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Abstract: Several extensions of the classical Mittag-Leffler function, including multi-parameter and
multivariate versions, have been used to define fractional integral and derivative operators. In
this paper, we consider a function of one variable with five parameters, a special case of the Fox–
Wright function. It turns out that the most natural way to define a fractional integral based on this
function requires considering it as a function of two variables. This gives rise to a model of bivariate
fractional calculus, which is useful in understanding fractional differential equations involving mixed
partial derivatives.

Keywords: Mittag-Leffler functions; fractional integrals; fractional derivatives; Abel equations;
Laplace transforms; mixed partial derivatives

MSC: 33E12; 26A33; 34A08

1. Introduction

The original Mittag-Leffler function Eα(z), applied to one variable according to one
parameter, was first defined and studied by Gösta Mittag-Leffler in the 1900s. In the
hundred years since then, many variants and extensions of this function have been de-
fined, including functions of more than one variable and functions with arbitrarily many
parameters [1,2].

One of the major motivations for studying Mittag-Leffler functions is their relationship
with fractional calculus [2–5], a field of mathematics which has become very popular due
to its many applications in various areas of science [6–8]. Mittag-Leffler functions emerge
naturally as the solution to some elementary fractional differential equations, and their
eigenfunction properties have led them sometimes to be called “fractional exponential
functions” [9].

Among the many extensions of the Mittag-Leffler function to more variables and pa-
rameters, we mention just a few which are of particular importance or interest in motivating
the present work.

• A Mittag-Leffler function of one variable with three parameters was defined by
Prabhakar [10] to solve a certain singular integral equation. Its use as an integral
kernel gave rise to a model of fractional calculus which has a semigroup property
and which is already broad enough to include many other named fractional-calculus
operators [11–13], although it is itself a special case of the general Fox–Wright function.

• A Mittag-Leffler function of n variables with n + 1 parameters was used by
Luchko et al. [14,15] to solve multi-term linear fractional differential equations in-
volving multiple independent fractional orders. Note that this is independent from
the Mittag-Leffler function of n variables with 2n + 1 parameters which was defined
by Saxena et al. [16] and which gives rise to a model of fractional calculus with
a semigroup property [17]: neither of these general functions is a special case of
the other.
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• A Mittag-Leffler function of two variables with four parameters and a Mittag-Leffler
function of three variables with five parameters were recently defined [18,19] and
used to solve multi-order systems of fractional differential equations [20,21]. These
are closely related to the general function considered by Luchko et al., but they are
not special cases of it. Used as kernels, they also give rise to new models of fractional
calculus with a semigroup property [18,21]. For other types of bivariate Mittag-Leffler
function that have been defined in the literature, we refer to the papers [22–24].

All of these Mittag-Leffler type functions have been connected in some way to frac-
tional calculus and fractional differential equations. Indeed, the strong connection between
special functions and fractional calculus has been known for decades and continues to be
written about today [25–27], while multi-parameter and multi-variable generalisations are
being studied both for special functions and for the operators of fractional calculus [17].

Fractional partial differential equations have been an interesting and challenging
topic of study [3], with various methods able to be extended (with modifications) from
classical partial differential equations in order to solve them, such as the unified trans-
form method [28], distribution theory [29,30], and weak solutions [31,32]. Much atten-
tion has been paid to partial differential equations involving the fractional Laplacian
operator [33,34], but less attention has gone to differential equations involving mixed par-
tial fractional derivatives. They are mentioned in the classical textbooks [3] (§6.1.1) and [6]
(§24.2), and in a few papers (e.g., [35–37]), but in general they have attracted little notice in
the research literature on fractional partial differential equations.

In the work below, we study a specific type of Mittag-Leffler function, initially a
function of one variable with five parameters, and define a double fractional integral
operator by converting this function to a bivariate version. In this way, it is possible to
involve double integrals and derivatives, with respect to two variables, while preserving
the relatively simple structure of a single power series defining the Mittag-Leffler function.
These operators are therefore useful in the study of fractional partial differential equations,
including those involving mixed partial fractional derivatives.

As an initial motivation, let us consider the following bivariate Abel equation of the
second kind:

u(t, s) +
λ

Γ(α1)Γ(α2)

∫ t

0

∫ s

0

u(ξ, η)

(t− τ)1−α1(s− η)1−α2
dτ dη = f (t, s). (1)

One can reformulate this equation in terms of the standard Riemann–Liouville frac-
tional integral operators as: (

1 + λIα1
t Iα2

s
)
u(t, s) = f (t, s).

Formally, by means of symbolic operational calculus without regard for rigour, this
can be solved as follows:

u(t, s) =
(
1 + λIα1

t Iα2
s
)−1 f (t, s) =

(
∞

∑
n=0

(−λ)n Iα1n
t Iα2n

s

)
f (t, s).

This last formal result can be written in terms of the following Mittag-Leffler type function:

Eα1,α2(x) =
∞

∑
n=0

xn

Γ(α1n + 1)Γ(α2n + 1)
, (2)
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namely, in the following way, making use of the double (two-dimensional) Laplace convo-
lution operator denoted here as “∗”:

u(t, s) = Eα1,α2(−λtα1 sα2) ∗ f (t, s)

=
∫ t

0

∫ s

0

(
∞

∑
n=0

λn(t− τ)α1n(s− η)α2n

Γ(α1n + 1)Γ(α2n + 1)

)
f (τ, η)dτ dη

=

(
∞

∑
n=0

(−λ)n Iα1n
t Iα2n

s

)
f (t, s).

