ∂

∂`1
f(`1, ϑ; ζ)

)
2
+A2 −B2 + 3C2

]]
=
−11(ζ − 1)

512
sinh

( `1

2
)[ αϑα

Γ(α + 1)
+ (1− α)

]
+

242(ζ − 1)
2048

cosh
( `1

2
)[ α2ϑ2α

Γ(2α + 1)
+ 2α(1− α)

ϑα

Γ(α + 1)
+ (1− α)2

]
− 7986(ζ − 1)

49152
sinh

( `1

2
)[ α3ϑ3α

Γ(3α + 1)
+ 3α2(1− α)

ϑ2α

Γ(2α + 1)
+ 3α(1− α)2 ϑα

Γ(α + 1)
+ (1− α)3

]
,

... .

By implementing a similar technique, the remaining terms of fq (q ≥ 4) of the EADM
solution can be simply determined. Furthermore, when the iterative process expands,
the accuracy of the obtained solution improves dramatically, and the deduced solution
moves closer to the precise result. Finally, we have come up with the following answers in
a series form

f(`1, ϑ, ζ) = f0(`1, ϑ, ζ) + f1(`1, ϑ, ζ) + f1(`1, ϑ, ζ) + ... ,

such that

f(`1, ϑ, ζ) = f0(`1, ϑ, ζ) + f1(`1, ϑ, ζ) + f1(`1, ϑ, ζ) + ... ,

f̄(`1, ϑ, ζ) = f̄0(`1, ϑ, ζ) + f̄1(`1, ϑ, ζ) + f̄1(`1, ϑ, ζ) + ... .
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Consequently, we have

f(`1, ϑ, ζ) = (ζ − 1)
( 1

2
+

1
2

cosh
( `1

2

))
− 231

32
(ζ − 1) sinh

( `1

2

)[ αϑα

Γ(α + 1)
+ (1− α)

]
+

363(ζ − 1)
1024

cosh
( `1

2
)[ α2ϑ2α

Γ(2α + 1)
+ 2α(1− α)

ϑα

Γ(α + 1)
+ (1− α)2

]
− 7986(ζ − 1)

49152
sinh

( `1

2
)[ α3ϑ3α

Γ(3α + 1)
+ 3α2(1− α)

ϑ2α

Γ(2α + 1)
+ 3α(1− α)2 ϑα

Γ(α + 1)

+(1− α)3
]
+ ... ,

f̄(`1, ϑ, ζ) = (1− ζ)
( 1

2
+

1
2

cosh
( `1

2

))
− 231

32
(1− ζ) sinh

( `1

2

)[ αϑα

Γ(α + 1)
+ (1− α)

]
+

363(1− ζ)

1024
cosh

( `1

2
)[ α2ϑ2α

Γ(2α + 1)
+ 2α(1− α)

ϑα

Γ(α + 1)
+ (1− α)2

]
− 7986(1− ζ)

49152
sinh

( `1

2
)[ α3ϑ3α

Γ(3α + 1)
+ 3α2(1− α)

ϑ2α

Γ(2α + 1)
+ 3α(1− α)2 ϑα

Γ(α + 1)

+(1− α)3
]
+ ... .

In this analysis, Figure 6 demonstrates the insight into the influence of multiple-layer
surface plots for Problem 2 correlated with the CFD and Elzaki transform in the fuzzy sense.
It is worth mentioning that the profile identifies the variation in the mapping f(`1, ϑ; ζ) on
space co-ordinate `1 with respect to ϑ and the uncertainty parameter ζ ∈ [0, 1].

The graph illustrates that, as time progresses, the mapping f(`1, ϑ; ζ) will also increase.

• The effect of the proposed methodology on the mapping f(`1, ϑ; ζ) is displayed in
Figure 7a for the varying fractional-orders α = 1, 0.85, 0.75, 0.55 by the considering
CFD operator. It exhibits a relatively small increase in the mapping f(`1, ϑ; ζ) with the
decrease in f̄(`1, ϑ; ζ).

• The profile graph of Figure 7b demonstrates the lower and upper solution of varying
uncertainty when the fractional order is assumed to be α = 0.2 by proposing the CFD
operator. It emphasizes a relatively small variation in the mapping f(`1, ϑ; ζ) with the
increase in f̄(`1, ϑ; ζ).

• The effect of the proposed methodology on the mapping f(`1, ϑ; ζ) is displayed in
Figure 8a for the varying fractional orders α = 1, 0.85, 0.75, 0.55 by considering ABC
fractional derivative operator. It exhibits a relatively small increase in the mapping
f(`1, ϑ; ζ) with the decrease in f̄(`1, ϑ; ζ).

• The profile graph of Figure 8b demonstrates the lower and upper solutions of varying
uncertainty when the fractional order is assumed to be α = 0.2 by proposing the
ABC fractional derivative operator. It emphasizes a relatively small variation in the
mapping f(`1, ϑ; ζ) with the increase in f̄(`1, ϑ; ζ).

