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Abstract: This article aims to introduce an efficient simulation to obtain the solution for a dynamical–
biological system, which is called the Lotka–Volterra system, involving predator–prey equations. The
finite element method (FEM) is employed to solve this problem. This technique is based mainly upon
the appropriate conversion of the proposed model to a system of algebraic equations. The resulting
system is then constructed as a constrained optimization problem and optimized in order to get
the unknown coefficients and, consequently, the solution itself. We call this combination of the two
well-known methods the finite element optimization method (FEOM). We compare the obtained
results with the solutions obtained by using the fourth-order Runge–Kutta method (RK4 method).
The residual error function is evaluated, which supports the efficiency and the accuracy of the
presented procedure. From the given results, we can say that the presented procedure provides an
easy and efficient tool to investigate the solution for such models as those investigated in this paper.

Keywords: Lotka–Volterra system; finite element method (FEM); optimization technique; residual
error function; fourth-order Runge–Kutta method (RK4 method); numerical simulations
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1. Introduction

Nonlinear differential equations have kept attracting the interest of many researchers.
Some authors have realized the need for finding new mathematical models of many
real-life problems in such different areas as, for example, fluid mechanics, viscoelasticity,
biology, physics, and engineering. Most nonlinear differential equations do not have an
exact solution. Therefore, approximate and numerical techniques must be used (see [1–4]).
For relevant further details about differential equations, together with their important
properties and the tools and techniques used for them, one can see the works [5] (see also [6]
for various developments involving ordinary differential equations as well as analogous
fractional-order differential equations).

After the above-mentioned works, many researchers have successfully applied various
numerical methods in this field (see, for example, [7]). Among these numerical methods,
the finite element method (FEM) (see [8]) has some distinct advantages for handling this
class of problems in which the coefficients for the solution can easily be found to exist after
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using any one of the available numerical programs. Here, we state the main advantages to
this technique through the following points:

1. FEM allows for easier modeling of complex geometrical and irregular shapes.
2. FEM can be adapted to obtain the solution of the problem with a high degree of

accuracy to decrease the need for physical prototypes in the design process.
3. FEM is remarkably useful for certain time-dependent simulations, such as crash simu-

lations in which deformations in one area depend upon deformations in another area.

In this paper, we apply the finite element optimization method (FEOM) to obtain the
solution for the given problem. The outline of the paper is as follows:

• Section 2 is devoted to the presentation of the formulation of the Lotka–Volterra system;
• Section 3 is devoted to the construction and prediction of the solution by FEOM;
• Section 4 is devoted to the results and discussion;
• Section 5 presents the conclusions of this investigation.

2. The Model of the Lotka–Volterra System (with Two Predators and One Prey)

Predator–prey equations are a pair of nonlinear differential equations of the first order
that are frequently used to describe the dynamics of biological systems in which two species
interact with each other; one is a predator and the other is its prey. The studied model was
presented by Samardzija [9], who proposed a two-predator and one-prey concept of the
Lotka–Volterra system.

In our study, the proposed model for the predator–prey equations is defined as follows:

x′(t) = λ1x(t)− λ2 x(t)y(t) + λ3 [x(t)]2 − λ4 z(t)[x(t)]2, (1)

y′(t) = −λ5 y(t) + λ6 x(t)y(t) (2)

and
z′(t) = −λ7 z(t) + λ4 z(t)[x(t)]2, (3)

together with the following initial conditions:

x(0) = x0, y(0) = y0 and z(0) = z0, (4)

where a prime denotes differentiation with respect to t, y(t) and z(t) are the numbers of
the predators at time t, x(t) is the number of their prey at time t, and λj (j = 1, . . . , 7)
are the parameters that represent the interaction between the three species involved (see
also [10,11]). In our present work, we solve this problem in the interval (0, t f ) = (0, 8). For
more details about this model, see the earlier work [9].

3. Procedure of Solution by the Finite Element Method (FEM)

The FEM is a powerful technique for solving differential equations and integral equa-
tions, as well as their fractional-order analogs. The basic concept is that the whole domain
is divided into smaller elements of finite dimensions, called Finite Elements. It is one
of the most versatile numerical techniques in modern engineering analysis and is em-
ployed to study diverse problems in such areas as, for example, fluid mechanics [12], heat
transfer [13], chemical processing [14], solid mechanics [15], electrical systems, and many
other fields.

The analysis of the finite element method is implemented through the following steps
(see, for details, [16]):

1. Finite-element discretization:
The whole domain is divided into a finite number of sub-domains, which is called the
discretization of the domain. Each sub-domain is called an element. The collection of
elements is called the finite-element mesh.
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2. Generation of the element equations:

• From the mesh, a typical element is isolated and the variational formulation of
the given problem over the typical element is then constructed.

• An approximate solution of the variational problem is assumed and the element
equations are formulated by substituting this solution into the above system.

• The element matrix, which is called the stiffness matrix, is constructed by using
the element interpolation functions.

3. Assembly of the element equations:
The algebraic equations so obtained are assembled by imposing the inter-element
continuity conditions. This yields a large number of algebraic equations known as
the global finite element model, which governs the whole domain.