Therefore, it makes sense to define an integral operator Eα1,α2 acting on functions of
two variables as follows:

(Eα1,α2 f )(t, s) =
∫ t

0

∫ s

0

(
∞

∑
n=0

λn(t− τ)α1n(s− η)α2n

Γ(α1n + 1)Γ(α2n + 1)

)
f (τ, η)dτ dη. (3)

This operator emerges naturally from consideration of bivariate Abel equations, but it
has the drawback of lacking a semigroup property, or index law, in any of the parameters:
if we take a composition of this operator with itself, we do not find another operator in the
same form for different values of the parameters.

It should be noted at this point that some useful and important operators, which have
been criticised for lacking a semigroup property, can be embedded into a larger class of
fractional-calculus operators which has an index law and which therefore contains both
the original operators and their compositions. For example, Prabhakar fractional calculus
forms a class of operators which contains various useful operators that lack semigroup
properties in themselves, their compositions being different elements of the Prabhakar
class [11]. We can apply the same way of thinking here, extending the basic two-parameter
Mittag-Leffler function (2) and the associated integral operator to more general versions
where a semigroup property can be found.

In this case, it is sufficient to add three extra parameters in the definition in order to
obtain a generalised operator which has a semigroup property. We consider, throughout
this paper, the following five-parameter Mittag-Leffler function of one variable:

Eγ
α1,α2;β1,β2

(z) =
∞

∑
k=0

(γ)k
Γ(α1k + β1)Γ(α2k + β2)

· zk

k!
, (4)

where α1, α2, β1, β2, γ are complex constants (with some constraints to be determined later)
and (γ)k is the Pochhammer symbol defined by

(γ)0 = 1, (γ)k = γ(γ + 1) · · · (γ + k− 1), k = 1, 2, · · · .

This paper is devoted to a detailed study of the five-parameter Mittag-Leffler function (4),
the associated bivariate fractional integral operators, related concepts such as the corre-
sponding fractional derivative operators, and special cases of particular interest.

Specifically, the structure of the paper is as follows. We discuss the five-parameter
Mittag-Leffler function and its properties in Section 2, then pass to bivariate fractional
calculus in Section 3, firstly integral operators and then derivative operators. In Section 4,
we investigate the case where the operators are non-singular and expressible as finite sums
of Riemann–Liouville integrals. Section 5 is devoted to discussion of applications and
potential future work.
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2. The Five-Parameter Mittag-Leffler Function

Definition 1. Let α1, α2, β1, β2, γ ∈ C be five parameters satisfying Re(α1 + α2) > 0. The
five-parameter Mittag-Leffler function applied to a single variable z is defined by the following
power series:

Eγ
α1,α2;β1,β2

(z) =
∞

∑
k=0

(γ)k
Γ(α1k + β1)Γ(α2k + β2)

· zk

k!
, z ∈ C.

This can be seen as a special case of the Fox–Wright function, which is defined [3]
(§1.11) by

pΨq(z) = pΨq((ai, αi)1,p; (bi, βi)1,q; z) =
∞

∑
k=0

p
∏
i=1

Γ(ai + αik)

q
∏
j=1

Γ(bj + β jk)
· zk

k!
, z ∈ C,

where, in [3], the parameters are given as ai, bj ∈ C, αi, β j ∈ R satisfying αi 6= β j for
i = 1, · · · , p; j = 1, · · · , q, and it is proved that this power series is absolutely convergent
for all z ∈ C in the case ∆ := ∑

q
j=1 β j −∑

p
i=1 αi > −1.

The five-parameter Mittag-Leffler function can be written in terms of the Fox–Wright
function as follows:

Eγ
α1,α2;β1,β2

(z) =
1

Γ(γ) 1Ψ2((γ, 1); (β1, α1), (β2, α2); z).

As an immediate consequence of the convergence result shown in [3] (Theorem 1.5)
and [38], we conclude that, if α1, α2 ∈ R and α1 + α2 > 0, then the power series defining
Eγ

α1,α2;β1,β2
(z) is locally uniformly convergent and therefore it is an entire function.

In fact, there is no need to assume that any of the parameters are real. This assumption
is imposed in [3,38] to simplify the calculations, but the same convergence result can be
proved for complex values of the parameters by using Stirling’s formula and the ratio test,
similarly to the second author’s work in [39]. The condition then to be imposed on the
parameters is Re(α1 + α2) > 0, as stated in Definition 1.

It is worth noting that a four-parameter special case of the general Fox–Wright function
was recently given particular consideration by Luchko [40], namely the following function:

W(α1,β1),(α2,β2)
(z) =

∞

∑
k=0

zk

Γ(α1k + β1)Γ(α2k + β2)
, (5)

which is the case γ = 1 of our five-parameter Mittag-Leffler function. It is also a special
case of the vector-index Mittag-Leffler function studied by Al-Bassam and Luchko [41],
which is defined as follows:

E(α1,β1),··· ,(αn ,βn)(z) =
∞

∑
k=0

zk

Γ(α1k + β1) · · · Γ(αnk + βn)
, (6)

for any n ∈ N. The case n = 1 gives the usual two-parameter Mittag-Leffler function,
while the case n = 2 gives the four-parameter Wright function (5) considered by Luchko.
The function (6) was further extended [42] to include a numerator (γ)κn in terms of two
further parameters.

Our function is also a special case of the general Fox–Wright function, but it is different
from the special cases (5) and (6) considered previously, because of the Pochhammer symbol
appearing in the numerator. This extra parameter and Pochhammer symbol is important
because, as we show below, it gives rise to a semigroup property for the resulting fractional
integral operators – a property which is lacking for functions such as (5) and (6) which were
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considered before, and even for functions such as that in [42] which contain a generalised
Pochhammer symbol. The semigroup property will arise from the idea of turning this
univariate function into a bivariate integral operator, a notion which we justify below from
consideration of the gamma functions on the denominator.

