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Abstract: In this paper spectral Galerkin approximation of optimal control problem governed by frac-
tional advection diffusion reaction equation with integral state constraint is investigated. First order
optimal condition of the control problem is discussed. Weighted Jacobi polynomials are used to approx-
imate the state and adjoint state. A priori error estimates for control, state, adjoint state and Lagrangian
multiplier are derived. Numerical experiment is carried out to illustrate the theoretical findings.
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1. Introduction

The aim of this paper is to develop a spectral Galerkin approximation of the following
optimal control problem governed by fractional advection diffusion reaction equation:

min yu 2dx + =~ 7 / dx 1)
(y(u),u)eG,,dez(Q) 2 / ~¥a(x))
subject to
(= 8)2y(x) +mDy(x) + may(x) = f+u(x), x€Q, o
y(x) =0, x € Qf
and the state constraint
Gua = {0 e Ll(Q)’ /dex <d}, 3)

where Q) = (—1,1), Q° = R\ Q, and D is the first-order derivative with respect to x. Here
j1 # 0is a constant and i, > 0. f(x) is a given function and y, is the desired state. (—A\)?
denotes the fractional Laplacian operator defined in integral form:

/ y(x) —y(©)

Fractional calculus has wide applications in many fields including anomalous diffu-
sion processes [1-3], control theory [4-8], fractional-order neural networks [9], biomedical
applications [10,11], mechatronics [12,13], etc. In the past decades lots of works [14-19]
are devoted to develop numerical methods or algorithms for fractional differential equa-
tions. In recent years optimal control problems governed by different types of fractional
differential equations have attracted increasing attentions [20-30].

The abnormal diffusion phenomenon widely exists in our real world, for example,
the pollutant transport in groundwater, where the solutes moving through aquifers do not
generally follow a classical second-order Fickian diffusion equation [1,2]. The heavy tail
behavior of the transport processes can be accurately described by Levy distribution. This
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can be viewed as a probability description of fractional advection diffusion equations. The
plume spreads faster than a traditional Brownian motion due to the self-similarity. The
traditional dispersion equation would seriously underestimate the risk of downstream
contamination if the plume represent a pollutant heading to a drinking water well. The
stable density that solves the fractional diffusion equation can capture the super-diffusive
spreading observed in the data. Motivated by these facts, in this paper we mainly focus on
the optimal control problem governed by a fractional advection diffusion equation.

To achieve higher-order convergence, spectral methods based on weighted polyno-
mials (the product of weighted functions and polynomials) have been developed to solve
fractional differential equations [31-33], which naturally accommodate the weak singular-
ity of fractional derivative at the endpoint. A spectral Galerkin approximation of optimal
control problem governed by fractional equations with control constraint is firstly inves-
tigated in [34,35], where the weighted Jacobi polynomials are used to approximate the
state variable and the adjoint state variable. As an extension in the present work we pro-
pose a spectral Galerkin approximation scheme for optimal control problem governed by
fractional advection diffusion reaction equation under the constraints of state integration.
Our model is general in that it includes advection, reaction and diffusion terms, which are
seldom studied in the literature, especially for the optimal control of the corresponding
state integral constraints. We proved a priori error analysis for state variable, adjoint state
variable, control variable, and Lagrangian multiplier, and the boundary singularities of the
solutions are considered in the convergence estimates, which provides a characterization
for the space-fractional problems and distinguishes this paper from many existing works
assuming the solutions to be sufficiently smooth. Finally numerical example is given to
illustrate the theoretical result.

The paper is organized as follows. In Section 2, we recall on some preliminary knowledge
and derive the continuous first-order optimality condition. In Section 3, we construct a spectral
Galerkin discrete scheme for optimal control problem, where weighted Jacobi polynomials are
used. Then a discrete first-order optimality condition is deduced, and a priori error estimates
of state variable, adjoint variable, control variable, and Lagrangian multiplier are proved. In
Section 4, numerical example is given to confirm our theoretical findings.

2. Preliminary Knowledge

In this section, we begin with a brief review of the definitions and properties of
weighed Sobolev spaces, fractional Laplacian operator, and Jacobi polynomials. Then we
derive the first order optimality condition.

