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Abstract: An alternative procedure for the implementation of fractional-order compensators is
presented in this work. The employment of a curve-fitting-based approximation technique for
the approximation of the compensator transfer function offers improved accuracy compared to
the Oustaloup and Padé methods. As a design example, a lead compensator intended for usage
in car suspension systems is realized. The open-loop and closed-loop behavior of the system is
evaluated by post-layout simulation results obtained using the Cadence IC design suite and the Metal
Oxide Semiconductor (MOS) transistor models provided by the Austria Mikro Systeme 0.35 µm
Complementary Metal Oxide Semiconductor (CMOS) process. The derived results verify the efficient
performance of the introduced implementation.

Keywords: fractional-order controllers; motion control systems; Oustaloup approximation;
Padé approximation; CMOS analog integrated circuits; operational transconductance amplifiers

1. Introduction

The objective of a car suspension system is to provide both road holding/handling
and ride quality, which are at odds with each other. It is important for the suspension
to keep the wheel in contact with the road surface as much as possible, because all the
road or ground forces, acting on the vehicle, do so through the contact patches of the tires.
Therefore, the suspension system is responsible for maintaining stability between vehicle
position shifts during driving in order to achieve good ride control. The suspension also
protects the vehicle itself and any cargo or luggage from damage and wear. According to
the particular requirements of cars, the suspension system can be active or passive [1–10].
A passive vehicle suspension system with fixed parameters that cannot be adjusted after
they are determined offers a simple structure and reliable performance at low cost. The
passive system is generally composed of a stiffness-damping system and can only achieve
either good ride comfort or good road holding, as the parameters cannot be changed with
the external excitation—a fact that limits the vehicle’s performance. An active suspension
system possesses the ability to reduce the acceleration of the sprung mass continuously as
well as to minimize suspension deflection, which results in an improvement of the tire grip
with the road surface. Some performance requirements are offered by advanced suspension
systems, which prevent the road disturbances from affecting passenger comfort while
increasing riding capabilities and a delivering smoother driving experience; increasing the
ride comfort results in a larger suspension stroke and smaller damping in the wheel hop
mode. The advantage of a system with continuous adaptability comes at the expense of
a higher cost. The selection of appropriate controller parameters in order to achieve the
good performance of the suspension system is a very important task in the development of
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a top-class vehicle that simultaneously offers comfort and safety. In this work, an active car
suspension system is considered.

A lead-lag compensator can help the suspension system to meet the demanded ro-
bustness requirements, as it is able to stabilize unstable systems and obtain the desired
performance specifications. The classical integer-order lead-lag compensator is described
by the following transfer function:

CIO(s) = K · τs + 1
xτs + 1

, (1)

where K is the low-frequency gain and τ is a time constant associated with the pole and
zero according to the formulas ωz =

1
τ and ωp= 1

x·τ , respectively. The kind of compensator
is determined by the range of values of the variable x, which describes the scaling of the
time constant. In the case that 0 < x < 1, then ωz < ωp and the resulting compensator is
called the lead compensator. Lead compensators [11] push the open-loop poles to the left,
and thus they give a more stable system with a fast response. In addition, they increase the
phase margin and, thanks to the existence of the pole, high frequencies which are mostly
corrupted by noise are less amplified. Lag compensators [12] (i.e., x > 1 and ωz > ωp)
decrease the bandwidth and the speed of response, which is preferable if the model does
not have good performance at high frequencies, in order to reduce the impact of (mostly
high-frequency) noise. By decreasing the magnitude, the gain crossover frequency is
shifted to a frequency with a larger phase margin. In contrast, the open-loop gain at low
frequencies is increased, reducing the static error, and the transient response becomes
slower. Under such conditions, a phase lag angle is added to the gain crossover frequency;
this design also allows gain to be added at low frequencies (which improves the steady-
state error). As the achieved stability is an important feature for the car suspension system,
a fractional-order lead-lag compensator can be a more advantageous option for the control
stage, due to the additional degree of freedom it provides. The transfer function of such a
compensator is described by an enhanced version of (1), which is given by (2):

CFO(s) = K ·
(

τs + 1
xτs + 1

)q
. (2)

where q > 0 is an extra degree of freedom [11,13–15]. Setting s = jω in both (1) and (2),
we canderive that

|CFO(jω)| = K1−q · |CIO(jω)|q , (3)

∠CFO(jω) = ∠K + q ·∠CIO(jω) . (4)

Inspecting (3)–(4), it is readily obtained that the factor q affects both the magnitude
and phase responses, while the pole and zero both remain unaffected. With regards to its
integer-order counterpart, it provides a scaling of phase, which can be used for the better
stabilization of the system through the phase-margin parameter, by optimizing the time
constant and/or its associated scaling factor [16,17]. The result is a more precise control of
the suspension system’s characteristics, which brings the system’s performance closer to
the ideally predicted behavior.