Using the Mellin–Barnes integral representation of the Fox–Wright function pΨq(z),
proved in [3], we have for α1 > 0, α2 > 0, and γ, β1, β2 ∈ C, z 6= 0 that

Eγ
α1,α2;β1,β2

(z) =
1

2πiΓ(γ)

∫
L

Γ(s)Γ(γ− s)
Γ(β1 − α1s)Γ(β2 − α2s)

(−z)−s ds,

where the integration path L is a Bromwich contour starting at a point C − i∞ and ter-
minating at a point C + i∞ and separating the poles −m (m = 0, 1, 2, · · · ) of the gamma
function Γ(s) to the left and the poles γ + l (l = 0, 1, 2, · · · ) to the right with the assumption
−m 6= γ + l for l, m = 0, 1, 2, · · · .

Another complex integral representation is given by the following Theorem.

Theorem 1. Let α1, α2, β1, β2 ∈ C with Re(α1) > 0, Re(α2) > 0, and let ε > 0, π
2 < φ ≤ π.

Let H(ε; φ)(ε > 0, 0 < φ ≤ π) be the contour which is the union of the following three parts
oriented according to non-decreasing arg τ:

1. the ray arg τ = −φ, |τ| ≥ ε;
2. the arc −φ ≤ arg τ ≤ φ, |τ| = ε; and
3. the ray arg τ = φ, |τ| ≥ ε,

Then, the five-parameter Mittag-Leffler function possesses the following complex integral represen-
tations:

Eγ
α1,α2;β1,β2

(z) =
1

2πi

∫
H(ε;φ)

τ−β2 eτEγ
α1,β1

(
τ−α2 z

)
dτ (7)

=
−1
4π2

∫
H(ε;φ)

∫
H(ε;φ)

ξ−β1 τ−β2 eξ+τ

(1− zξ−α1 τ−α2)γ dξ dτ. (8)

Proof. Using the known representation [43]

1
Γ(z)

=
1

2πi

∫
H(ε;φ)

τ−zeτ dτ, z ∈ C, (9)

with z replaced by α2k + β2, and using the fact that the series represents an entire function,
which allows the interchange of the series and the integral, gives

Eγ
α1,α2;β1,β2

(z) =
∞

∑
k=0

(γ)k
Γ(α1k + β1)

(
1

2πi

∫
H(ε;φ)

τ−α2k−β2 eτ dτ

)
zk

k!

=
1

2πi

∫
H(ε;φ)

τ−β2 eτ
∞

∑
k=0

(γ)k
Γ(α1k + β1)

(τ−α2 z)k

k!
dτ,

which directly yields (7), the first of the desired formulae, in terms of the three-parameter
Mittag-Leffler function of Prabhakar.

On the other hand, using (9) for both of the terms 1
Γ(α1k+β1)

and 1
Γ(α2k+β2)

, we have

Eγ
α1,α2;β1,β2

(z) =
−1
4π2

∞

∑
k=0

(γ)k

(∫
H(ε;φ)

ξ−α1k−β1 eξ dξ ·
∫

H(ε;φ)
τ−α2k−β2 eτ dτ

)
zk

k!

=
−1
4π2

∫
H(ε;φ)

∫
H(ε;φ)

ξ−β1 τ−β2 eξ+τ
∞

∑
k=0

(γ)k
(zξ−α1 τ−α2)

k

k!
dξ dτ,

which directly yields (8), the second of the desired formulae. This derivation assumes that
|zξ−α1 τ−α2 | < 1, which is uniformly true on the given contours provided that Re(α1) > 0,
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Re(α2) > 0, and |z| is sufficiently small. The bound on |z| can be removed, by analytic
continuation in z, to yield the same result valid for all z.

Thus far, we have considered the function (4) as a five-parameter function of a single
variable z. As a function of z, this function has several properties, such as complex integral
representations, which we prove above. However, when we start to construct connections
with the topic of fractional calculus, it is more natural to consider a related bivariate
function instead.

To see why, consider that fractional differintegral relations for special functions, such
as many found in [44,45], usually make use of gamma functions appearing in power series,
in the following way:

a Iλ
x

(
(x− a)ν

Γ(ν + 1)

)
=

(x− a)ν+λ

Γ(ν + λ + 1)
, aDλ

x

(
(x− a)ν

Γ(ν + 1)

)
=

(x− a)ν−λ

Γ(ν− λ + 1)
,

with appropriate choices of ν in order to use such identities for every term of a power series
expansion. For many univariate functions defined by power series, the above relations give
rise to interesting identities between special functions. In our case, however, the power
series (4) has two different gamma functions in the denominator, each of them involving
k times a different parameter, α1 or α2. Therefore, to take full advantage of the function’s
symmetry in α1 and α2, we should use two different variables: one raised to the power of
α1, the other raised to the power of α2, and then both of them further raised to the power
of k.

Motivated by this discussion, we now begin to study, instead of the univariate function
Eγ

α1,α2;β1,β2
(z), the closely related bivariate function Eγ

α1,α2;β1,β2
(xα1 yα2). A similar idea,

substituting products of fractional powers of new variables instead of old variables, was
used in a 2017 paper of the first author [23], but in that case it was used to convert a
bivariate function to another bivariate function of different variables. Here, we use it
to convert a univariate function to a bivariate function. This seems at first sight as an
unnecessary complication, but we see that it makes many things more natural and smooth
in the studies related to the five-parameter Mittag-Leffler function.

