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Abstract: In this paper, the finite integration method and the operational matrix of fractional inte-
gration are implemented based on the shifted Chebyshev polynomial. They are utilized to devise
two numerical procedures for solving the systems of fractional and classical integro-differential
equations. The fractional derivatives are described in the Caputo sense. The devised procedure can
be successfully applied to solve the stiff system of ODEs. To demonstrate the efficiency, accuracy and
numerical convergence order of these procedures, several experimental examples are given. As a
consequence, the numerical computations illustrate that our presented procedures achieve significant
improvement in terms of accuracy with less computational cost.
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1. Introduction

Fractional calculus is a branch of mathematical analysis that has been receiving much
attention from many researchers. Due to the fact that several real-world phenomena can be
described successfully by developing mathematical models using fractional derivatives and
integrations. Some interesting applications of fractional calculus can be found in various
fields of sciences and engineering, for examples, viscoelasticity [1], nonlinear dynamical
system [2], chaotic system [3], electromagnetic wave [4], heat transfer modeling [5], etc.
In addition, the fractional calculus has grown in popularity as a tool for describing the
physical features of real-world situations, particularly COVID-19, SIR model and health
problems, as evidenced in [6,7] and references therein. One interesting issue regarding
the fractional calculus is a fractional integro-differential equation (FIDE). It consists of
both integral and differential operators involving derivatives of positive fractional order.
The FIDEs have demonstrated to be adequate models for several phenomena arising in
damping laws, earthquake model, diffusion processes, fluid dynamics, traffic models and
acoustics, see [8–10] and references cited therein for more details. However, the fractional
order derivative of FIDEs can be reduced to a positive integer order. Then, it is called
the classical integro-differential equation (CIDE) which is frequently used to describe
many applications which can be seen in [11–13] for details of applications. Actually, many
problems of both FIDE and CIDE are often constructed to be a system.

In fact, most of FIDEs and CIDEs and system involving them are usually difficult
to solve analytically. Therefore, numerical techniques are required to obtain an accurate
approximate solution. Several numerical methods for solving the FIDEs and CIDEs have
been given, for examples, variational iteration method [8], collocation method [13], homo-
topy method [14], Adomian’s decomposition method [15]. In 2013, an efficient numerical

Fractal Fract. 2021, 5, 103. https://doi.org/10.3390/fractalfract5030103 https://www.mdpi.com/journal/fractalfract

https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0003-1530-0084
https://orcid.org/0000-0003-0189-7799
https://doi.org/10.3390/fractalfract5030103
https://doi.org/10.3390/fractalfract5030103
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fractalfract5030103
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract5030103?type=check_update&version=2


Fractal Fract. 2021, 5, 103 2 of 21

method had occurred which is called the finite integration method (FIM) introduced by
Wen et al. [16]. It has been developed in order to solve one-dimensional partial differential
equations (PDEs). The concept of FIM is to transform a given PDE into an equivalent inte-
gral equation and then numerical integrations are applied. It is known that the integration
task involves multiplication by a small step size, whereas the differentiation task involves
division by a small step size. As a reason, the numerical integration is very insensitive to
round-off error and preserves the approximation accuracy. Therefore, the approximation
of FIM can provide a stable, accurate and efficient numerical solution, see [16–18]. In 2015,
this FIM has been extended to overcome the multi-dimensional PDEs found in [17]. After
that, the FIM has been improved by hiring numerical quadratures such as Simpson’s rule,
Newton Cotes and Lagrange interpolation, see [18]. As a consequence, these improved
FIMs give highly accurate solutions compared with the traditional FIM and finite difference
method (FDM). In 2018, Boonklurb et al. [19] have modified the FIM by using Chebyshev
polynomials to solve one- and two-dimensional PDEs. This modified FIM also provides
much higher accuracy than the FDM and those original FIMs with small computational
nodes. Recently, the modified FIM was widely utilized to apply with many applications,
see [20–23]. Also, it was demonstrated that results obtained by the modified FIM achieve
significant improvement in terms of accuracy more than several existing methods.

The major aim of this paper is to develop the modified FIM [19] by using the shifted
Chebyshev polynomial which thereafter will be referred to as FIM-SCP and also constructs
the operational matrix of fractional integration in order to devise two numerical procedures
for solving numerically the systems of both FIDEs and CIDEs of the Volterra type. Actually,
the technique of FIM-SCP has been proposed in [20]. It is used to find numerical solutions
of direct and inverse problems for the time-dependent Volterra integro-differential equation
(VIDE). Hence, in this paper, we continue our study from [20] by extending the VIDEs to
be a kind of system that involves the fractional-order differential operator. The problem
mainly considered in this article is called the system of FIDEs which is studied in the form
presented in [24], i.e.,

Dαi yi(x) = fi(x) +
m

∑
j=1

(
pij(x)yj(x) +

∫ x

0
κij(x, t)yj(t)dt

)
, x ∈ [0, L] (1)

for all i ∈ {1, 2, 3, . . . , m} and L ∈ R+ with initial conditions y(v)i (0) = bvi for v ∈
{0, 1, 2, . . . , dαie − 1}, where bvi ∈ R is specified constant, αi ∈ R+ is parameter describing
the order of fractional derivative Dαi in the Caputo sense [25], dαie is the smallest integer
greater than αi, fi(x) and pij(x) are sufficiently continuous functions, κij(x, t) is continu-
ously integrable kernel function and yi(x) is unknown function to be solved numerically.
Next, when the derivative of fractional order is reduced to any αi ∈ N, we obtain the system
of CIDEs. In this paper, we investigate the system of CIDEs in the following general form

m

∑
j=1
Lijyj(x) = fi(x) +

m

∑
j=1

λij

∫ x

0
κij(x, t)yj(t)dt, x ∈ [0, L] (2)

for all i ∈ {1, 2, 3, . . . , m} and L ∈ R+ with initial conditions y(v)i (0) = bvi for v ∈
{0, 1, 2, . . . , hi − 1}, where bvi ∈ R is specified constant and hi = max1≤j≤m rij when rij is
the highest order of derivative for each yj contained in the linear differential operator Lij
which is defined by (33), λij is constant coefficient, κij(x, t) is continuously integrable kernel
function, fi(x) is continuous function and yj(x) is unknown function to be determined.
Moreover, we observe that if the kernel functions κij(x, t) or the constant coefficients λij
in (2) are all zeros, (2) also becomes the system of ordinary differential equations (ODEs).
An interesting problem for the system of ODEs is the stiff problem which can be seen
in [26] for modeling various real-world problems. Nevertheless, the stiff system of ODEs
is difficult to solve analytically and numerically. A stiff system generally happens when
some components of the solutions decay much more rapidly than others. It affects their
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numerical solutions in terms of stability. This feature forces the used numerical method to
choose an extremely small step size which consumes the computational times expensively
and may give inaccurate solutions. Accordingly, examples of the stiff system of ODEs are
also presented to illustrate the efficiency of the proposed procedure that can be treated
these troubles. In this study, we assume that (1) and (2) have unique solutions under the
given supplementary conditions.

The organization of this paper is as follows. In Section 2, the developed FIM-SCP
given by [20] is briefly introduced which is utilized to be the principal tool for devising
the numerical procedures. In Section 3, the shifted Chebyshev expansion is employed
to construct the operational matrix of fractional integration. It is together used with the
FIM-SCP to devise the procedure for solving the system of FIDEs (1). This procedure is
verified the efficiency with several examples. Next, Section 4 includes the procedure for
solving the system of CIDEs (2) and experimental examples for testing accurate solutions
obtained by the procedure. This procedure is also applied with the stiff system of ODEs
via several examples in this section. Finally, the conclusion and discussion are summarized
in Section 5.

2. The Developed FIM-SCP

In this section, we briefly introduce the technique of FIM-SCP presented in [20] which
is utilized to be the principal tool for devising the numerical procedures to solve systems (1)
and (2). Let us introduce the definition of shifted Chebyshev polynomials.