2.1. Weighed Sobolev Spaces and Jacobi Polynomials
Denote by Li}a /» the space with the inner product and norm defined by

(4,0) yar2 = /quwoc/de, ] yar2 = (u,u)i}/az/z, Yuov € Li}a/z,

where w*/2(x) = (1 — x2)*/2 is a weight function.
We denote by Py the set of Jacobi polynomials of degree at most N. The Jacobi
polynomials P%/? in Py are mutually orthogonal as follows

/ W2 (x)PY2(x) P2 (x)dx = h%/*8,m, Sum is the Dirac delta symbol
Q

and

22 (T (n+a/2+1))2
n+a+1)T(n+a+1)T(n+1)

2
hg/ _

Lemma 1 (See [32]). The following relation holds for the Jacobi polynomials P%'?(x)
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« Tla+n+1)

(~8) 3 [ /2P 2 ()] = ghPA2 (), g = - ©

Lemma 2. The first order derivative of the Jacobi polynomials PY/2(x) satisfies
D( a/ZPa/Z) 27’[(1 )a/Z—ng/Z—l‘

To incorporate singularities at the endpoints, we use the following non-uniformly
Jacobi-weighted Sobolev space (see [36,37])

B = {ulo*u e Li}“/2+k,k =0,1,..s}, sis a nonnegative integer,

which is equipped with the following norm and seminorm
: 1/2 k
il = O bl 7% Tl = s

When s is not an integer, the space is defined by interpolation (see [36,37]).

2.2. Properties of the Fractional Laplacian Operations
Lemma 3 (See [32]). Assume that u, v vanish outside of (3 C R almost everywhere. Then it holds that

JRE TRy gy U BSOS

|x—y]1+“

+/Qu(x)v(x)p(x )dx,

when all the integrals are well-defined. Here p(x) is defined as follows

N\&

1

Cla o — Cla  —a
p) = [ gy = A0 00 ) 2 et @

e
«
Lemma 4. By Lemma 1, we can get

(=) Sy + o) = 2 |77|Ha/z+ﬂz|\77||2+||71P1/2||2~

Here C1 > 0 and following [32] we know that p(x) > % ~%. Then we have

a C C
(= 8)En 4 2, ) = S Fare + w2l + =g, 7)

2.3. First-Order Optimality Condition

Theorem 1. Assume that (y,u) is the solution to optimal control problem (1) and (2). Then the
following first-order optimality condition holds

(= A)2y+mDy+py = f+u,

(- A)%z—lez+y22—y Ya+u, ®)
(m,v—y) <0, Yv € Gy,
z+qu = 0.
Here
0, if [qydx <d,
I/[ =
constant > 0, if [ydx =d,
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u1 # 0is a constant and ypy > 0.

Proof. To derive the first order optimality system, we set F(u) := [ y(u)dx — d, where
y(u) is the solution of the state equation associated to 1. Then accordmg to [38,39] there
exist a real number y > 0 such that

pF(u) =0
and
Li(u)(v—u) =0,Yv € Uy.

Here L(u, ) = J(u) + uF(u) denote the Lagrangian functional with y being the Lagrangian
multiplier.
By simple calculation we have

- = tim A ) 20

S0 =yl () (0 = w)lax+ [ u(o - wax

and

uF'(u)(v—u) = ulim

Then we obtain

L) (v =) = [ () =yl () (v = w)ldx + [ u(o—u)dx

+y/y Y(v—u)dx =0, Yv € Uy. )
Letq = y'(u)(v — u). It follows from the state equation that

(*A)%Q+V1DQ+M26]=U*% x€Q,
qg=0, x € OF.

Then we introduce the adjoint state equation:

(= A)2z(x) — i Dz(x) + poz(x) = y(x) —ya+p, x€Q,
z(x) =0, x € QF,

By integration-by-parts, we deduce

+

Wy () (0 — u)]dx

— 1Dz (x) + paz(x))q(x)dx

(y

5

N\P

\\\

)2q(x) + p1Dq(x) + p2q(x))z(x)dx

U—M

Combing the above equations leads to
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Ll (u)(v—u) = /Q(')/u +z(x))(v—u)dx =0,Yv € Gyy.