Definition 2 ([3]). The double fractional integrals of a bivariate function f (x, t) are defined in
the natural way by combining fractional integrals with respect to x and t, namely as follows for
λ, µ ∈ C with Re(λ) > 0, Re(µ) > 0 and for x > a, t > b.

b Iλ
t a Iµ

x f (x, t) =
1

Γ(µ)Γ(λ)

∫ t

b

∫ x

a
(t− τ)λ−1(x− ξ)µ−1 f (ξ, τ)dξ dτ.

Similarly, the partial fractional derivatives of a bivariate function f (x, t) are defined as follows,
for λ, µ ∈ C with Re(λ) > 0, Re(µ) > 0 and for n = bRe(µ)c + 1, m = bRe(λ)c + 1 and
x > a, t > b:

bDβ
t aDα

x f (x, t) =
∂m+n

∂tm∂xn b In−β
t a Im−α

x f (x, t).

Lemma 1. Let α1, α2, β1, β2, γ, ω ∈ C with Re(α1), Re(α2), Re(β1), Re(β2) > 0. Then, for any
λ, µ ∈ C with Re(λ) > 0, Re(µ) > 0, we have

a Iλ
x c Iµ

y

[
(x− a)β1−1(y− c)β2−1Eγ

α1,α2;β1,β2
(ω(x− a)α1(y− c)α2)

]
= (x− a)λ+β1−1(y− c)µ+β2−1Eγ

α1,α2;λ+β1,µ+β2
(ω(x− a)α1(y− c)α2).

Proof. We know from above that the infinite series defining the five-parameter Mittag-
Leffler function is locally uniformly convergent, so we have the right to interchange the
order of this series with fractional integral operators. Since all the exponents of (x− a) and
(y− c) are greater than −1, we have:
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a Iλ
x c Iµ

y

[
(x− a)β1−1(y− c)β2−1Eγ

α1,α2;β1,β2
(ω(x− a)α1(y− c)α2)

]
=

=
∞

∑
k=0

(γ)k
Γ(α1k + β1)Γ(α2k + β2)

· ωk

k!

[
a Iλ

x (x− a)β1+α1k−1
][

c Iµ
y (y− c)β2+α2k−1

]
=

∞

∑
k=0

(γ)k
Γ(α1k + β1)Γ(α2k + β2)

· ωk

k!

×
[

Γ(β1 + α1k)
Γ(λ + β1 + α1k)

(x− a)λ+β1+α1k−1
][

Γ(β2 + α2k)
Γ(µ + β2 + α2k)

(y− c)µ+β2+α2k−1
]

= (x− a)λ+β1−1(y− c)µ+β2−1Eγ
α1,α2;λ+β1,µ+β2

(ω(x− a)α1(y− c)α2).

Note how the two gamma functions in the denominator of the series mesh together
precisely with the gamma-function quotients arising from the two fractional integrals, in
order to achieve the desired result.

Lemma 2. Let α1, α2, β1, β2, γ, ω ∈ C with Re(α1), Re(α2), Re(β1), Re(β2) > 0. Then, for any
λ, µ ∈ C with Re(λ) ≥ 0, Re(µ) ≥ 0, we have

aDλ
x cDµ

y

[
(x− a)β1−1(y− c)β2−1Eγ

α1,α2;β1,β2
(ω(x− a)α1(y− c)α2)

]
= (x− a)β1−λ−1(y− c)β2−µ−1Eγ

α1,α2;β1−λ,β2−µ(ω(x− a)α1(y− c)α2).

Proof. This can be deduced from Lemma 1 by analytic continuation in the variables λ
and µ, using the analyticity properties of fractional differintegrals. Alternatively, it can be
proved from the series expansion of the function, following similar lines as the proof of
Lemma 1.

Lemma 3. Setting all parameters to 1 in the bivariate form of the five-parameter Mittag-Leffler
function, we can recover a case of the modified Bessel function with parameter 0:

E1
1,1;1,1(xy) = I0

(
2
√

xy
)
=

∞

∑
k=0

(xy)k

(k!)2 .

Proof. This follows immediately from the series definition of the function.

3. Bivariate Operators with Five-Parameter Mittag-Leffler Kernels

In this section, we move on from functions to operators. Having established the
five-parameter Mittag-Leffler function and some of its properties, we now wish to define a
fractional integral operator using this function as a kernel, following in the footsteps of
other papers [10,18,46] which defined new models of fractional calculus by using various
types of Mittag-Leffler functions as kernels.

The five-parameter Mittag-Leffler function (4) is defined by a single power series in
terms of a single variable z. When we use it to define a fractional integral operator, however,
we must transform it to a bivariate function, again using a single summation, but this time
in terms of two independent variables x, y. Correspondingly, we use a double integral and
create an operator to be applied to bivariate functions. This is the only natural way to define
a model of fractional calculus using the five-parameter Mittag-Leffler function, because
the two gamma functions in its denominator will give rise to a double fractional integral
in each summand when we wish to write a series representation for the new operator:
we need two separate powers in the integrand, one corresponding to each of the gamma
functions from the denominator.
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Definition 3. The fractional integral operator based on the five-parameter Mittag-Leffler function
as a kernel is given by

a,bI
γ;λ
α1,α2;β1,β2

( f )(x, y) :=
∫ x

a

∫ y

b
f (t, s)(x− t)β1−1(y− s)β2−1Eγ

α1,α2;β1,β2
(λ(x− t)α1(y− s)α2)ds dt,

where a, b ∈ R are fixed with x > a, y > b and α1, α2, β1, β2, γ, λ ∈ C are parameters such that
Re(α1), Re(α2), Re(β1), Re(β2) > 0. Note that these restrictions on the parameters are necessary
in order to have a properly convergent singular integral for all reasonably well-behaved functions f
(more details later on the function space for f ).

It is clear that the two-parameter bivariate integral operator defined in (3) above is a special
case of this new fractional integral operator: (Eα1,α2 f )(x, y) = 0,0I

1;λ
α1,α2;1,1( f )(x, y).