Definition 1 ([27]). The shifted Chebyshev polynomial of degree n ≥ 0 is defined by

Sn(x) = cos
(

n arccos
(

2x
L
− 1
))

for x ∈ [0, L]. (3)

Moreover, the analytic form of Sn(x) with n > 0 given by [27] can be written as

Sn(x) = n
n

∑
k=0

(−1)n−k (n + k− 1)! 22k

(n− k)!(2k)! Lk xk, x ∈ [0, L]. (4)

Some important properties of the shifted Chebyshev polynomial are further given
in Lemma 1. They will be used to construct the first and higher orders of the shifted
Chebyshev integration matrices which are the major tools of the FIM-SCP.

Lemma 1 ([20]). The followings are properties of the shifted Chebyshev polynomial (3).

(i) The zeros of shifted Chebyshev polynomial Sn(x) for x ∈ [0, L] are

xk =
L
2

(
cos
(

2k− 1
2n

π

)
+ 1
)

, k ∈ {1, 2, 3, . . . , n}. (5)

(ii) The vth order derivatives of shifted Chebyshev polynomial Sn(x) at x = 0 are

dv

dxv Sn(x)
∣∣∣
x=0

= (−1)v+n
v−1

∏
k=0

2
L

(
n2 − k2

2k + 1

)
. (6)

(iii) The single integrations of shifted Chebyshev polynomial Sn(x) for n ≥ 2 are

∫ x

0
Sn(ξ) dξ =

L
4

(
Sn+1(x)

n + 1
− Sn−1(x)

n− 1
− 2(−1)n

n2 − 1

)
, (7)

where the initial integrations of S0 and S1 are x and x2

L − x, respectively.
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(iv) The shifted Chebyshev matrix S at each node xk defined by (5) is

S =


S0(x1) S1(x1) · · · Sn−1(x1)
S0(x2) S1(x2) · · · Sn−1(x2)

...
...

. . .
...

S0(xn) S1(xn) · · · Sn−1(xn)

.

Then, it has the multiplicative inverse S−1 = 1
n diag{1, 2, 2, . . . , 2}S>.

Next, we construct the first order integration matrix by letting j and M be natural
numbers, ui(x) be an approximate solution of yi(x) contained in (1) and (2) which is
defined by a linear combination of the shifted Chebyshev polynomials S0(x), S1(x), S2(x),
. . . , SM−1(x). Then, we have

ui(x) =
M−1

∑
n=0

cni Sn(x), (8)

where cni is the unknown coefficient to be considered. Let xk be grid points generated by
the zeros of the shifted Chebyshev polynomial SM defined by (5) in ascending order. When
we substitute each xk into (8), they can be expressed in the matrix form

ui(x1)
ui(x2)

...
ui(xM)

 =


S0(x1) S1(x1) · · · SM−1(x1)
S0(x2) S1(x2) · · · SM−1(x2)

...
...

. . .
...

S0(xM) S1(xM) · · · SM−1(xM)




c0i
c1i
...

cM−1i

,

which is denoted by ui = Sci. Since S is invertible by Lemma 1(iv), we have ci = S−1ui.
Now, we consider the single integration of ui from 0 to xk, denoted U(1)

i (xk), to obtain

U(1)
i (xk) =

∫ xk

0
ui(ξ) dξ =

M−1

∑
n=0

cni

∫ xk

0
Sn(ξ) dξ =

M−1

∑
n=0

cni Sn(xk)

where Sn is denoted to the single-layer integration of Sn that can explicitly find by (7)
depending on its degree n. After substituting each node xk into the above equation, it can
be written in the matrix form

U(1)
i (x1)

U(1)
i (x2)

...
U(1)

i (xM)

 =


S0(x1) S1(x1) · · · SM−1(x1)
S0(x2) S1(x2) · · · SM−1(x2)

...
...

. . .
...

S0(xM) S1(xM) · · · SM−1(xM)




c0i
c1i
...

cM−1i

,

which is denoted by U(1)
i = Sci = SS−1ui := Aui, where A = SS−1 := [akl ]M×M is the

integral operational matrix called the first order shifted Chebyshev integration matrix
(SCIM). It can be also expressed to another form

U(1)
i (xk) =

∫ xk

0
ui(ξ) dξ =

M

∑
l=1

aklui(xl). (9)

Remark 1 ([20]). Based on (9), the m-layer integration of ui from 0 to xk, denoted U(m)
i (xk), can

be easily obtained by the first order SCIM A multiplied by itself m times, i.e.,

U(m)
i (xk) =

∫ xk

0

∫ ξm

0
· · ·

∫ ξ3

0

∫ ξ2

0
ui(ξ1) dξ1dξ2 . . . ξm−1ξm 7−→ U(m)

i = Amui.
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3. Procedure for Solving System of FIDEs

In this section, we devise the numerical procedure for solving the system of FIDEs (1)
and verify accurate solutions obtained from this proposed procedure by comparing with
other existing methods and their analytical solutions. Before constructing the procedure,
we attempt to create an operational matrix of integrals for the fractional integration and
derivative. Let us provide some basic definitions and properties of fractional calculus
theory from [25,28] as follows.

Definition 2. Let p, µ and x be real numbers such that x > 0 and

Cµ = {u : (0, ∞)→ R | u(x) = xpu1(x), where u1 ∈ C[0, ∞) and p > µ}.

The Riemann-Liouville fractional integral operator of order α of u ∈ Cµ, µ ≥ −1 is defined by

Iαu(x) =

{
1

Γ(α)

∫ x
0

u(t)
(x−t)1−α dt for α > 0,

u(x) for α = 0,

where Γ(·) is the well-known Gamma function.

Definition 3. The Caputo fractional derivative Dα of u ∈ Cn
−1 for n ∈ N is defined by

Dαu(x) = In−αDnu(x) =

 1
Γ(n−α)

∫ x
0

u(n)(t)
(x−t)1−n+α dt for α ∈ (n− 1, n),

u(n)(x) for α = n.

Actually, we have known that the Riemann-Liouville fractional integral operator Iα is
a linear operator which has some important properties including

IαDβ u(x) = Iα−β u(x) for α ≥ β and (10)

Iαxk =
Γ(k + 1)

Γ(k + α + 1)
xk+α for k ∈ N∪ {0}. (11)

Recall that for α ∈ N, the Caputo differential operator Dα coincides with the usual
differential operator of integer order. More properties can be found in [25,28].

3.1. Operational Matrix of Fractional Integration

In this work, the fractional derivatives of the system of FIDEs (1) are studied based on
the Caputo sense stated in Definition 3. We create the the operational matrix of fractional
integrals by using the shifted Chebyshev expansion which is called the shifted Cheby-
shev fractional matrix (SCFM). First, we express and prove the analytic formula of the
Riemann-Liouville fractional integral with order α for the shifted Chebyshev polynomials
as demonstrated in Theorem 1.

Theorem 1. Let Sn(x) be a shifted Chebyshev polynomial. Then,

IαSn(x) =


xα

Γ(α+1) for n = 0,

n
n
∑

k=0

(−1)n−k(n+k−1)! Γ(k+1) 4k

(n−k)!(2k)! Γ(k+α+1) Lk xk+α for n > 0.
(12)

Proof of Theorem 1. For n = 0, it is obvious that S0(x) = 1. Then, using Definition 2 for
α > 0, we get

IαS0(x) =
1

Γ(α)

∫ x

0
(x− t)α−1dt =

1
Γ(α)

(
xα

α

)
=

xα

Γ(α + 1)
. (13)
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In addition, for n > 0, we have known that the fractional integration in the Riemann-
Liouville sense is a linear operation. Thus, by employing (4) and (11), we obtain

IαSn(x) = n
n

∑
k=0

(−1)n−k(n + k− 1)! 22k

(n− k)!(2k)! Lk Iα(xk)

= n
n

∑
k=0

(−1)n−k(n + k− 1)! 22k

(n− k)!(2k)! Lk · Γ(k + 1)
Γ(k + α + 1)

xk+α

= n
n

∑
k=0

(−1)n−k(n + k− 1)! Γ(k + 1) 4k

(n− k)!(2k)! Γ(k + α + 1) Lk xk+α. (14)

Hence, a combination of (13) and (14) leads to the desired result (12).