This implies (8). Note that for v € G,
0=pF() = u( [ ywdr—ad)

= M(/Q(y(u)—v)dx)+y(/dex—d>.

This implies for v € G,y

n(,v—yu)) = y(/ﬂvdx—d) <0.
O
Remark 1. From (8) we can further derive that
0, if [nydx <d,
e { constant > 0, if [yydx=d

3. Spectral Galerkin Approximation
Define

VN = wa/z]P)N = SP””{‘PO; (Plr- . ~/¢N}r

where ¢y (x) = w"‘/2P]z‘/2(x) for 0 < k < N. Let Vy = VN G,y. The spectral Galerkin
method for optimal control problem (1) and (2) is to find (yy, uy) satisfying

i 2 e
U . d /
subject to
(= 8)2yn + Dyn + payn, vn) = (f +un, vn), Yon € V. (10)

In a similar way to continuous case we have the following discrete optimality condition

((= D) 2yn + u1Dyn + poyn, vn) = (f + un, vn), Yoy € Wy,
((=A)2zy — pDzy + pazN, 0n) = (YN — Ya + N, UN),  Yon € Vy, 1)
un(l, oy —yn) <0, Yoy € VN,

zny + yun = 0.
Here
0, if / yndx < d,
0
HN = (12)

constant > 0, if /QyNdx =d.

To achieve the error estimate, we need to introduce the following auxiliary problems:
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((— D)2y (un) + uDy(un) + pay(un), v) = (f + un,v),
((—A)2z(un) — pDz(un) + paz(un), v) = (y(un) — ya + pn,v), (13)
((— D) 2z(yn) — mDz(yn) + p2z(yn),v) = (Yn — Ya + N, V)

Lemma 5 (see [40]). Assume that 1 and N are solutions of state equation and its discrete
counterpart, respectively. Let w™"/%y € B? ./»- Then fors > /2 we have

17— 1l -ar2 + N2 =l a2 < CN~S|w ™2y s

wa/Z.

Lemma 6. Assume that (y,z,u, i) and (yn,zN, UN, iN ) are the solutions of optimality conditions (8)
and (11) respectively. Suppose that w=*/%y,w=%/?z € B? /2,8 = a/2. Then the following error
estimates hold

1y =Nl ez + Iz = 2Nl a2 < CNT° + C([Ju — un|| + |1 — punl),
Iy = ynllpgers + 12 = 2l gers < CN®275 + C(|Ju — un || + |1 — pnl)-

Proof. Note that yy and zy are the spectral Galerkin approximation of y(uy) and z(yy),
respectively. Therefore, by Lemma 5 we have

lyn = y(un)ll a2 + N7¥2[lyn — y(un) | gorr < CN7%,

—u/2 —s (14)

lzn = 2(yN) ll-er2 + N %lzn = 2(yn) [ sz < CN°.
By (8) and (13) we have

(= 8)3(y —y(un)) +mD(y —y(un)) + 2y —y(un)), v)

= (le — UN, U)‘
Choosing v = y — y(uy) leads to

(= 8)2(y —y(un)) +mD(y — y(un)) + 2y = y(un)),y = y(u))
=(u—un,y —y(un)).
By integration-by-parts, we have
w1 (D(y —y(un)), (y —y(un))) = —p1(y = y(un), D(y — y(un)))-
This yields
#(D(y —y(un)), (y —y(un))) = 0.
By (7), we can derive
((=8)%(y —y(un)) + paly — y(un)),y — y(un))
C C
> Sy = y(un) sz + p2lly = y(un) I + =y = y(un) 12

Note that

(= un,y —y(un)) < Iy =yen)llg-arn 14— unllges2:
Then using the Young inequality we further have

Y = y(un) gz + Iy =y ()l + ly = y(un) o2 (15)

< Cllu = un|l oz < Cllu = unl-
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By (8) and (13) we have
((=8)3(z—z(yn)) — mD(z = 2(yn)) + 2(z — 2(yn)), v)