The approximation of (2) can be performed using the Oustaloup or Padé approxima-
tion tools, which are one-step processes requiring only one function. The main advantage
of the Padé approximation is the convergence acceleration, which leads to an efficient ap-
proximation even outside a power series expansion’s radius of convergence, but it suffers
from an absence of control of the range, where a specific degree of accuracy is achieved.
The Oustaloup approximation suffers from reduced accuracy at the limits of the frequency
bandwidth of interest [18]. Other possible solutions, based on the approximation of both
magnitude and phase frequency characteristics of (2), are the employment of the CRONE
control toolbox [19], as well as the built-in functions of MATLAB software.
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The main contribution of this work is the employment of a curve-fitting based proce-
dure for implementing a FO lead-lag compensator. Simply for demonstration purposes,
the tool offered in MATLAB for curve fitting approximation is employed, and the com-
parison with the Oustaloup and Padé approximations shows that an improved accuracy
is achieved.

The paper is organized as follows: the procedure for approximating the transfer
function of FO compensator is presented in Section 2, while the possible implementations
are compared in Section 3. The performance of the system is evaluated in Section 4, where
post-layout simulation results, obtained using the Cadence software and the Design Kit
provided by the Austria Mikro Systeme (AMS) CMOS 0.35 µm technology, are presented.

2. Curve-Fitting-Based Approximation of the Compensator Transfer Function

The approximation procedure is based on MATLAB software (ManthWorks, Natick,
MA, USA) and the built-in functions it provides. Following the floating chart in Figure 1,
a clear view of the approximation process is obtained. The starting point is the derivation of
the frequency response data (both magnitude and phase) of the operator (τs + 1)/(xτs + 1)
using the built-in function freqresp. Then, these data are raised to the fractional power q
and multiplied by the low-frequency gain factor K; after that, the frequency response data
model is formed utilizing the built-in function frd. The approximation process is performed
by applying the fitfrd function to the frequency response data model—a procedure that is
based on the Sanathanan–Koerner (SK) least square iterative method and fits the frequency
response data into a state-space model [20–24]. A corresponding rational integer-order
transfer function is derived using the tf command and has the form of a ratio of integer-
order polynomials given by (5)

C f it f rd(s) =
Bnsn + Bn−1sn−1 + . . . ,+B1s + B0

Ansn + An−1sn−1 + . . . ,+A1s + A0
, (5)

where Ai and Bi (i = 0 . . . n) are positive, real coefficients.

freqresp (             ) 1τs+1
xτs+1 freqresp (             )τs+1

xτs+1C = K·[                ] 
q

frd ( C )Cdata =  Capprox = 

Cfitfrd  =  tf  ( Capprox )  =                           

fitfrd ( C )

Bnsn+Bn-1sn-1+…+B1s+B0

Ansn+An-1sn-1+…+A1s+A0

2

3

4

Figure 1. Floating chart description of the curve-fitting-based approximation procedure for approxi-
mating the transfer function in (2).

The performance of the approximation, performed through the aforementioned
method, will be compared with that offered by the Padé approximation. For this pur-
pose, let us consider a car suspension system, which is described by the transfer function

P(s) =
1

M · s2 , (6)

where M is the mass supported by each wheel, which is assumed to be equal to the fourth
of total vehicle weight, lying in the range [100, 900] kg [25]. Setting the gain crossover
frequency for the typical mass of Mo = 300 kg equal to ωcg = 10 rad/s to maximize
passenger comfort and restricting the step response overshoot equal to 20% for all values
of M, the resulting transfer function of the required FO lead compensator is



Fractal Fract. 2021, 5, 46 4 of 11

C(s) = 4260 ·
(

1 + s
0.5

1 + s
200

)0.65

. (7)

Comparing (2) with (7), it is readily obtained that K = 4260, ωp = 20 ·ωcg = 200 rad/s
and ωz = ωcg/20 = 0.5 rad/s.