4. Imposition of the boundary conditions:
The essential and natural boundary conditions are imposed on the assembled equations.

5. Solution a system of algebraic equations:
The obtained system of algebraic equations can be solved by any one of the appropri-
ate numerical techniques.

3.1. Variational Formulation of the System

The variational form associated with Equations (1)–(3) over a typical linear element
(te, te+1) is given by the following:∫ te+1

te
φ1

[
x′(t)− λ1x(t) + λ2 x(t)y(t)− λ3 [x(t)]2 + λ4 z(t)[x(t)]2

]
dt = 0, (5)

∫ te+1

te
φ2
[
y′(t) + λ5 y(t)− λ6 x(t)y(t)

]
dt = 0 (6)

and ∫ te+1

te
φ3

[
z′(t) + λ7 z(t)− λ4 z(t)[x(t)]2

]
dt = 0, (7)

where φ1, φ2 and φ3 are arbitrary test functions and may be viewed as the variation in
x(t), y(t) and z(t), respectively.

3.2. Finite Element Formulation of the Model

The finite element model may be obtained from the above equations by substituting
finite element approximations of the following form:

x(t) =
2

∑
`=1

x`Υ`, h(t) =
2

∑
`=1

y`Υ` and z(t) =
2

∑
`=1

z`Υ`, (8)

together with
φ1 = φ2 = φ3 = Υ` (` = 1, 2).

In our computations, the shape functions of a typical element (te, te+1) are taken to be
as follows:
Linear element:

Υe
1 =

te+1 − t
te+1 − te

, Υe
2 =

t− te

te+1 − te
and te 5 t 5 te+1. (9)
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Quadratic element:

Υe
1 =

(te+1 − te − 2t)(te+1 − t)
(te+1 − te)2 ,

Υe
2 =

4(t− te)(te+1 − t)
(te+1 − te)2 ,

Υe
3 = − (te+1 − te − 2t)(t− te)

(te+1 − te)2 and te 5 t 5 te+1.

(10)

The finite element model of the equations thus formed is given by the following: [
K12] [

K12] [
K13][

K21] [
K22] [

K23][
K31] [

K32] [
K33]

 {x}{y}
{z}

 =

 {b1}
{b2}
{b3}

, (11)

where [Krs] and [br] (r, s = 1, 2, 3) are defined as follows:[
K11

ij

]
=
∫ te+1

te

(
Υi

dΥj

dt
− λ1ΥiΥj

)
dt− λ3

∫ te+1

te

(
Υi x̄ Υj

)
dt,[

K12
ij

]
= λ2

∫ te+1

te

(
Υi x̄ Υj

)
dt,

[
K13

ij

]
= λ4

∫ te+1

te

(
Υi x̄ Υj

)
dt,[

K21
ij

]
= −λ6

∫ te+1

te

(
Υi ȳ Υj

)
dt,

[
K22

ij

]
=
∫ te+1

te

(
Υi

dΥj

dt
+ λ5ΥiΥj

)
dt,[

K23
ij

]
= 0,

[
K31

ij

]
= −λ4

∫ te+1

te

(
Υi z̄Υj

)
dt,[

K32
ij

]
= 0,

[
K33

ij

]
=
∫ te+1

te

(
Υi

dΥj

dt
+ λ7ΥiΥj

)
dt,

b1
i = 0, b2

i = 0, and b3
i = 0,

(12)

in which

x̄ =
2

∑
`=1

x̄`Υ`, ȳ =
2

∑
`=1

ȳ` Υ`, and z̄ =
2

∑
`=1

z̄` Υ`.

Each element matrix is of the order 6× 6. The entire flow domain is divided into
a set of 800 line elements and, following the assembly of all of the element equations,
a matrix of order 2403× 2403 is generated. The resulting system of equations is strongly
nonlinear and recourse must be made to a robust iterative scheme to solve it. The system
is linearized by incorporating the functions x̄, ȳ and z̄, which are assumed to be known.
After applying the given boundary conditions, only a system of 2398 equations remains for
finding the solution, which is performed by using a robust Gauss elimination method while
maintaining an accuracy of 0.0001. A convergence criterion based on the relative difference
between the current and previous iterations is employed. When these differences reach
the desired accuracy, the solution is assumed to have converged and the iterative process
is then terminated. The Gaussian quadrature is implemented for solving the integrations.
However, the suitability of the shape functions varies from problem to problem. Due to
the simple and efficient use in computations, linear, as well as quadratic, shape functions
are used in the present problem. However, it is observed that the results do not vary
considerably, indicating that both elements provide approximately the same accuracy.

4. Numerical Simulation

Here, in this section, we present a numerical test example to verify the accuracy
and the quality of the presented scheme. With this aim in view, we consider the systems
(1) to (4) with different values of the parameters λj (j = 1, . . . , 7), as well as the initial
conditions for x0, y0 and z0. Figures 1–4 present the numerical simulation for the studied
model by employing the technique that we have used in this paper.
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In Figure 1, we present the behavior of the approximate solution by the proposed
method (dotted line) and the fourth-order Runge–Kutta method (continuous line) in the
interval (0, 8) with the initial conditions x0 = 0.5, y0 = 1 and z0 = 1 and with the
parameters given by the following:

λ1 = λ2 = λ3 = λ4 = 1, λ5 = 2, λ6 = 3 and λ7 = 2.7.