Next, we construct an operational matrix of the Riemann-Liouville fractional integral
with order α for an approximate unknown function ui(x) by utilizing the shifted Chebyshev
expansion (8) which is called the SCFM as expressed in Theorems 2 and 3.

Theorem 2. Let ui(x) be approximated by the shifted Chebyshev expansion (8). Then,

Iαui(x) := Jα(x)S−1ui, (15)

where Jα(x) := [IαS0(x), IαS1(x), IαS2(x), . . . , IαSM−1(x)] is an M row vector in which each
component can be calculated by (12), ui = [ui(x1), ui(x2), ui(x3), . . . , ui(xM)]> is an M column
vector of each ui(x) at the zeros xk in (5) and S−1 is defined in Lemma 1(iv).

Proof of Theorem 2. Since the Riemann-Liouville’s fractional integration of order α > 0 is
a linear operation and use the linear combination ui(x) in (8), we have

Iαui(x) =
1

Γ(α)

∫ x

0

∑M−1
n=0 cni Sn(t)
(x− t)1−α

dt =
M−1

∑
n=0

cni

Γ(α)

∫ x

0

Sn(t)
(x− t)1−α

dt =
M−1

∑
n=0

cni I
αSn(x).

Rewriting the above equation as a vector form and use the vector ci in Section 2,
we get

Iαui(x) = [IαS0(x), IαS1(x), . . . , IαSM−1(x)][c0i , c1i , . . . , cM−1i ]
> := Jα(x)ci = Jα(x)S−1ui.

Hence, we obtain the desired representation (15).

Theorem 3. Let ui be an M column vector of each ui(x) at the zeros xk in (5). Then,

Iαui := JαS−1ui,

where JαS−1 is the M × M SCFM of order α representing the operator Iα, S−1 is defined in
Lemma 1(iv), ui = [ui(x1), ui(x2), ui(x3), . . . , ui(xM)]> and

Jα =


Jα(x1)
Jα(x2)

...
Jα(xM)

 =


IαS0(x1) IαS1(x1) · · · IαSM−1(x1)
IαS0(x2) IαS1(x2) · · · IαSM−1(x2)

...
...

. . .
...

IαS0(xM) IαS1(xM) · · · IαSM−1(xM)

.

Proof of Theorem 3. Let α > 0 and M ∈ N. By employing the relation (15), we obtain

Iαui = Iα


ui(x1)
ui(x2)

...
ui(xM)

 =


Iαui(x1)
Iαui(x2)

...
Iαui(xM)

 =


Jα(x1)S−1ui
Jα(x2)S−1ui

...
Jα(xM)S−1ui

 =


Jα(x1)
Jα(x2)

...
Jα(xM)

S−1ui = JαS−1ui.
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Thus, we achieve the operational matrix of Riemann-Liouville fractional integral. Note
that, the elements contained in Jα can be computed by (12).

However, we observe that for the order α = 1, we have Jα = S which is defined in
Section 2. Thus, when α is a positive integer, then Aα = JαS−1. In order to reduce the
computational time for the positive integer order α, we consume the SCIM Aα instead of
the SCFM JαS−1. Because, when the order α has changed, the matrix Jα needs to recalculate
its elements again. Conversely, for the matrix Aα, the SCIM A is computed only once, then
it is raised to the power α. Hence, we obtain the following Remark 2.

Remark 2. If α ∈ N, Iαui = Aαui, where A = SS−1 is the SCIM defined in Section 2.

3.2. Numerical Solution for System of FIDEs

The objective of this section is to create a numerical procedure for solving the system
of FIDEs (1) with the given initial conditions. First, let ui(x) be an approximate solution of
yi(x) for (1). Thus, (1) can be written in the form

Dαi ui(x) = fi(x) +
m

∑
j=1

(
pij(x)uj(x) +

∫ x

0
κij(x, t)uj(t)dt

)
, x ∈ [0, L] (16)

for all i ∈ {1, 2, 3, . . . , m} and L ∈ R+ with the initial conditions

u(v)
i (0) = bvi ∈ R, v ∈ {0, 1, 2, . . . , dαie − 1}. (17)

First, we discretize the domain [0, L] into M grid nodes which are generated by the
zeros of SM defined in (5), where x1 < x2 < x3 < · · · < xM. Then, the approximate
solution ui(x) is sought at these zeros. To simplify (16), we denote each integral term by

Qij(x) :=
∫ x

0
κij(x, t)uj(t) dt (18)

for j ∈ {1, 2, 3, . . . , m}. Thus, (16) becomes

Dαi ui(x) = fi(x) +
m

∑
j=1

(
pij(x)uj(x) + Qij(x)

)
. (19)

Next, we attempt to eliminate the fractional derivatives from (19) by taking the dαie-
layer integrals from 0 to a zero xk on both sides of (19). Then, we have

∫ xk

0

∫ ξdαie

0
· · ·

∫ ξ3

0

∫ ξ2

0
Dαi ui(ξ1) dξ1dξ2 . . . dξdαie−1dξdαie +

dαie

∑
l=1

dil x
dαie−l
k

(dαie − l)!

=
∫ xk

0

∫ ξdαie

0
· · ·

∫ ξ3

0

∫ ξ2

0

(
fi(ξ1) +

m

∑
j=1

(
pij(ξ1)uj(ξ1) + Qij(ξ1)

))
dξ1dξ2 . . . dξdαie−1dξdαie,

where di1, di2, di3, . . . , didαie are arbitrary constants emerged in the process of integrations.
Conveniently, we can rewrite the above equation in another form by using the integral
operator I instead. Then, it becomes

Idαie−αi ui(xk) +
dαie

∑
l=1

dil x
dαie−l
k

(dαie − l)!
= Idαie fi(xk) +

m

∑
j=1

(
Idαiepij(xk)uj(xk) + IdαieQij(xk)

)
, (20)

where the integration of Caputo fractional derivative term has gotten by using (10).
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After that, let us consider each term contained in (20) and reformulate it to the matrix
form by varying the variable xk as the zeros x1, x2, x3, . . . , xM which uses the notation “ 7−→”
for representing the mapping from R to RM. Then, we have

Idαie−αi ui(xk) 7−→


Idαie−αi ui(x1)

Idαie−αi ui(x2)
...

Idαie−αi ui(xM)

 := Idαie−αi ui = Jdαie−αi S−1ui, (21)

where Jdαie−αi and S−1 are defined in Theorem 3 and Lemma 1(iv), respectively. Next, we
consider the summation term of the unknown constants in (20), that is,

dαie

∑
l=1

dil x
dαie−l
k

(dαie − l)!
7−→



x
dαie−1
1

(dαie−1)!
x
dαie−2
1

(dαie−2)! · · · 1

x
dαie−1
2

(dαie−1)!
x
dαie−2
2

(dαie−2)! · · · 1
...

...
. . .

...
x
dαie−1
M

(dαie−1)!
x
dαie−2
M

(dαie−2)! · · · 1




di1
di2
...

didαie

 := Xidi. (22)

Then, the integration of the forcing terms in (20) is formulated by using Remark 2 to
the matrix form

Idαie fi(xk) 7−→


Idαie fi(x1)

Idαie fi(x2)
...

Idαie fi(xM)

 = Idαie


fi(x1)
fi(x2)

...
fi(xM)

 := Idαiefi = Adαiefi. (23)

After that, we consider the remaining terms in the summation on the right-hand-side
of (20). Then, its first term is converted to the matrix form

Idαiepij(xk)uj(xk) 7−→


Idαiepij(x1)uj(x1)

Idαiepij(x2)uj(x2)
...