Considering a fourth-order approximation, the corresponding transfer functions
(scaled by the factor K) of the approximated compensator, derived using the curve-fitting-
based procedure presented here, are given by

C f it f rd(s) =
49.040s4 + 5157s

3
+ 9.802 · 104s2 + 3.539 · 105s + 1.974 · 105

s4 + 233.3s3 + 1.14 · 104s2 + 1.16 · 105s + 1.941 · 105
. (8)

The corresponding transfer function, based on the Padé approximation method, is
also obtained using MATLAB and its built-in function pade and is given by

Cpade(s) =
47.540s4 + 3146s

3
+ 4.162 · 104s2 + 1.273 · 105s + 7.009 · 104

s4 + 181.6s3 + 5938s2 + 4.448 · 104s + 6.783 · 104
. (9)

The integer-order transfer function derived through the Oustaloup filter approxima-
tion is

Coust(s) =
49.130s4 + 3669s

3
+ 4.963 · 104s2 + 1.386 · 105s + 7.009 · 104

s4 + 197.7s3 + 7081s2 + 5.234 · 104s + 7.009 · 104
. (10)

A comparison between the two methods can be performed considering the gain and
phase frequency responses in Figure 2a, where the ideal responses described by the transfer
function in (7) are also shown by dashes. The associated error plots are given in Figure 2b,
where it is concluded that the curve-fitting approximation method provides a more accurate
approximation of the compensator transfer function than that offered by the Oustaloup
and Padé approximations.
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Figure 2. (a) Gain and phase frequency responses of the compensator derived from fitfrd (8), Padé (9), and Oustaloup (10)
approximation methods along with the ideal responses derived from (7) and (b) the relative errors for each method.
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3. Implementation of the Approximated Compensator

The transfer function in (8) can be implemented using a multi-feedback topology,
as presented in [26], or the partial fraction expansion method introduced in [27]. The last
approach can be rewritten in the form of

C f it f rd-partial(s) = 49.044− 33.780
0.0059s + 1

− 9.840
0.0201s + 1

− 3.328
0.0910s + 1

− 1.074
0.4809s + 1

. (11)

The corresponding Functional Block Diagram (FBD) is demonstrated in Figure 3,
where the implemented transfer function is as follows:

H(s) = K0 −
K1

1 + τ1s
− K2

1 + τ2s
− K3

1 + τ3s
− K4

1 + τ4s
. (12)

Comparing the coefficients of (11) and (12), the derived values of scaling factors and
time constants are summarized in Table 1.

υout

τ1s+1
1 K1

τ3s+1
1 K3

τ4s+1
1 K4

K0

υin
τ2s+1
K21 - Σ

- +

- -

Figure 3. Functional Block Diagram implementing the transfer function in (11).

Table 1. Values of scaling factors and time constants of the FBD in Figure 3.

Scaling Factors Time Constants

Variable Value Variable Value

K0 49.044
K1 33.780 τ1(ms) 5.9
K2 9.840 τ2(ms) 20.1
K3 3.328 τ3(ms) 91
K4 1.074 τ4(ms) 480.9

The implementation of the FBD in Figure 3 is performed using Operational Transcon-
ductance Amplifiers (OTAs) as active elements because of the offered flexibility for per-
forming the required inversion of the transfer functions originating from their differential
input. The corresponding OTA-C implementation is demonstrated in Figure 4, while the
OTA structure employed in the simulations is depicted in Figure 5 [28,29]. The expression
of the transconductance of the OTA is given in (13):

gm =
5
9
· IB

n ·VT
, (13)

where n is the slope factor of a MOS transistor in the sub-threshold region (1 < n < 2),
VT is the thermal voltage (26 mV at 27 ◦C), and IB is the associated DC bias current. The
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time constants of integrators are electronically controlled through the bias current, and the
required scaling factors are implemented through an appropriate scaling of the DC bias
currents of the associated transconductances.

C1
gm1
-
+

C3
gm3
-
+

C4
gm4
-
+

K0gm-
+

K1gm+
-

K3gm+
-

K4gm+
-

gm2
-
+

K2gm+
-

C2

υin

gm
-
+

υout

Figure 4. OTA-C implementation of the approximated compensator.

VDD

Mb1 Mb2

IB

iout

Mn1 Mn2

Mp1 Mp2

Mn3 Mn4

Mb3

υin+ υin-
5 : 1 5:1

VSS

Figure 5. MOS circuitry of a high-linearity OTA, as employed in simulations.