Theorem 2. Let α1, α2, β1, β2, γ, λ ∈ C with Re(α1), Re(α2), Re(β1), Re(β2) > 0. Then,

a,bI
γ;λ
α1,α2;β1,β2

is a bounded operator from the space L1([a, c]× [b, d]) to itself.

Proof. Using Fubini’s theorem, we have

∫ c

a

∫ d

b

∣∣∣a,bI
γ;λ
α1,α2;β1,β2

( f )(x, y)
∣∣∣dy dx

≤
∫ c

a

∫ x

a

∫ d

b

∫ y

b

∣∣∣ f (t, s)(x− t)β1−1(y− s)β2−1Eγ
α1,α2;β1,β2

(λ(x− t)α1(y− s)α2)
∣∣∣ds dy dt dx

=
∫ c

a

∫ d

b
| f (t, s)|

[∫ c−t

0

∫ d−s

0

∣∣∣uβ1−1wβ2−1Eγ
α1,α2;β1,β2

(λuα1 wα2)
∣∣∣dw du

]
ds dt.

Since the five-parameter Mittag-Leffler function is an entire function when Re(α1 +
α2) > 0, we have a bound of the form Eγ

α1,α2;β1,β2
(λuα1 wβ2−1) ≤ C on the finite domain

[a, c]× [b, d]. Therefore,∥∥∥a,bI
γ;λ
α1,α2;β1,β2

( f )
∥∥∥

1
:=
∫ c

a

∫ d

b

∣∣∣a,bI
γ;λ
α1,α2;β1,β2

( f )(x, y)
∣∣∣dy dx

≤ C(c− a)β1−1(d− b)β2−1‖ f ‖1.

Since a, b, c, d, β1, β2 are fixed, the result is proved.

Theorem 3. Let α1, α2, β1, β2, γ, λ ∈ C with Re(α1), Re(α2), Re(β1), Re(β2) > 0, and let
f ∈ L1([a, c]× [b, d]). Then, the operator a,bI

γ;λ
α1,α2;β1,β2

can be represented as an infinite series of
double fractional integrals of Riemann–Liouville type:

a,bI
γ;λ
α1,α2;β1,β2

( f )(x, y) =
∞

∑
k=0

(γ)kλk

k! b Iβ2+α2k
y a Iβ1+α1k

x ( f )(x, y), (10)

where the right-hand side is locally uniformly convergent for x, y ∈ [a, c]× [b, d].

Proof. Since Eγ
α1,α2;β1,β2

(u) is an entire function defined by a locally uniformly convergent
power series, and f ∈ L1([a, c] × [b, d]), we have the right to interchange the order of
summation and integration, to yield
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a,bI
γ;λ
α1,α2;β1,β2

( f )(x, y) =
∫ x

a

∫ y

b
f (t, s)(x− t)β1−1(y− s)β2−1Eγ

α1,α2;β1,β2
(λ(x− t)α1(y− s)α2)dt ds

=
∫ x

a

∫ y

b
(x− t)β1−1(y− s)β2−1

∞

∑
k=0

(γ)kλk(x− t)α1k(y− s)α2k

Γ(α1k + β1)Γ(α2k + β2)k!
f (t, s)dt ds

=
∞

∑
k=0

(γ)kλk

k!
· 1

Γ(α1k + β1)Γ(α2k + β2)

∫ x

a

∫ y

b
(x− t)β1+α1k−1(y− s)β2+α2k−1 f (t, s)dt ds

=
∞

∑
k=0

(γ)kλk

k! b Iβ2+α2k
y a Iβ1+α1k

x ( f )(x, y).

Whence the result.

Before the next results, we need to recall the bivariate Laplace transform, or double
Laplace transform, which is applied to bivariate functions f (x, y) in the following way:

L2[ f ](p, q) =
∫ ∞

0

∫ ∞

0
e−(px+qy) f (x, y)dx dy = LxLy[ f ](p, q), Re(p) > 0, Re(q) > 0,

provided that this integral is convergent (for example, if f (x, y) is exponentially bounded
in both variables).

Theorem 4. Let α1, α2, β1, β2, γ, λ ∈ C with Re(α1), Re(α2), Re(β1), Re(β2) > 0. If f is a
bivariate function of exponential order and integrable over [0, ∞)× [0, ∞), then we have

L2

[
a,bI

γ;λ
α1,α2;β1,β2

( f )
]
(p, q) =

1
pβ1 qβ2

(
1− λp−α1 q−α2

)−γL2[ f ](p, q)

for p, q ∈ C such that these Laplace transforms exist.

Proof. This follows from the series representation of the operator, using the fact that the se-
ries is locally uniformly convergent to interchange the Laplace integration and summation:

L2

[
a,bI

γ;λ
α1,α2;β1,β2

( f )
]
(p, q) =

∞

∑
k=0

(γ)kλk

k!
L2

[
b Iβ2+α2k

y a Iβ1+α1k
x ( f )

]
(p, q)

= L2[ f ](p, q)
∞

∑
k=0

(γ)kλk

k!
q−β2−α2k p−β1−α1k

=
1

pβ1 qβ2
L2[ f ](p, q)

∞

∑
k=0

(γ)k(λp−α1 q−α2)
k

k!

=
1

pβ1 qβ2

(
1− λp−α1 q−α2

)−γL2[ f ](p, q),

where we have assumed |λp−α1 q−α2 | < 1 for convergence of the binomial series, although
this condition can be removed by analytic continuation in the variables p and q.

As an application of the above result, we can use Laplace transforms to quickly learn
the result of applying the new fractional operator to the five-parameter Mittag-Leffler
function itself, as follows.