Idαiepij(xM)uj(xM)

 = Idαie


pij(x1)uj(x1)
pij(x2)uj(x2)

...
(xM)uj(xM)

 := AdαiePijuj, (24)

where Pij = diag
{

pij(x1), pij(x2), . . . , pij(xM)
}

and uj = [uj(x1), uj(x2), . . . , uj(xM)]>. For
another term in the summation on the right-hand-side of (20), IdαieQij(xk), before trans-
forming it to the matrix form, we consider Qij(xk) by using (9) and (18) to obtain

Qij(xk) =
∫ xk

0
κij(xk, t)uj(t) dt =

M

∑
l=1

aklκij(xk, xl)uj(xl),

where akl is an element at the kth row and the lth column of the SCIM A = SS−1 defined
in Section 2. Thus, we have the column vector of Qij(xk) as

Qij(x1)
Qij(x2)

...
Qij(xM)

 =


a11κij(x1, x1) a12κij(x1, x2) · · · a1Mκij(x1, xM)
a21κij(x2, x1) a22κij(x2, x2) · · · a2Mκij(x2, xM)

...
...

. . .
...

aM1κij(xM, x1) aM2κij(xM, x2) · · · aMMκij(xM, xM)




uj(x1)
uj(x2)

...
uj(xM)


which is denoted by Qij =

(
A�Kij

)
uj, where A = SS−1 = [akl ] is the M×M SCIM and

� is the Hadamard product defined in [29].
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From the above relation and Remark 2, we then have

IdαieQij(xk) 7−→


IdαieQij(x1)

IdαieQij(x2)
...

IdαieQij(xM)

 = Idαie


Qij(x1)
Qij(x2)

...
Qij(xM)

 := Adαie(A�Kij)uj. (25)

Consequently, by substituting expressions (21)–(25) into (20), we obtain

Jdαie−αi S−1ui + Xidi = Adαiefi +
m

∑
j=1

(
AdαiePijuj + Adαie(A�Kij)uj

)
or it can be simplified as

Jdαie−αi S−1ui + Xidi = Adαiefi + Adαie
m

∑
j=1

Hijuj, (26)

where Hij := Pij + (A�Kij). Finally, we vary all indices i ∈ {1, 2, 3, . . . , m} in (26). Then,
we have the following system

Jdα1e−α1 S−1u1 + X1d1 = Adα1ef1 + Adα1e(H11u1 + H12u2 + · · ·+ H1mum)

Jdα2e−α2 S−1u2 + X2d2 = Adα2ef2 + Adα2e(H21u1 + H22u2 + · · ·+ H2mum)

...

Jdαme−αm S−1um + Xmdm = Adαmefm + Adαme(Hm1u1 + Hm2u2 + · · ·+ Hmmum)

which the system can be rearranged to the block-matrix of the form[
J
(
Im ⊗ S−1)− BH

]
u + Xd = Bf, (27)

where Im is an m×m identity matrix, S−1 is defined in Lemma 1(iv) and⊗ is the Kronecker
product defined in [29]. Other parameters contained in (27) are defined by the following
block matrices:

J := blkdiag
{

Jdα1e−α1 , Jdα2e−α2 , Jdα3e−α3 . . . , Jdαme−αm
}

mM×mM,

B := blkdiag
{

Adα1e, Adα2e, Adα3e, . . . , Adαme
}

mM×mM,

X := blkdiag
{

X1, X2, X3, . . . , Xm
}

mM×∑m
i=1dαie

,

d :=
[
d1, d2, d3, . . . , dm

]>
∑m

i=1dαie×1,

u :=
[
u1, u2, u3, . . . , um

]>
mM×1,

f :=
[
f1, f2, f3, . . . , fm

]>
mM×1

and

H :=


P11 + (A�K11) P12 + (A�K12) · · · P1m + (A�K1m)
P21 + (A�K21) P22 + (A�K22) · · · P2m + (A�K2m)

...
...

. . .
...

Pm1 + (A�Km1) Pm2 + (A�Km2) · · · Pmm + (A�Kmm)

,

where "blkdiag
{
·
}

" is a block diagonal matrix in which the off-diagonal elements are the
zero matrices. However, we can see that (27) has unknown vectors apart from u, i.e., d
which is emerged from the process of integration for a total of ∑m

i=1dαie elements.
Therefore, we require ∑m

i=1dαie equations more which are constructed by using the
given initial conditions (17). At specified index i, we use (8) to transform these conditions
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into the matrix form, we have u(v)
i (0) = ∑M−1

n=0 cni S
(v)
n (0) := s(v)ci = s(v)S−1ui = bvi ,

where s(v) :=
[
S(v)

0 (0), S(v)
1 (0), S(v)

2 (0), . . . , S(v)
M−1(0)

]
is the M row vector in which its

elements can be found by using (6), ui = [ui(x1), ui(x2), ui(x3), . . . , ui(xM)]> and S−1 is
defined in Lemma 1(iv). Thus, when all derivative orders v ∈ {0, 1, 2, . . . , dαie − 1} are
varied in the above equation, we obtain

S′iS
−1ui = bi, (28)

where bi :=
[
b0i , b1i , b2i , . . . , bdαie−1i

]> and

S′i =


s(0)

s(1)
...

s(dαie−1)

 =


S0(0) S1(0) · · · SM−1(0)
S′0(0) S′1(0) · · · S′M−1(0)

...
...

. . .
...

S(dαie−1)
0 (0) S(dαie−1)

1 (0) · · · S(dαie−1)
M−1 (0)

.

Then, we substitute all indices i ∈ {1, 2, 3, . . . , m} in (28) and write them into the
block-matrix form

S′
(
Im ⊗ S−1)u = b, (29)

where Im is an m×m identity matrix, S′ := blkdiag
{

S′1, S′2, S′3, . . . , S′m
}

and b =
[
b1, b2,

b3, . . . , bm
]>. Since (28) has dαie equations, it now implies that (29) has ∑m

i=1dαie equations.
Therefore, we achieve more equations as required which resulted in the numbers of un-
known variables and the numbers of equations in (27) and (29) to be precisely equivalent.
Finally, we can combine both (27) and (29) in order to construct the linear system in the
block-matrix form as the following[

J
(
Im ⊗ S−1)− BH X
S′
(
Im ⊗ S−1) 0

][
u
d

]
=

[
Bf
b

]
, (30)

where 0 is the ∑m
i=1dαie × ∑m

i=1dαie zero matrix and each parameter contained in (30) is
defined as mentioned above. Note that the amount of calculation for the linear system (30)
totally consists of mM + ∑m

i=1dαie equations which can be certainly solved by using the
backslash or inverse command in MatLab solver. Now, we can seek the approximate
solution u by solving (30). The obtained solution u consists of each result ui for i ∈
{1, 2, 3, . . . , m}which is at the position followed the zeros of shifted Chebyshev polynomial
SM. Nevertheless, if we would like to know the solution ui(x) at a different position within
the domain [0, L], it can be calculated by

ui(x) =
M−1

∑
n=0

cni Sn(x) := S(x)ci = S(x)S−1ui, (31)

where S(x) :=
[
S0(x), S1(x), S2(x), . . . , SM−1(x)

]
and ui obtains from solving (30).