= -yn )+ (=N

Further, by setting v = z — z(yn) we obtain
(=) (z—z(yn)) = D(z — 2(yn)) + p2(z — 2(yn)), 2 — 2(yn))
= —yn.z—z(yn)) + (1 — un, 2 = 2(yw))-
In a similar way to state variable, using Lemma 5 we can deduce
|2 = 2(yn) [z + 112 = 2(yn) 1+ [z = 2(yn) | o-or2
<Clly =ynll +Clp = pun|

<Clly —y(un) +y(un) — ynll + Clp — un|
SC(NTF + [Ju —un|| + [p — punl)-

(16)

Combining (14)—(16) yields the final results. [

Note that the estimate of the state and the adjoint state depends on the estimate of the
|l —uyn| and |p — pn|. In the following we are going to estimate |y — | first.

Lemma?7. Let (y,z,u,pu)and (yn,zN, UN, LN ) be the solutions of (8) and the discrete counterpart,
respectively. Then the following estimate holds

lp—un| < CINT°+[lu—unl).
Proof. Note that

((=2)3(z = z(un)) — mD(z — 2(un)) + pa(z = z(un)), v)

17)
= =y(un),v) + (4 = pn, v)-
Choosing v = w € Cy° with \1@ Jqwdx =1and [wllg1() < Cleads to
(1 = v, w) = (= 8)2(z = z(un)) + pa(z = z(un)), @) + (2 = 2(un), Dw)
= (y—y(un), w). (18)
Then by (18) we can get
=l < C(lz = 2(un) [ gare + ||z = 2(un) || + [ly = y(un)l))
< C(lz = z(un) gar2 + llz = 2(un) | + [Ju — unll)- (19)

Set Z = ﬁ Jo(z — z(uy))dx. By setting v = z — z(uyn) — Zw in (17) we have
(= 8)%(z—z(un)) = mD(z — 2(un)) + p2(z — 2(un)), z = z(un) — Zw)
= (¥ —y(un) z = z(un) = Zw) + (4 — pn, 2 = 2(un) = Zw).
We can check that (¢ — pun, z — z(uny) — Zw) = 0. Then we further derive
((=2)3(z = z(un)) — mD(z = z(un)) + pa2(z = z(un)), 2 — 2(un))

= ((=A)2(z—z(un)) — 11D (z — z(un)) + p2(z — z(uy)), Zw)
+ (v —y(un),z — z(un) — Zw).

By integration-by-parts, we have
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p1(D(z = z(un)), (z = z(un))) = —p(z = 2(un), D(z = z(un)))-
This yields
u(D(z —z(un)), (z — z(un))) = 0.
By (7), we can derive
((=A)2(z—z(un)) + pa(z — z(un)), 2 — 2(un))
> Tz 2(un) B + sl — 2(u) P+ Sl = 2un)|2-
Note that
((=2)3(z = 2z(un)) — mD(z — 2(un)) + pa(z — 2(un)), Zuw)
+ (y —y(un), z — z(un) — Zw)
< Clz = 2(un) | gar2 | Z| + Clly — y(un)lllz = 2(un) 1l + CIZ[ |y — y(un) |-
Then using the Young inequality we further have
|z = 2(un) | garz + [z = 2(un) | < CUZ] + [ly = y(un) ) 20)
< C(1Z] + [lu = unl))-
Using (8) and (11) we can get
1
121 = Iy (= 2(un))ix]
< C(llz(un) — 2Nl + llu — unl)-
By (13) we derive
(= 8)3(z(un) = z(yn)) — pD(z(un) = 2(yn)) + pa(z(un) = 2(yn)), v)
= (y(un) —yn,v). (21)
Setting v = z(uy) — z(yN) and using Lemma 5 we obtain
|2(un) = 2(yn) sz + [12(un) = 2(un) || + 12(un) = 2(yn) [ g-0r2- 22)

<Clly(un) — ynl|

Then using (22) we derive

VAN VAN VAN VAR VAN

|z = 2(un) | gas2 + 1z = 2(un) | < C(IZ] + ly — y(un) )
Cllz(un) = zn |l + [Ju — unl|)

C(llz(un) = z(yn) +z(yn) — 2wl + lu —unll) - (23)
(

C

ly(un) =y~ + lz(yn) —zn || + [Ju —un|l)
N7 4+ C|lu —un]-

Inserting above estimate into (19) gives the theorem result. [

Note that the estimate of the | — uy| depends on the estimate of the ||u — uy||. In the
following we are going to estimate ||u — uy/||.