• Figure 9 demonstrates the comparison analysis between CFD operator and ABC
fractional derivative operator for varying fractional order with uncertainty κ ∈ [0, 1],
exhibits that the lower solution profile for ABC fractional operator has strong ties with
the upper solution as compared to the CFD operator.

• Figure 10 shows the comparison analysis between (f(`1, ϑ; ζ) and the exact solution),
(f̄(`1, ϑ; ζ) and the exact solution), respectively, for three dimensional error plots by
considering the CFD operator.

Furthermore, the offered approach does not provide a unique solution but will aid
scientists in selecting the best approximate solution. It is remarkable that the fuzzy ABC
fractional derivative operator has better performance than the CFD operators, because the
curves have a strong harmony with the integer-order graph in the ABC operator case.
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Figure 6. A three-dimensional surface plot indicates the lower and upper solution f(`1, ϑ, ζ)

taking into consideration the fuzzy Caputo fractional derivative operator for Problem 2 when
α = 1, 0.85, 0.75, 0.55 with uncertainty ζ ∈ [0, 1].
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Figure 7. Cont.
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Figure 7. (a) A two-dimensional plot indicates the lower and upper solution f(`1, ϑ, ζ) taking into con-
sideration the fuzzy Caputo fractional derivative operator for Problem 2 when α = 1, 0.85, 0.75, 0.55
with uncertainty ζ ∈ [0, 1]. (b) A two-dimensional plot indicates the lower and upper solution
f(`1, ϑ, ζ) taking into consideration the fuzzy Caputo fractional derivative operator for Problem 2
when ζ = 1, 0.85, 0.75, 0.55 with the fractional order α = 0.2.
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Figure 8. (a) A two-dimensional plot indicates the lower and upper solution f(`1, ϑ, ζ) taking into
consideration the fuzzy ABC fractional derivative operator for Problem 2 when α = 1, 0.85, 0.75, 0.55
with uncertainty ζ ∈ [0, 1]. (b) A two-dimensional plot indicates the lower and upper solution
f(`1, ϑ, ζ) taking into consideration the fuzzy ABC fractional derivative operator for Problem 2 when
ζ = 1, 0.85, 0.75, 0.55 with the fractional order α = 0.2.

Figure 9. A comparison three-dimensional plot indicates the lower and upper solution f(`1, ϑ, ζ),
taking into consideration the fuzzy Caputo and fuzzy ABC fractional derivative operators for
Problem 2 when ζ = 0.2 with the fractional order α = 0.85.
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(a)

(b)
Figure 10. (a) A three-dimensional absolute error plot indicates the lower and exact solution
(Remark 3) of f(`1, ϑ, ζ) taking into consideration the fuzzy Caputo fractional derivative opera-
tor for Problem 2 when α = 0.85 with uncertainty ζ ∈ [0, 1]. (b)A three-dimensional absolute error
plot indicates the upper and exact solution (Remark 3) of f(`1, ϑ, ζ), taking into consideration the
fuzzy Caputo fractional derivative operator for Problem 2 when α = 0.85 with uncertainty ζ ∈ [0, 1].

Remark 3. When χ(ζ) = χ̄(ζ) = 1 along with α = 1, then both solutions of Problem 2 converge

to the integer-order solution f(`1, ϑ) = cosh2
(
`1
4 −

11ϑ
24

)
.

5. Conclusions

The paper has demonstrated families of approximate solutions to the FWE under
gH− (i) differentiability taking into consideration the Elzaki and ADM. Fractional opera-
tors (Caputo and ABC) describing fuzzy characteristics have been separately discussed.
The fuzzy solutions of FWE proposed for such flows are characterized by EADM. Nev-
ertheless, the crisp operators are unable to simulate any physical mechanism in an un-
predictable setting. Therefore, fuzzy operators are a preferable means to describe the
physical phenomenon in such a scenario. Specifically, we illustrated two test examples of
the evolutionary method to gain deeper insight into the exact–approximate solutions to
validate the projected technique to attain a parametric solution for each case of the fuzzy
(Caputo and ABC) fractional derivative operator. It has been demonstrated that the solution
graphs predict the fuzzy solution since they satisfy the fuzzy number conditions. As for
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applications of this framework, the convergence and error analysis can be predicated by
the simulation study that specified that fractional-order plots have a strong correlation with
the evolutionary trajectories of FWE. It has also been shown that fuzzy EADM represents
two solutions, which often leads to an advantage in selecting the best one possible for a
governing model. As a consequence, the fuzzy theory connected with FC allows a model
to improve performance in an uncertain domain. In the future, we will investigate a similar
problem by defining the Henstock integrals (fuzzy integrals in the sense of Lebesgue) at
infinite intervals [69,70].
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