The implemented time constants are given by (14):

τi =
Ci
gmi

. (14)
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Setting the DC bias current of OTAs equal to 30 pA, the calculated values of capacitors,
obtained using (13) and (14) and the results in Table 1, are the following: C1 = 3.13 pF,
C2 = 10.67 pF, C3 = 48.51 pF, and C4 = 256.18 pF. Utilizing the OTA-C structure in
Figure 4 and considering the expression in (13), the compensator can be controlled using
the DC currents.

Using the MOS transistor parameters provided by the AMS 0.35 µm CMOS De-
sign Kit and considering power supply voltages VDD = −VSS = 0.75 V, the aspect ra-
tios of the MOS transistors of the circuit in Figure 5 for ensuring operation in the sub-
threshold region are as follows: Mp1−Mp2 = 5µm/15µm, Mn1−Mn2 = 2µm/5µm,
Mn3−Mn4 = 10µm/5µm and Mb1−Mb3 = 5µm/5µm.

4. Simulation Results

The layout design of the compensator, performed using the Virtuoso Layout Editor of the
Cadence IC design suite, is depicted in Figure 6 with dimensions of 190.65 µm × 156.55 µm.

Figure 6. Layout design of the OTA-C structure in Figure 4 (the pink framed part corresponds to the
integration stage, while the blue framed part represents the summation stage).

The open-loop post-layout gain and phase responses of the system compensator-
plant, obtained through the Virtuoso Analog Design Environment of Cadence software,
are demonstrated in Figure 7a, along with the theoretically predicted responses given by
dashes. The gain crossover frequency ωcg was 10 rad/s, as theoretically expected, and the
phase margin was equal to 52.6°, with the theoretically predicted value being 55°. The
corresponding closed-loop responses are given in Figure 7b. The time-domain behavior is
evaluated through the stimulation of the system by a 200 mV step signal, and the output
waveform is plotted in Figure 8. The theoretical settling time is 572.5 ms and the overshoot
is 22.2%, while the post-layout settling time is 625.8 ms and the overshoot is 25%.
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Figure 7. Post-layout (a) open-loop and (b) closed-loop gain and phase frequency responses of the system compensator-plant.
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Figure 8. Post-layout step response of the closed-loop system stimulated by an input voltage of
200 mV.

The robustness of the step response of the system is evaluated through PVT corner
analysis, offered by the Analog Design Environment, considering temperatures of 0 °C,
27 °C and 60 °C and ±5% changes in the power supply voltages. The worst case waveform
corresponds to the MOS transistors’ “worst-zero” models, and it is plotted in Figure 9.
The measured settling time and overshot values were 534.1 ms and 24.8%, respectively,
and these results confirm that the system has reasonable sensitivity characteristics.
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Figure 9. Worst-case step response of the system obtained through PVT corner analysis.

5. Conclusions

The utilization of a curve-fitting-based approximation procedure for implementing a
lead compensator for a car suspension system offers a more efficient approximation of the
original fractional-order transfer function compared to the corresponding values achieved
through the Oustaloup and Padé approximations. The proposed procedure offers design
versatility, in the sense that it can be applied for implementing compensators of any type
(i.e., lead and lag) and any order. Another attractive feature is that the implementation
of the derived rational integer-order transfer function can be performed using any of
the already known design techniques, including multi-feedback structures or a cascade
connection of intermediate filter functions [30–33]. In addition, there is no restriction
regarding the choice of the active elements; for example, operational amplifiers (op-amps),
second generation current conveyors (CCIIs), Current Feedback Operational Amplifiers
(CFOAs) or Field-Programmable Analog Arrays (FPAAs) [34] could be utilized for this
purpose. Drawbacks of the proposed procedure are the requirement of multiple steps as
well as its association with the MATLAB software, in contrast to the one-step Oustaloup
and Padé approximation tools, which are not exclusively oriented to this software.
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The following abbreviations are used in this manuscript:

AMS Austria Mikro Systeme
CMOS Complementary metal oxide semiconductor
CCII Second generation current conveyor
FO Fractional-order
FBD Functional block diagram
IC Integrated circuit
IO Integer-order
MOS Metal oxide semiconductor
OTA Operational transconductance amplifier
PFE Partial fraction expansion
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