Lemma 8. Let (y,z,u, i) and (yn, zn, Un, UN) be the solutions of optimality conditions (8) and (11),
respectively. Then the following estimates hold

|lu —un| < CN7.
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Proof. By (8) and (11), we can get
vl =l = [ (7= ) (4 = ) dx
= /Q(ZN —z)(u — un)dx
= [ @) = 2) (= )+ | (2 = 2(un)) (1 = ),
By (8) and (13), we have

((=4)

and

=

(y —y(un)) +mD(y —y(un)) + p2(y —y(un)),v) = (u —un,v)

((—A)2(z—z(un)) — i1D(z — z(un)) + p2(z — z(un)), v)
= (y—y(un) +pu—pun,v).

Then using Green formula and Lemma 3 we have

Nl=

[ @) = 2) =) = (= 8)% (v = y(u)) + 1 D(y = y(un)
+ 12y —y(un)), z(un) — 2)
—((=2)}(z = 2(un)) = nD(z — z(un))
ﬂtz(z z(un)),y —y(un))
—(y —y(un) +p—un,y —y(un)).
This implies that
= unl® + lly —y(un)|?

= (zn —z(un),u —un) + (1 — pn, y(un) — y) (24)
= (zn —z(un),u —un) + (4 — pn,y(un) —yn) — (4 = UN, Y — YN)-

Note that
0, if [qydx <d, then u =0,
u(ly—yn) =
>0, if [yydx=d, then u >0, and [,ydx > [,yndx
and

0, if fQ yndx < d, then uy =0,

—un(Ly—yn) = {
>0, if [yyndx=d, then puy >0, and [,ydx < [,yndx.

Then we have (4 — un,y —yn) > 0.
By (14), Lemma 7 and Young inequality we can get

Yl = unll? + lly = y(un)[?

< C(llzn = z(un) (Il — unl| + [ — unlllyn — y(un)|)

< C(llyn —y(un) |l + llz(yn) —zn D[l — unll + CNT* + [Ju — unl))[lyn — y(un) |
< C(llz(yn) = 2wl + lyn — y(un)1?) + CN " lyn — y(un) || + ellu — un|?

< CN™% 4 e|lu —unl|*
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Here € > 0 is an arbitrary small constant. Further we have
lu—uy| < CN*. (25)
a

Theorem 2. Let (yn,zn, Un, N ) be the solution of (11), and (y,z, u, ) be the solutions of (8),
respectively. Assume that w=*/?y,w=%/?z € B® .2 with's > a/2. Then we have

1y = ynllo-arz + 11z = 2Nl -arz + [l = unll + [ = pn] < CN75,
ly — ynllgerz + 12 — 28] garz < CN®/2-s,
Proof. We conclude from Lemmas 6-8 that

1y = ynll-ar2 + 12 = 2l arz + lu = un|[ + | = pn]
SCINT + u —unl[ + [ = pn|) + C(NT> + [lu —un|) + CN7

<CN*®
and
1y = Nz + 112 = 2Nl 2
< C(N*27° + Ju = un || + [ = pn]) + C(N ™ + [lu = un]l) + CN*
< CNY/275,
0

4. Numerical Experiments
4.1. Algorithm

Let N
D (x), pn =Y prg(x).

I=0

M=

YN =

Taking the test function vy = ¢y (x) for k = 0,1, ...N, and using Lemmas 1 and 2 yields

N N
MK+ Y ME 9+ 12 Y My 9 = (f + un, ¢x),

1=0 1=0

2 N N
A P — i Y M P+ 2 Y My pr = (YN — Ya + N, §k)-

1=0 1=0

We denote by M? (diffusion term), M (advection term) and M" (reaction term) the corre-
sponding coefficient matrix. The kth row and /th column entry of matrices M%, M* and M’
are calculated as follows

d /2
Mk,k_/\zhz ’

1
1 = —2(141) [ 1 W () P27 () P () dx,

1
M, = /_ WP ()P ().

Therefore in order to solve the state and adjoint state equation we just need to solve the
following equation with different coefficient matrix and right hand terms

A

A =G, (26)
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where
A=M+ M + up M’ or M4 — M" + up M.