Example 1. Let α1, α2, β1, β2, ε1, ε2, γ, λ, σ ∈ C with Re(αi), Re(βi), Re(εi) > 0 for i = 1, 2.
Then, we have
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L2

[
a,bI

γ;λ
α1,α2;β1,β2

(
xε1−1yε2−1Eσ

α1,α2;ε1,ε2
(λxα1 yα2)

)]
(p, q)=

=
1

pβ1 qβ2

(
1− λp−α1 q−α2

)−γL2

[
xε1−1yε2−1Eσ

α1,α2;ε1,ε2
(λxα1 yα2)

]
(p, q)

=
1

pβ1 qβ2

(
1− λp−α1 q−α2

)−γ 1
pε1 qε2

(
1− λp−α1 q−α2

)−σ

=
1

pβ1+ε1 qβ2+ε2

(
1− λp−α1 q−α2

)−γ−σ.

Taking inverse Laplace transforms on both sides of this equation, we get the following formula
showing how the bivariate fractional integral operator with five-parameter Mittag-Leffler function
kernel can be applied to this particular type of function:

a,bI
γ;λ
α1,α2;β1,β2

(
xε1−1yε2−1Eσ

α1,α2;ε1,ε2
(λxα1 yα2)

)
= xβ1+ε1−1yβ2+ε2−1Eγ+σ

α1,α2;β1+ε1,β2+ε2
(λxα1 yα2).

A very important property of the bivariate fractional calculus defined in this paper is
that it has a semigroup property in the variables β1, β2, γ, as expressed by the following
theorem. There are several different ways to prove this result, as in [18], and we mention
here two of them.

Theorem 5. Let α1, α2, β1, β2, ε1, ε2, γ, σ, λ ∈ C with Re(αi), Re(βi), Re(εi) > 0 for i = 1, 2.
Then, for any f ∈ L1([a, c]× [b, d]), we have

a,bI
γ;λ
α1,α2;β1,β2 a,bIσ;λ

α1,α2;ε1,ε2
( f ) = a,bI

γ+σ;λ
α1,α2;β1+ε1,β2+ε2

( f ).

Proof. In the case that a = b = 0 and f is a function whose Laplace transform exists, we
know from Theorem 4 that applying the operator a,bI

γ;λ
α1,α2;β1,β2

corresponds, in the Laplace

domain, to multiplication by p−β1 q−β2(1− λp−α1 q−α2)
−γ. The latter operation clearly has

a semigroup property in the parameters β1, β2, γ, since these appear only as exponents.
Thus, the desired result is clear in this case.

For the general case, we must proceed by manipulation of infinite series and gamma
functions, using Theorem 3:

a,bI
γ;λ
α1,α2;β1,β2 a,bIσ;λ

α1,α2;ε1,ε2
( f ) =

∞

∑
k=0

(γ)kλk

k! b Iβ2+α2k
y a Iβ1+α1k

x

∞

∑
m=0

(σ)mλm

m! b Iε2+α2m
y a Iε1+α1m

x ( f )

=
∞

∑
k=0

∞

∑
m=0

(γ)k(σ)mλk+m

k!m! b Iβ2+ε2+α2(k+m)
y a Iβ1+ε1+α1(k+m)

x ( f )

=
∞

∑
n=0

[
∑

k+m=n

(γ)k(σ)m

k!m!

]
λn

b Iβ2+ε2+α2n
y a Iβ1+ε1+α1n

x ( f )

=
∞

∑
n=0

[
(γ + σ)n

n!

]
λn

b Iβ2+ε2+α2n
y a Iβ1+ε1+α1n

x ( f )

= a,bI
γ+σ;λ
α1,α2;β1+ε1,β2+ε2

( f ),

where for the part in square brackets we use a finite-sum identity on gamma functions
(see [12], Theorem 2.9)).

The semigroup property helps us to obtain the left inverse of the bivariate integral
operator constructed above, which will motivate the definition of a fractional derivative
operator based on the five-parameter Mittag-Leffler function.
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Theorem 6. Let α1, α2, β1, β2, γ, λ ∈ C with Re(α1), Re(α2), Re(β1), Re(β2) > 0. For any
ε1, ε2 ∈ C with Re(ε1), Re(ε2) > 0, the following operator is a left inverse to the bivariate
fractional integral operator a,bI

γ;λ
α1,α2;β1,β2

considered above:

aDβ1+ε1
x bDβ2+ε2

y ◦ a,bI
−γ;λ
α1,α2;ε1,ε2 .

Proof. Using the semigroup property, we have

a,bI
−γ;λ
α1,α2;ε1,ε2 ◦ a,bI

γ;λ
α1,α2;β1,β2

= a,bI
0;λ
α1,α2;β1+ε1,β2+ε2

= b Iβ2+ε2
y a Iβ1+ε1

x ,

using the fact that the Pochhammer symbol (0)k equals 1 if k = 0 and equals 0 for all
integer k ≥ 1. Therefore, applying the double Riemann–Liouville fractional differential
operator aDβ1+ε1

x bDβ2+ε2
y from the left on both sides of the equation, the right-hand side

gives the identity operator:

aDβ1+ε1
x bDβ2+ε2

y ◦ a,bI
−γ;λ
α1,α2;ε1,ε2 ◦ a,bI

γ;λ
α1,α2;β1,β2

= aDβ1+ε1
x bDβ2+ε2

y ◦ b Iβ2+ε2
y a Iβ1+ε1

x = I .

Thus, we have found the left inverse operator of a,bI
γ;λ
α1,α2;β1,β2

as required.