Figure 1. Behavior of the approximate solution by the proposed method (dots line) and the RK4 (continuous line).

In Figure 2, we present the behavior of the approximate solution via distinct values of
the initial conditions in the interval (0, 8) and with the parameters given by the following:

λ1 = λ2 = λ3 = λ4 = 1, λ5 = 2, λ6 = 3 and λ7 = 2.7.

In this situation, we take the following three cases:

i. x0 = y0 = 1, z0 = 2; (a) for the solution x(t);

ii. x0 = y0 = 2, z0 = 4; (b) for the solution y(t);

iii. x0 = y0 = 3, z0 = 6; (c) for the solution z(t).

In Figure 3, we present the behavior of the approximate solution via distinct values of
the parameters λi (i = 1, . . . , 7) together with x0 = y0 = 1 and z0 = 2 in the interval (0, 8).
In this situation, we take the following three cases:

i. λ1 = λ2 = λ3 = λ4 = 2, λ5 = λ6 = 1, λ7 = 3 (a);

ii. λ1 = λ2 = λ3 = λ4 = 3, λ5 = λ6 = 2, λ7 = 4 (b);

iii. λ1 = λ2 = λ3 = λ4 = 4, λ5 = λ6 = 3, λ7 = 5 (c).
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In addition, in Figure 4, the residual error function (REF) is introduced at the initial
conditions x0 = y0 = 1, and z0 = 2, with the parameters given by the following:

λ1 = λ2 = λ3 = λ4 = 1, λ5 = 2, λ6 = 3 and λ7 = 2.7.

From these results, we can note that the behavior of the numerical solution depends
on the values in the initial conditions and the included parameters λj (j = 1, . . . , 7).
This confirms that the used method has been implemented in a good way for solving the
proposed problem.

Figure 2. Behavior of the approximate solution via different values of x0, y0 and z0.

Figure 3. Cont.



Fractal Fract. 2021, 5, 56 7 of 9

Figure 3. Behavior of the approximate solution via different values of the parameters λj (j = 1, . . . , 7).

Figure 4. The REF of the solutions.

In order to validate our numerical solutions, we present a comparison of the REF in
Table 1 at the initial conditions x0 = y0 = 2, and z0 = 3, and with the parameters given by
the following:

λ1 = λ2 = λ3 = λ4 = 2, λ5 = 0.8, λ6 = 3 and λ7 = 1.7.

This comparison shows the thoroughness of the proposed method in this article.
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Table 1. Comparison of the REF between FEOM and RK4 method.

Relative Error—Present FEOM: Relative Error—RK4:

t x(t) y(t) z(t) x(t) y(t) z(t)

0 3.15972 × 10−9 4.85231 × 10−8 5.98745 × 10−8 3.12345 × 10−7 1.65482 × 10−7 2.35479 × 10−7

1 3.75361 × 10−8 4.98765 × 10−7 1.85317 × 10−7 0.96325 × 10−7 2.74123 × 10−7 1.85213 × 10−7

2 2.85264 × 10−8 0.05217 × 10−8 1.85214 × 10−8 6.36547 × 10−6 2.96542 × 10−7 9.85471 × 10−7

3 2.12358 × 10−8 4.98541 × 10−8 3.65412 × 10−9 9.75612 × 10−7 2.95423 × 10−6 1.95423 × 10−6

4 4.32546 × 10−8 6.02546 × 10−9 5.85642 × 10−8 9.95423 × 10−7 5.35491 × 10−7 1.32564 × 10−7

5 7.85214 × 10−8 0.32541 × 10−7 6.65482 × 10−8 3.02587 × 10−7 3.65821 × 10−7 9.78523 × 10−7

6 1.12597 × 10−8 2.32587 × 10−8 5.95421 × 10−7 0.65478 × 10−6 1.32587 × 10−6 4.58241 × 10−7

7 8.65874 × 10−9 2.32541 × 10−8 6.96325 × 10−8 4.74185 × 10−7 3.00254 × 10−6 1.21504 × 10−6

8 1.25846 × 10−8 3.24680 × 10−8 5.25813 × 10−9 7.89240 × 10−7 9.11005 × 10−7 1.90412 × 10−7

5. Conclusions

The proposed model is solved numerically by employing the finite element optimiza-
tion method (FEOM). The resulting numerical solutions for the studied problem confirm
that the presented technique is quite suitable to study this problem effectively. We can
confirm also that, if we add extra terms from the series of the approximate solution, the er-
rors will decrease. Finally, the numerical solutions with different values of the order n of
approximation and the residual error function are computed to illustrate the validity of
the proposed technique. The derived results also show that the given procedure provides
an efficient tool to investigate the numerical solution for such models. On the other hand,
in capturing this numerical analysis, our work may provide stronger physical meanings
for performing future theoretical and computational analysis on this subject. All numerical
results in this paper were obtained by using the Mathematica software.
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