3.3. Experimental Examples for System of FIDEs

In order to illustrate the effectiveness of the proposed numerical procedure in the
preceding section, we now present some experimental examples for solving the system
of FIDEs (1). In calculation, we implement the proposed method to solve four examples
and show its accuracy and efficiency which is measured by the absolute error Eui(x) :=
|u∗i (x)− ui(x)|, where u∗i and ui are the analytical and approximate solutions at each x in
the domain, respectively, for all i ∈ {1, 2, 3, . . . , m}. These examples can be used as a basis
to demonstrate the applicability of the presented numerical procedure. All the experiments
are carried out by MatLab R2016a on a computer equipped with a CPU Intel(R) Core(TM)
i7-6700 at 3.40 GHz running on Windows 10.
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Example 1 ([24]). Consider the following linear system of FIDEs over x ∈ [0, 1]

Dα1 u1(x) = 1 + x + x2 − u2(x)−
∫ x

0
(u1(t) + u2(t))dt,

Dα2 u2(x) = −1− x + u1(x)−
∫ x

0
(u1(t)− u2(t))dt,

for α1, α2 ∈ (0, 1] with the initial conditions u1(0) = 1 and u2(0) = −1. The exact solutions for
α1 = α2 = 1 are u∗1(x) = x + ex and u∗2(x) = x− ex.

In this Example 1, the fractional orders of derivative are considered on (0, 1]. By
employing our numerical procedure, we have the approximate solutions u1(x) and u2(x)
for any x ∈ [0, 1]. In Table 1, the absolute errors between the exact and approximate
solutions at α1 = α2 = 1 are demonstrated. It also shows a comparison of the absolute errors
with M = 16 between our suggested procedure and the technique based on operational
matrices of triangular functions (OMTF) given by [24]. We can see that our method
provides much higher accuracy than the OMTF. The consuming time for M = 16 via
MatLab program is about 0.0805 s. Additionally, Figure 1a,b depict the comparisons
between analytical and numerical solutions u1(x) and u2(x) with M = 30 and α1 = α2 = 1.
We can see that our obtained solutions quite match exactly.

Table 1. Absolute errors of u1(x) and u2(x) when α1 = α2 = 1 for Example 1.

x
OMTF [24] FIM-SCP

Eu1(x) Eu2(x) Eu1(x) Eu2(x)

0.1 5.5× 10−4 5.5× 10−4 6.4393× 10−15 1.9984× 10−15

0.5 2.7× 10−4 2.7× 10−4 1.7764× 10−15 2.6645× 10−15

0.9 1.9× 10−3 1.9× 10−3 1.7764× 10−15 1.7764× 10−15

In Table 2, absolute errors of the approximate solutions u1(x) and u2(x) are shown
at different orders α1 = α2 := α ∈ {0.99, 0.999, 0.9999} and M = 16. This investigation
shows that as the fractional order α increases from 0.99 to 0.9999, the respective accuracy is
increasing and attained its maximum accuracy at α = 1. Finally, the error analysis again
verifies that at several values of α ∈ {0.91, 0.93, 0.95, 0.97, 0.99, 1}, the obtained numerical
solutions converge to the integer order solutions which their behaviors are also displayed
in Figure 1c,d. They indeed attain to the blue solid line (α = 1).

Example 2 ([30]). Consider the following linear system of FIDEs over x ∈ [0, 1]

Dα1 u1(x) = −1− x2 − sin x +
∫ x

0
(u1(t) + u2(t))dt,

Dα2 u2(x) = 1− 2 sin x− cos x +
∫ x

0
(u1(t)− u2(t))dt,

for α1, α2 ∈ (0, 2] with the initial conditions u1(0) = 1, u2(0) = 0, u′1(0) = 1 and u′2(0) = 2.
The analytical solutions when α1 = α2 = 2 are u∗1(x) = x + cos x and u∗2(x) = x + sin x.

Table 2. Absolute errors of u1(x) and u2(x) at different orders α for Example 1.

x
α = 0.99 α = 0.999 α = 0.9999

Eu1(x) Eu2(x) Eu1(x) Eu2(x) Eu1(x) Eu2(x)

0.1 3.8691× 10−2 3.8203× 10−2 3.9405× 10−3 3.8926× 10−3 3.9477× 10−4 3.8999× 10−4

0.5 6.2202× 10−2 4.0183× 10−2 6.3909× 10−3 4.1382× 10−3 6.4082× 10−4 4.1504× 10−4

0.9 7.7116× 10−2 3.9661× 10−2 7.9564× 10−3 4.0861× 10−3 7.9813× 10−4 4.0984× 10−4
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(a) Comparing u1 at α = 1 (b) Comparing u2 at α = 1 (c) Behaving u1 at many α (d) Behaving u2 at many α

Figure 1. The behaviors of the approximate solutions in Example 1. (a,b) depict the comparisons between analytical and
numerical solutions u1(x) and u2(x) with M = 30 and α1 = α2 = 1. The error analysis again verifies that at several values
of α ∈ {0.91, 0.93, 0.95, 0.97, 0.99, 1}, the obtained numerical solutions converge to the integer order solutions which their
behaviors are also displayed in (c,d).

This experimental example is considering the problem under the fractional orders
of derivatives within the interval (0, 2]. By using our proposed numerical procedure, we
have the numerical solutions u1(x) and u2(x) for each x ∈ [0, 1] which are compared with
solutions given by the OMTF [24] measured by the absolute error as shown in Table 3. We
can see that our FIM-SCP produces higher accuracy than the OMTF with the same number
of discretization nodes M = 16 when the fractional orders α1 = α2 = 2. Moreover, we plot
the obtained approximate solutions u1(x) and u2(x) compared to their analytical solutions
as depicted in Figure 2a,b, respectively. These figures show that these solutions perfectly
match with the exact values. The computational time for M = 16 of this process is around
0.0984 s.

Table 3. Absolute errors of u1(x) and u2(x) when α1 = α2 = 2 for Example 2.

x
OMTF [24] FIM-SCP

Eu1(x) Eu2(x) Eu1(x) Eu2(x)

0.1 4.6× 10−4 4.5× 10−5 1.1564× 10−12 1.0630× 10−14

0.5 3.2× 10−5 2.6× 10−4 6.2355× 10−12 8.7264× 10−14

0.9 2.2× 10−3 5.2× 10−3 1.1497× 10−11 4.2233× 10−13

Furthermore, Table 4 demonstrates the absolute errors of approximate solutions u1
and u2 at different values of the fractional orders α1 = α2 := α ∈ {1.99, 1.999, 1.9999} with
M = 16. We can see that their errors are decreasing when α → 2. Finally, Figure 2c,d
show the behavior of the obtained approximate solutions for the proposed system of
FIDEs with the nodal point M = 30 for different values of the fractional orders α ∈
{1.91, 1.93, 1.95, 1.97, 1.99, 2}. We can see that they also tend to the blue solid line, that is,
the integer order solution at α = 2.

Table 4. Absolute errors of u1(x) and u2(x) at different orders α for Example 2.

x
α = 1.99 α = 1.999 α = 1.9999

Eu1(x) Eu2(x) Eu1(x) Eu2(x) Eu1(x) Eu2(x)

0.1 1.6774× 10−1 4.7755× 10−3 1.7219× 10−2 4.8221× 10−4 1.7264× 10−3 4.8267× 10−5

0.5 9.6692× 10−1 3.4738× 10−2 1.0059× 10−1 3.5360× 10−3 1.0099× 10−2 3.5423× 10−4

0.9 1.8061× 10−0 2.8713× 10−2 1.8876× 10−1 2.9213× 10−3 1.8960× 10−2 2.9265× 10−4
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(a) Comparing u1 at α = 2 (b) Comparing u2 at α = 2 (c) Behaving u1 at many α (d) Behaving u2 at many α

Figure 2. The behaviors of the approximate solutions in Example 2. We plot the obtained approximate solutions u1(x) and
u2(x) compared to their analytical solutions as depicted in Figure (a,b). (c,d) show the behavior of the obtained approximate
solutions for the proposed system of FIDEs with the nodal point M = 30 for different values of the fractional orders
α ∈ {1.91, 1.93, 1.95, 1.97, 1.99, 2}.