Due to the existence of convection term and reaction term, the coefficient matrix of discrete
state equation and adjoint equation are dense. A direct solver will require O(N?) storage
and its complexity is O(N?). We adopt a matrix-free iterative solver with storage O(N) and
computational complexity O(N log?(N)) developed in [35] to solve the above equation.

This iterative solver consists of a fixed-point iteration and fast polynomial transforms.
A fixed point iteration is used to solve the state equation in (26)

Ckp1 = Gk + PG — AGp).
Here P = M? + pipI + 1 D?, where D? is a tridiagonal matrix with
Dikr1 = Migrr Diyip =My k=1...N

the remaining of D? elements are zero. In each iteration, we compute the matrix-vector
product A by using fast polynomials transform, instead of forming a matrix. For more
details one can refer to [35].

We reduce the cost of the whole algorithm by speeding up the calculation of state
equation and adjoint equation. The discrete optimality system can be solved by the following
Arrow-Hurwicz algorithm in Algorithm 1 (see [41]).

Algorithm 1: Arrow-Hurwicz algorithm.

1. Given N, the tolerance # and Jacobi polynomials and quadrature formula.
2. whileerror uy > 1 do

*  Given the initial value u; and pY;. Setting k = 0 and fixing a step length p > 0.

3. whileerroru > do

¢ Letl=0and u’;\’fo = uk.
e Solve the following equations to obtain (y’;\’,l, z’;\’]l )

(= D)5y + Dy + oy on) = (F +ukl,on),

5 k) k1 9 okl
((=A)2zy —mDzy + pozyy, vn) = (YN — Ya + BN, ON)-
o Letul ™ =ik — (K ).

o Calculate the error
k1+1 k1

error u = |luy " —uy||re.
4.  Setting [ = [+ 1 and then go to Step 5.
5. end while
6. Let

kit = max{0, K, + p(/Q vy —d)}.

7. Calculate the error

error N = abs(y'ﬁ'l — k).
8.  Update uy = ulf\’]l, YN = y];\’]l and zy = zlf\’]l. Otherwise let ull‘\,+1 = u];\’;H, letk =k+ 1.

Then go to Step 3.
9. end while
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4.2. Numerical Examples

Example 1. We consider the optimal control problem (8) with the exact state and adjoint state
y=(1-x2)2z=2(1-x?)2%u=—-2(1—x%)?2 Herep =8,y =1land u = 0.5.

fo = 2cos(1vc7t/2) [F(I;(E)oc) (G+D)7 + -0
- (1 -0
4T (3)

Fr (DT (=)

+ o (=4)x(1—x%) + (1 — %)% —u,

W) = 1l (e 1P+ (-0t
- ek () (0P
+ rg(fl)((x T2 (1 - x)2)]

— w(—4)x(1- xz) + (1 — x2)2}}.

—a/2 —a/2

In this case we have w™"/“y, w™*/“z belong to BZ; /%zfg according to [33]. We numeri-
cally demonstrate the results of the convergence in space proved in Theorem 2. The true
and numerical solutions of state variables, adjoint variables and control variables are shown
in Figure 1. The numerical experiments results of the convergence order under the weighted
L? norm are 5 — § — €. are presented in Tables 1-3. The convergence order of state variable
and adjoint variable in || - || ju/2 norm are expected to be 5 — & — €. The results are shown in
Tables 4-6 including different values of N with w = 1.3,1.5,1.7.