Remark 1. It should be remarked that the left inverse operator is independent of the parameters ε1
and ε2. The easiest way to see this is by using the series formula:

aDβ1+ε1
x bDβ2+ε2

y ◦ a,bI
−γ;λ
α1,α2;ε1,ε2( f )(x, y) = aDβ1+ε1

x bDβ2+ε2
y

∞

∑
k=0

(−γ)kλk

k! b Iε2+α2k
y a Iε1+α1k

x ( f )(x, y)

=
∞

∑
k=0

(−γ)kλk

k! aDβ1+ε1
x bDβ2+ε2

y b Iε2+α2k
y a Iε1+α1k

x ( f )(x, y)

=
∞

∑
k=0

(−γ)kλk

k! b I−β2+α2k
y a I−β1+α1k

x ( f )(x, y), (11)

which is independent of ε1 and ε2. Here, we make use of the semigroup property for Riemann–
Liouville fractional calculus, in the case where the inner operator is a fractional integral, and we
also use the convention (valid by analytic continuation in the order of integration) that a Riemann–
Liouville fractional integral to negative order means a Riemann–Liouville fractional derivative,
c I−ν

t = cDν
t .

Since we can choose any values of ε1 and ε2 with positive real part and get the same
left inverse operator, we opt for the values which give ordinary (non-fractional) derivatives
of order β1 + ε1 and β2 + ε2. This means choosing, just like in Riemann–Liouville fractional
calculus, ε1 = N1 − β1 and ε2 = N2 − β2, to obtain the following definition.

Definition 4. Let α1, α2, β1, β2, γ, λ ∈ C with Re(α1) > 0, Re(α2) > 0, Re(β1) ≥ 0, Re(β2) ≥
0. Define N1, N2 ∈ N to be the numbers such that N1 − 1 ≤ Re(β1) < N1 and N2 − 1 ≤
Re(β2) < N2. Then, the double Riemann–Liouville-type fractional derivative with five-parameter
Mittag-Leffler kernel is defined by

a,bD
γ;λ
α1,α2;β1,β2

( f )(x, y) =
∂N1+N2

∂xN1 ∂yN2 a,bI
−γ;λ
α1,α2;N1−β1,N2−β2

( f )(x, y),

while the double Caputo-type fractional derivative with five-parameter Mittag-Leffler kernel is
defined by

C
a,bD

γ;λ
α1,α2;β1,β2

( f )(x, y) = a,bI
−γ;λ
α1,α2;N1−β1,N2−β2

(
∂N1+N2

∂xN1 ∂yN2
f
)
(x, y).
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Theorem 7. Let α1, α2, β1, β2, γ, λ ∈ C with Re(α1) > 0, Re(α2) > 0, Re(β1) > 0, Re(β2) >
0. The fractional integrals and derivatives with five-parameter Mittag-Leffler kernel have the
following inversion properties:

a,bD
γ;λ
α1,α2;β1,β2 a,bI

γ;λ
α1,α2;β1,β2

( f )(x, y) = f (x, y),

a,bI
γ;λ
α1,α2;β1,β2

C
a,bD

γ;λ
α1,α2;β1,β2

( f )(x, y) = f (x, y)−
N1−1

∑
n=0

(x− a)n

n!
· ∂n

∂xn f (a, y)−
N2−1

∑
m=0

(y− b)m

m!
· ∂m

∂ym f (x, b)

+
N1−1

∑
n=0

N2−1

∑
m=0

(x− a)n(y− b)m

n!m!
· ∂n+m

∂xn∂ym f (a, b).

Proof. The first identity is proved during the construction of the left inverse. For the
second one, we again use the semigroup property given by Theorem 5:

a,bI
γ;λ
α1,α2;β1,β2

C
a,bD

γ;λ
α1,α2;β1,β2

( f )(x, y) = a,bI
γ;λ
α1,α2;β1,β2 a,bI

−γ;λ
α1,α2;N1−β1,N2−β2

(
∂N1+N2

∂xN1 ∂yN2
f
)
(x, y)

= a,bI
0;λ
α1,α2;N1,N2

(
∂N1+N2

∂xN1 ∂yN2
f
)
(x, y)

= a IN1
x b IN2

y

(
∂N1

∂xN1

∂N2

∂yN2
f
)
(x, y)

= f (x, y)−
N1−1

∑
n=0

(x− a)n

n!
· ∂n

∂xn f (a, y)−
N2−1

∑
m=0

(y− b)m

m!
· ∂m

∂ym f (x, b) (12)

+
N1−1

∑
n=0

N2−1

∑
m=0

(x− a)n(y− b)m

n!m!
· ∂n+m

∂xn∂ym f (a, b),

by using twice the formula for the nth integral of the nth derivative.

Proposition 1. Let α1, α2, β1, β2, γ, λ ∈ Cwith Re(α1) > 0, Re(α2) > 0, Re(β1) ≥ 0, Re(β2) ≥
0. Then, the fractional derivatives with five-parameter Mittag-Leffler kernel, of both Riemann–
Liouville type and Caputo type, can be expressed by series formulae as follows:

a,bD
γ;λ
α1,α2;β1,β2

( f )(x, y) =
∞

∑
k=0

(−γ)kλk

k! b I−β2+α2k
y a I−β1+α1k

x ( f )(x, y); (13)

C
a,bD

γ;λ
α1,α2;β1,β2

( f )(x, y) =
∞

∑
k=0

(−γ)kλk

k! b IN2−β2+α2k
y a IN1−β1+α1k

x

(
∂N1+N2

∂xN1 ∂yN2
f
)
(x, y). (14)

Proof. This follows immediately from Theorem 3 and the series formula (11).