Example 3 ([30]). Consider the following linear system of FIDEs over x ∈ [0, 1]

Dα1 u1(x) = 2 + ex − 3e2x + e3x +
∫ x

0
(6u2(t)− 3u3(t))dt,

Dα2 u2(x) = ex + 2e2x − e3x +
∫ x

0
(3u3(t)− u1(t))dt,

Dα3 u3(x) = −ex + e2x + 3e3x +
∫ x

0
(u1(t)− 2u2(t))dt,

for α1, α2, α3 ∈ (0, 1] subject to the initial conditions u1(0) = u2(0) = u3(0) = 1. The analytical
solutions when α1 = α2 = α3 = 1 are u∗1(x) = ex, u∗2(x) = e2x and u∗3 = e3x.

This system consists of three equations of FIDEs and the fractional orders are in the
interval (0, 1]. Based on the presented numerical procedure, by solving the corresponding
block-matrix Equation (30) with M = 16 and α1 = α2 = α3 = 1, we obtain the numerical
solutions u1(x), u2(x) and u3(x). When we find accuracy of these obtained solutions via
the absolute error and compare with the OMTF [24], we can see that our method gives a
much higher accuracy as shown in Table 5 and the running time is 0.1216 s. In addition,
we plot the comparing graphs between approximate and exact solutions as depicted in
Figure 3a–c and also the behaviors of the obtained solutions when the fractional order
α→ 1 are shown in Figure 3d–f, where α1 = α2 = α3 := α ∈ {0.95, 0.96, 0.97, 0.98, 0.99, 1}.

From Examples 1 (α1 = α2 = 1), 2 (α1 = α2 = 2) and 3 (α1 = α2 = α3 = 1), we can see
that our proposed procedure for solving the system of FIDEs provides an excellent accuracy
in terms of the absolute error when the fractional orders tend to integer orders which can
be seen in the previous tables. Moreover, we can say that a sequence (uM) converges to the
exact solution u∗ with order p if there exists a constant C such that ‖u∗ − uM‖ < CM−p

or ‖u∗ − uM‖ = O(M−p) using the big-O notation [31]. In practice, for approximating
an order of convergence p, we take the natural logarithmic function on both sides of
the above expression. Thus, we obtain ln ‖u∗ − uM‖ ≈ ln C − p ln M. However, if we
take two distinct discretizations Mold and Mnew into the equation, we can solve them to

find the estimation of convergence order by p ≈ ln(‖u∗−uMnew‖/‖u∗−uMold
‖)

ln(Mold/Mnew)
, where uMold

and uMnew denote numerical solutions obtained by using the consecutive discretization
nodes Mold and Mnew in ascending order, respectively. Hence, the orders of convergence
for Examples 1–3 based on Euclidean norm are considered numerically and presented
in Table 6. It is obvious that the obtained convergence orders rapidly increase when the
number of nodes M ever increases.
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(a) Comparing solution u1 (b) Comparing solution u2 (c) Comparing solution u3

(d) Behaving solution u1 (e) Behaving solution u2 (f) Behaving solution u3

Figure 3. The behaviors of the approximate solutions in Example 3. The comparing graphs be-
tween approximate and exact solutions as depicted in (a–c) and also the behaviors of the obtained
solutions when the fractional order α → 1 are shown in (d–f), where α1 = α2 = α3 := α ∈
{0.95, 0.96, 0.97, 0.98, 0.99, 1}.

Table 5. Absolute errors of u1(x), u2(x) and u3(x) at α1 = α2 = α3 = 1 for Example 3.

x
OMTF [24] FIM-SCP

Eu1(x) Eu2(x) Eu3(x) Eu1(x) Eu2(x) Eu3(x)

0.1 5.4× 10−4 2.6× 10−3 6.6× 10−3 2.0206× 10−14 7.3275× 10−15 1.3323× 10−15

0.5 4.6× 10−4 4.9× 10−3 1.0× 10−2 1.1102× 10−14 1.7764× 10−15 2.5757× 10−14

0.9 2.6× 10−3 3.5× 10−2 9.8× 10−2 2.5313× 10−14 4.4409× 10−15 1.7764× 10−15

Table 6. Convergence orders of the approximate solutions for Examples 1–3.

M
Example 1 Example 2 Example 3

‖u∗− uM‖2 Order p ‖u∗− uM‖2 Order p ‖u∗− uM‖2 Order p

4 1.7668× 10−3 - 1.2217× 10−2 - 3.7762× 10−1 -
5 9.5749× 10−5 13.064 1.0315× 10−3 11.077 5.9667× 10−2 8.268
6 4.3033× 10−6 17.016 7.3615× 10−5 14.480 7.9496× 10−3 11.056
7 1.6451× 10−7 21.175 3.6184× 10−6 19.545 9.0269× 10−4 14.113

4. Procedure for Solving System of CIDEs

In this section, we extend the concept of solving system of FIDEs in Section 3 by
studying in the common case, i.e., the order of the fractional derivative is focused on the
positive integer which is called CIDE. Therefore, we construct the numerical procedure for
solving the generalized system of CIDEs (2). An accuracy of the obtained solutions is also
verified in this section.

4.1. Numerical Solution for System of CIDEs

Let us first introduce the system of CIDEs (2) with the given initial conditions. Let
uj(x) be an approximate solution of yj(x) contained in (2). Then, it becomes
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m

∑
j=1
Lijuj(x) = fi(x) +

m

∑
j=1

λij

∫ x

0
κij(x, t)uj(t)dt, x ∈ [0, L] (32)

for all i ∈ {1, 2, 3, . . . , m} and L ∈ R+ with the given initial conditions u(v)
i (0) = bvi ∈ R for

v ∈ {0, 1, 2, . . . , hi − 1},where hi = max1≤j≤m rij when rij is the highest order of derivative
for each uj contained in the linear differential operator Lij which is defined by

Lij := p
〈rij〉
ij (x)

drij

dxrij
+ p

〈rij−1〉
ij (x)

drij−1

dxrij−1 + p
〈rij−2〉
ij (x)

drij−2

dxrij−2 + · · ·+ p〈0〉ij (x), (33)

where p〈r〉ij (x) for each r ∈ {0, 1, 2, . . . , rij} is continuously differentiable function up to the
highest order of derivative contained in (32). We apply the idea of FIM-SCP described
in Section 2 to deal with the integration term in (32). Then, the numerical procedure for
solving the system of CIDEs is constructed. First, by using (18), we can rewrite (32) into

m

∑
j=1
Lijuj(x) = fi(x) +

m

∑
j=1

λijQij(x). (34)

Next, we discretize the domain [0, L] into M nodes which are generated by the zeros of
SM defined in (5), i.e., x1 < x2 < x3 < · · · < xM. Using the FIM-SCP, we have to eliminate
all derivatives from (34). Actually, we know that the highest order of derivatives in each
ith equation of (34) that is hi. In order to remove its derivatives, the hi-layer integrals from
0 to xk are taken on both sides of (34). Thus, we obtain

Zij(xk) +
hi

∑
l=1

dil x
hi−l
k

(hi − l)!
=
∫ xk

0

∫ ξhi

0
· · ·

∫ ξ3

0

∫ ξ2

0

(
fi(ξ1) +

m

∑
j=1

λijQij(ξ1)
)

dξ1dξ2 . . . dξhi−1dξhi
, (35)

where di1, di2, di3, . . . , dihi
are arbitrary constants emerged in the process of integrations and

Zij(xk) is an integration terms for each uj. By employing (33), it can be defined by

Zij(xk) :=
∫ xk

0

∫ ξhi

0
· · ·

∫ ξ3

0

∫ ξ2

0

( rij

∑
n=0

p
〈rij−n〉
ij (ξ1)

drij−n

dξ
rij−n
1

uj(ξ1)

)
dξ1dξ2 . . . dξhi−1dξhi

,

where p〈r〉ij is the coefficient function corresponding to the rth order derivative of uj for
r ∈ {0, 1, 2, . . . , rij}. Next, we reformulate Zij(xk) using the integration by parts for each
term to remove all derivatives from uj. Anywise, Zij(xk) can be separated into two cases
which are considering as rij = hi and rij < hi. Thus, for the first case rij = hi, it becomes

Zij(xk) =
hi

∑
n=0

(−1)n
(

hi
n

) ∫ xk

0
· · ·

∫ η2

0
(p〈hi〉

ij )(n)uj dη1 . . . dηn

+
∫ xk

0

[ hi−1

∑
n=0

(−1)n
(

hi − 1
n

) ∫ ξhi

0
· · ·

∫ η2

0
(p〈hi−1〉

ij )(n)uj dη1 . . . dηn

]
dξhi

+
∫ xk

0

∫ ξhi

0

[ hi−2

∑
n=0

(−1)n
(

hi − 2
n

) ∫ ξhi−1

0
· · ·

∫ η2

0
(p〈hi−2〉

ij )(n)uj dη1 . . . dηn

]
dξhi−1dξhi

...