. state variable adjoint variable 0 control variable
2 T - T -
e Uy ()
09 B SN 18 ez 02f ——u(x)
=¥—=y(x) == 7(x)

0.8 16 0.4

0.7 1.4 -061

0.6 1.2 -0.81
5} ) 5}
205 21 2 1
> > >

0.4 0.8 <121

0.3 06 141

0.2 0.4 -1.61

0.1 0.2 -1.81

0 0 -2 ¢
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 -1 -0.5 0 0.5 1
X X X
(@) (b) (9

Figure 1. True solutions and numerical solutions. (left) y and yy, (middle) z and zy, (right). Here yy, zy and uy are
calculated by Algorithm 1.
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Table 1. Errors and convergence rates of y, z in weighted L2 norm and u with « = 1.30.

N ly —ynll -3 Rate llz—znll -3 Rate |l — pn| Rate
10 5.54 x 1074 1.20 x 1073 2.81 x 1074

20 3.00 x 10~° 421 6.24 x 1075 423 1.30 x 1073 4.44
40 1.58 x 10~° 425 324 x 10 427 5.80 x 1077 4.48
80 8.09 x 108 4.30 1.63 x 10~7 432 442 x 108 3.72
K 435 —¢ 435 —¢ 435 —¢

Table 2. Errors and convergence rates of y, z in weighted L? norm and y with & = 1.50.

N ly —ynll -3 Rate lz—znll -3 Rate | — un| Rate
10 456 x 1074 998 x 1074 3.50 x 1074

20 2.63 x 107° 411 572 x 107> 413 1.85 x 107> 424
40 1.50 x 10~ 413 3.20 x 10~° 416 9.12 x 1077 434
80 8.34 x 1078 417 1.75 x 107 420 429 x 108 441
K 425 —¢ 425 —¢ 425 —¢

Table 3. Errors and convergence rates of , z in weighted L? norm and y with a = 1.70.

N ly —ynll -3 Rate llz—znll -3 Rate |l — un| Rate
10 2.71 x 1074 6.77 x 1074 411 x 1074

20 1.78 x 107> 3.93 441 x 1075 3.94 254 x 107° 4.01
40 1.15 x 10~° 3.94 2.76 x 10~° 4.00 1.45 x 10~° 413
80 7.19 x 108 401 1.65 x 107 4.06 7.88 x 1078 420
K 415—¢ 415—¢ 415—¢

Table 4. Errors and convergence rate of y, z, u in non-weighted Sobolev norm with a = 1.30.

N ly —yn |l s Rate |z —znll s Rate || — un|| Rate
10 1.50 x 1073 310 x 1073 455 x 1074

20 136 x 1074 3.48 1.74 x 1074 3.51 1.92 x 105 457
40 1.16 x 107> 3.55 232 x 107° 3.56 7.70 x 107 4.64
80 9.48 x 1077 3.61 1.90 x 106 3.62 230 x 1078 5.06
K 370 —¢ 370 —¢

Table 5. Errors and convergence rate of y, z, # in non-weighted Sobolev norm with & = 1.50.

N ly —ynll s Rate llz —znll s Rate || — unl| Rate
10 1.90 x 1073 390 x 1073 3.98 x 1074

20 1.94 x 104 3.28 391 x 1074 3.30 1.99 x 107> 4.32
40 1.90 x 10> 3.35 3.81 x 107> 3.36 9.59 x 10~7 438
80 1.78 x 10~ 3.42 3.56 x 107° 342 446 x 108 443
K 350 —¢ 350 —¢€

Table 6. Errors and convergence rate of y, z, u in non-weighted Sobolev norm with & = 1.70.

N ly —yn |l s Rate |z —znll 3 Rate || — unl| Rate
10 1.90 x 1073 3.80 x 1073 352 x 1074

20 221 x 1074 3.08 444 x 1074 3.10 2.17 x 107° 4.02
40 248 x 107° 3.16 496 x 107° 3.16 1.24 x 107° 413
80 2.66 x 1070 322 532 x 10° 322 6.72 x 108 421

K 330 —¢€ 330 —¢€
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5. Conclusions

In this paper a spectral Galerkin approximation of fractional advection diffusion optimal
control problem with integral state constraint is discussed. Weighted Jacobi polynomials are
used to approximate the state and adjoint state. A priori error estimates for state, adjoint state,
control variables, and Lagrangian multiplier are derived. Numerical example is presented to
verify our theoretical findings. In future, we will further consider optimal control problems
with variable order fractional operator.
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