+
∫ xk

0

∫ ξhi

0
· · ·

∫ ξ3

0

∫ ξ2

0
p〈0〉ij uj dξ1dξ2 . . . dξhi−1dξhi

(36)

and for the second case rij < hi, we have
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Zij(xk) =
∫ xk

0
· · ·

∫ ξrij+2

0

[ rij

∑
n=0

(−1)n
(

rij
n

) ∫ ξrij−1

0
· · ·

∫ η2

0
(p
〈rij〉
ij )(n)uj dη1 . . . dηn

]
dξrij−1 . . . dξhi

+
∫ xk

0
· · ·

∫ ξrij+1

0

[ rij−1

∑
n=0

(−1)n
(

rij − 1
n

) ∫ ξrij−2

0
· · ·

∫ η2

0
(p
〈rij−1〉
ij )(n)uj dη1 . . . dηn

]
dξrij−2 . . . dξhi

+
∫ xk

0
· · ·

∫ ξrij

0

[ rij−2

∑
n=0

(−1)n
(

rij − 2
n

) ∫ ξrij−3

0
· · ·

∫ η2

0
(p
〈rij−2〉
ij )(n)uj dη1 . . . dηn

]
dξrij−3 . . . dξhi

...

+
∫ xk

0

∫ ξhi

0
· · ·

∫ ξ3

0

∫ ξ2

0
p〈0〉ij uj dξ1dξ2 . . . dξhi−1dξhi

, (37)

where (p〈r〉ij )(n) is the nth order derivative of p〈r〉ij for r, n ∈ {0, 1, 2, . . . , rij} in both (36) and
(37). Hence, (35) can be written in another form

m

∑
j=1

Zij(xk) +
hi

∑
l=1

dil x
hi−l
k

(hi − l)!
= Ihi fi(xk) +

m

∑
j=1

λij Ihi Qij(xk), (38)

where Ihi is the hi-layer repeated integral operator from 0 to the zero xk. Subsequently, we
apply the idea of our proposed FIM-SCP described in Section 2 to transform (38) into the
matrix form by varying x1, x2, x3, . . . , xM as the zeros of shifted Chebyshev polynomial SM
defined in (5). Let Zij(xk) 7−→ [Zij(x1), Zij(x2), Zij(x3), . . . , Zij(xM)]> := Zij. Then, for the
first case rij = hi, we can express (36) in the matrix form

Zij =

[ hi

∑
n=0

(−1)n
(

hi
n

)
An(P〈hi〉

ij )(n)uj

]
+ A1

[ hi−1

∑
n=0

(−1)n
(

hi − 1
n

)
An(P〈hi−1〉

ij )(n)uj

]

+ A2
[ hi−2

∑
n=0

(−1)n
(

hi − 2
n

)
An(P〈hi−2〉

ij )(n)uj

]
+ · · ·+ Ahi P〈0〉ij uj (39)

and for the second case rij < hi, (37) can be written in the matrix form

Zij = Ahi−rij

[ rij

∑
n=0

(−1)n
(

rij
n

)
An(P

〈rij〉
ij )(n)uj

]
+ Ahi−rij+1

[ rij−1

∑
n=0

(−1)n
(

rij − 1
n

)
An(P

〈rij−1〉
ij )(n)uj

]

+ Ahi−rij+2
[ rij−2

∑
n=0

(−1)n
(

rij − 2
n

)
An(P

〈rij−2〉
ij )(n)uj

]
+ · · ·+ Ahi P〈0〉ij uj, (40)

where (P〈r〉ij )(n) := diag
{
(p〈r〉ij )(n)(x1), (p〈r〉ij )(n)(x2), , . . . , (p〈r〉ij )(n)(xM)

}
, A = SS−1 is the

SCIM described in Section 2 and uj = [uj(x1), uj(x2), uj(x3), . . . , uj(xM)]>. However, we
can explicitly see that when substituting rij = hi in (40), it indeed becomes (39). Thus, we
can only use (40) which is enough to represent Zij for both cases, i.e., rij ≤ hi. Moreover,
(40) can be simplified to

Zij =

rij

∑
k=0

( rij−k

∑
n=0

(−1)n
(

rij − k
n

)
An+hi−rij+k(P

〈rij−k〉
ij )(n)

)
uj := Lijuj. (41)

Next, we transform the remaining terms of (38) into the matrix form by utilizing the
same processes with (22), (23) and (25) that change dαie into hi instead, respectively, i.e.,

hi

∑
l=1

dil x
hi−l
k

(hi − l)!
7−→ Xidi, Ihi fi(xk) 7−→ Ahi fi, Ihi Qij(xk) 7−→ Ahi (A�Kij)uj, (42)
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where the parameters are defined in the similar idea as presented in Section 3.2. Hence, by
substituting the expressions (41) and (42) into (38), we obtain

m

∑
j=1

Lijuj + Xidi = Ahi fi +
m

∑
j=1

λijAhi (A�Kij)uj

or it can be simplified to ∑m
j=1 Hijuj + Xidi = Ahi fi, where Hij := Lij − λijAhi (A� Kij).

Finally, when it is varied as all indices i ∈ {1, 2, 3, . . . , m}, we have

Hu + Xd = Bf, (43)

where the parameters contained in (43), except H, are defined as same as (27) in which
change dαie into hi instead and

H :=


L11 − λ11Ah1(A�K11) L12 − λ12Ah1(A�K12) · · · L1m − λ1mAh1(A�K1m)
L21 − λ21Ah2(A�K21) L22 − λ22Ah2(A�K22) · · · L2m − λ2mAh2(A�K2m)

...
...

. . .
...

Lm1 − λm1Ahm(A�Km1) Lm2 − λm2Ahm(A�Km2) · · · Lmm − λmmAhm(A�Kmm)

.

For the given initial conditions, we can perform as same processes as to obtain (28)
and (29) in the previous section. We finally have S′

(
Im ⊗ S−1)u = b, where the parameters

are defined as in Section 3.2 by instead changing dαie to hi. Note that, it has exactly ∑m
i=0 hi

equations. In practice, we can solve the systems (43) and above condition, simultaneously,
by constructing them to the linear system in a block matrix form[

H X
S′
(
Im ⊗ S−1) 0

][
u
d

]
=

[
Bf
b

]
, (44)

where 0 is the ∑m
i=1 hi ×∑m

i=1 hi zero matrix and other parameters are defined as mentioned
above. Note that the linear system (44) has a total of mM + ∑m

i=1 hi equations. Hence, by
solving (44), we obtain the numerical solution ui(x) for the problem (2).

4.2. Experimental Examples for System of CIDEs

In this section, we apply the proposed numerical procedure to find approximate
solutions of the systems of CIDEs (2). We numerically demonstrate three examples that are
computed via MatLab program to verify the accuracy of our algorithm.

Example 4 ([32]). Consider the system of linear first order CIDEs over x ∈ [0, 1]

u′1(x) + u2(x) = 1 + x + x2 −
∫ x

0
(u1(t) + u2(t))dt,

u′2(x)− u1(x) = −1− x−
∫ x

0
(u1(t)− u2(t))dt,

subject to the initial conditions u1(0) = 1 and u2(0) = −1. Whose analytical solutions of this
example are given by u∗1(x) = x + ex and u∗2(x) = x− ex.

This experiment is the system of first order CIDEs which is considered under constant
coefficients, constant kernel functions and polynomial forcing terms. By using our numeri-
cal procedure, we obtain the approximate solutions u1(x) and u2(x) for each x ∈ [0, 1]. A
comparison of the absolute error between u1(x) and u2(x) obtained from our proposed
method, Genocchi polynomials method (GPM) [32] and biorthogonal system in approx-
imation (BSA) [33], with their exact solutions by using M = 8 as shown in Table 7. The
run-time is about 0.0437 s.
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Table 7. A comparison of absolute errors of u1(x) and u2(x) for Example 4.

x
GPM [32] BSA [33] FIM-SCP

Eu1(x) Eu2(x) Eu1(x) Eu2(x) Eu1(x) Eu2(x)

0.2 1.1926× 10−8 7.5681× 10−9 4.9477× 10−8 3.4781× 10−6 9.0571× 10−10 4.5561× 10−10

0.6 1.2158× 10−8 3.7151× 10−9 8.9823× 10−7 3.7114× 10−5 1.7562× 10−9 7.7135× 10−10

1.0 2.5729× 10−8 1.9506× 10−8 1.5028× 10−5 1.2451× 10−4 6.3656× 10−10 3.5808× 10−10

Example 5 ([34]). Consider the system of linear second order CIDEs over x ∈ [0, 1]

u′′1 + (−3x2 + 6x− 7)u1 + (−2x3 − 2x2)u2 = f1 +
∫ x

0

(
κ11u1 + κ12u2

)
dt,

u′′2 + 2(x− 1)u1 + (2x4 + 2x3 + 2x2 − 1)u2 = f2 +
∫ x

0

(
κ21u1 + κ22u2

)
dt,

where f1 = x4 − x3 − 2x2 − 6, f2 = x4 + 3x2 − 2, κ11 = t3 − x3, κ12 = (xt)2 − x4, κ21 =
x2 − t2 and κ22 = −(xt)2 − x4 with u1(0) = u2(0) = u′1(0) = 1 and u′2(0) = −1. The
analytical solutions are u∗1(x) = ex and u∗2(x) = e−x.

This example is a system of linear second order CIDEs with variable coefficients,
polynomial forcing terms and kernel functions are in term of functions depending on
variables x and t. By hiring our procedure with M = 8, we obtain the numerical solutions
u1(x) and u2(x) for each x ∈ [0, 1]. We compare the absolute errors between our algorithm
and STWS [34] as displayed in Table 8. The run-time is 0.0880 s.

Table 8. A comparison of absolute errors of u1(x) and u2(x) for Example 5.

x
STWS [34] FIM-SCP

Eu1(x) Eu2(x) Eu1(x) Eu2(x)

0.2 8.59× 10−7 2.25× 10−7 1.4956× 10−10 2.6680× 10−10

0.6 4.70× 10−6 1.06× 10−6 5.0321× 10−10 5.3544× 10−10

1.0 1.11× 10−5 4.69× 10−6 4.4410× 10−15 2.3993× 10−15

From Examples 4 and 5, we can see that our proposed method for solving the system
of CIDEs provides higher accuracy than other existing methods in terms of the absolute
errors at the same number of nodes and under the same conditions which can be seen in
Tables 7 and 8. Their average run-times are also consumed very inexpensive. In addition,
we demonstrate the Euclidean error norm and the convergence orders p or O(M−p) of
the obtained solutions from Examples 4 and 5 in Table 9 for varying nodes M. We can see
that our proposed procedure acquires a significant improvement in term of accuracy with
less computational nodes M. This table also shows that the convergence orders rapidly
increase when the number of nodes M ever increases.

Table 9. Convergence orders of the approximate solutions for Examples 4 and 5.

M
Example 4 Example 5

‖u∗M − uM‖2 Order p ‖u∗M − uM‖2 Order p

4 1.7668× 10−3 - 3.2209× 10−2 -
5 9.5749× 10−5 13.064 3.0215× 10−3 10.605
6 4.3033× 10−6 17.016 2.1610× 10−4 14.468
7 1.6451× 10−7 21.175 1.0621× 10−5 19.545



Fractal Fract. 2021, 5, 103 19 of 21

Actually, we can also apply the devised numerical procedure for solving system of
CIDEs to overcome the stiff system of ODEs by vanishing the kernel functions κij or the
parameters λij. Thus, we further illustrate two examples of the stiff systems.

Example 6. Consider the following stiff system of linear first order ODEs over x ∈ [0, 1].

u′1(x) = 98u1(x) + 198u2(x),

u′2(x) = −99u1(x)− 199u2(x),

subject to the initial conditions u1(0) = u2(0) = 1. The analytical solutions are u∗1(x) =
4e−x − 3e−100x and u∗2(x) = −2e−x + 3e−100x.

By employing the proposed algorithm, we obtain the approximate solutions u1(x)
and u2(x) at different x close to zero as shown in Table 10. When they are compared with
the Runge-Kutta fourth-order method (RK4) at M = 16, we have that our obtained results
give higher accuracy. We also capture the solutions with M = 30 near zero as depicted
in Figure 4a,b. Moreover, we found that the RK4 method is unavailable for solving this
problem whole domain [0, 1] when small discretization. In contrast, our procedure can
treat this trouble as illustrated in Figure 4c,d with M = 50. It is shown that these found
solutions perfectly match with the exact.

Table 10. Absolute errors of u1(x) and u2(x) at different x close to zero for Example 6.

x
RK4 FIM-SCP

Eu1(x) Eu2(x) Eu1(x) Eu2(x)

0.0025 8.5486× 10−8 8.5486× 10−8 2.3999× 10−15 1.1102× 10−15

0.0050 1.3998× 10−7 1.3998× 10−7 3.2335× 10−15 7.7716× 10−16

0.0075 1.8766× 10−7 1.8766× 10−7 3.8858× 10−15 9.9920× 10−16

0.0100 1.9206× 10−7 1.9206× 10−7 3.3584× 10−15 7.7716× 10−16

(a) Captured solution u1 (b) Captured solution u2 (c) Graphical solution u1 (d) Graphical solution u2

Figure 4. The graph of the approximate and exact solutions in Example 6.

5. Conclusions

In this article, the FIM-SCP is implemented to devise two numerical procedures for
solving the systems of linear FIDEs and CIDEs. For the system of FIDEs (1), the fractional
derivative is considered in the Caputo sense which is manipulated by the novel operational
matrix of fractional integration (SCFM) as shown in Theorem 3. Then, the first procedure
is devised by combining FIM-SCP and SCFM to overcome the systems of FIDEs (1) as
expressed by the linear system (30). Next, the second procedure is created to deal with
the generalized system of CIDEs (2) based on the FIM-SCP as expressed by the linear
system (44). Note that both proposed numerical procedures are based on the FIM-SCP
which completely eliminate the dilemma in the well-known round-off and discretization
errors. These procedures are also in form of the linear systems. Thus, it is very convenient
to find approximate solutions, we just substitute parameters of a given problem and
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supplementary conditions into those linear systems and solve them by MatLab solver.
Moreover, we can see from several Examples 1–5 that the devised algorithms provide
much higher accuracy than other methods, consume low computational cost in terms of
CPU time(s) and acquire a significant improvement in terms of absolute error with less
computational nodes M. The obtained convergence orders for each example also give
highly order. In addition, the second approach can solve the stiff system of linear ODEs
as shown in Example 6. The obtained solutions are in good agreement with the exact
solution. An interesting direction for our future work is to extend our techniques to solve
the multi-dimensional FIDEs and CIDEs.
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