Remark 2. From comparing the series formula (10) for fractional integrals with the series formula (13)
for Riemann–Liouville-type fractional derivatives, it is now clear that the latter is an analytic
continuation of the former, with β1, β2, γ replaced by−β1,−β2,−γ. To see this, we make use of the
fact, alluded to in Remark 1 above, that the Riemann–Liouville fractional derivative cD−ν

t f (t) =
c Iν

t f (t), Re(ν) ≤ 0, is the analytic continuation in ν of the fractional integral c Iν
t f (t), Re(ν) > 0.

Therefore, each term b I−β2+α2k
y a I−β1+α1k

x ( f )(x, y) appearing in (13) is exactly the same, under the

analytic continuation of Riemann–Liouville differintegrals, as the term b Iβ2+α2k
y a Iβ1+α1k

x ( f )(x, y)
appearing in (10), after replacing β1, β2, γ by −β1,−β2,−γ as stated.

Thus, we can adopt the notational convention that

a,bI
−γ;λ
α1,α2;−β1,−β2

( f )(x, y) = a,bD
γ;λ
α1,α2;β1,β2

( f )(x, y), (15)
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and use this to extend the meaning of both a,bI
γ;λ
α1,α2;β1,β2

( f )(x, y) and a,bD
γ;λ
α1,α2;β1,β2

( f )(x, y) to
the entire complex plane for the parameters β1, β2, without any need to impose conditions on the
signs of their real parts. This identity is achieved by analytic continuation in the complex variables
β1, β2 from one half-plane to the other.

Proposition 2. Let α1, α2, β1, β2, γ, λ ∈ Cwith Re(α1) > 0, Re(α2) > 0, Re(β1) ≥ 0, Re(β2) ≥
0. Then, the fractional derivatives of Riemann–Liouville type and Caputo type, with five-parameter
Mittag-Leffler kernel, are related to each other as follows:

C
a,bD

γ;λ
α1,α2;β1,β2

( f )(x, y) = a,bD
γ;λ
α1,α2;β1,β2

( f )(x, y)

−
∞

∑
k=0

(−γ)kλk

k!

N1−1

∑
n=0

(x− a)n−β1+α1k

Γ(n− β1 + α1k + 1)
· b I−β2+α2k

y
∂n

∂xn f (a, y)

−
∞

∑
k=0

(−γ)kλk

k!

N2−1

∑
m=0

(y− b)m−β2+α2k

Γ(m− β2 + α2k + 1)
· a I−β1+α1k

x
∂m

∂ym f (x, b)

+
∞

∑
k=0

(−γ)kλk

k!

N1−1

∑
n=0

N2−1

∑
m=0

(x− a)n−β1+α1k(y− b)m−β2+α2k

Γ(n− β1 + α1k + 1)Γ(m− β2 + α2k + 1)
· ∂n+m

∂xn∂ym f (a, b).

Proof. Starting from the series formulae (13) and (14), we have:

C
a,bD

γ;λ
α1,α2;β1,β2

( f )(x, y) =
∞

∑
k=0

(−γ)kλk

k! b I−β2+α2k
y a I−β1+α1k

x

(
b IN2

y a IN1
x

∂N1+N2

∂xN1 ∂yN2
f
)
(x, y)

=
∞

∑
k=0

(−γ)kλk

k! b I−β2+α2k
y a I−β1+α1k

x

(
f (x, y)−

N1−1

∑
n=0

(x− a)n

n!
· ∂n

∂xn f (a, y)

−
N2−1

∑
m=0

(y− b)m

m!
· ∂m

∂ym f (x, b) +
N1−1

∑
n=0

N2−1

∑
m=0

(x− a)n(y− b)m

n!m!
· ∂n+m

∂xn∂ym f (a, b)

)

= a,bD
γ;λ
α1,α2;β1,β2

( f )(x, y)−
∞

∑
k=0

(−γ)kλk

k!

N1−1

∑
n=0

(x− a)n−β1+α1k

Γ(n− β1 + α1k + 1)
· b I−β2+α2k

y
∂n

∂xn f (a, y)

−
∞

∑
k=0

(−γ)kλk

k!

N2−1

∑
m=0

(y− b)m−β2+α2k

Γ(m− β2 + α2k + 1)
· a I−β1+α1k

x
∂m

∂ym f (x, b)

+
∞

∑
k=0

(−γ)kλk

k!

N1−1

∑
n=0

N2−1

∑
m=0

(x− a)n−β1+α1k(y− b)m−β2+α2k

Γ(n− β1 + α1k + 1)Γ(m− β2 + α2k + 1)
· ∂n+m

∂xn∂ym f (a, b),

where we use both the formula (12) for the double nth integral of the double nth derivative
and also the well-known formulae for Riemann–Liouville fractional differintegrals of
power functions.

4. The Non-Singular Cases of the Operators

Recently, the second author [11] made a detailed study of Prabhakar fractional calculus,
separating this class of operators into several subclasses according to their properties. Of
particular importance is the consideration of whether an operator is singular or non-
singular, and whether the series formula expressing it in terms of Riemann–Liouville
integrals is a finite or infinite sum. The same considerations can be applied to other types
of fractional calculus, such as the one we are studying here.

In the case of Prabhakar, it was proved [11] (Theorem 4.5) that the most special
case is when the operators are non-singular and the sum is finite, and this subclass of
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Prabhakar fractional calculus consists precisely of the integer powers of the following
(inverse) operators:

M f (t) = f (t)−ω a Iα
t f (t),

N f (t) =
d
dt

∫ t

a
Eα

(
ω(t− τ)α

)
f (τ)dτ.

These operators are obtained [47] by setting β = 0 (for non-singular operators) and ρ = ±1
(for finite sums) in the operator P

a Iα,β,ρ,ω
t of Prabhakar integration. We may try to do

something similar for the bivariate operator of integration with five-parameter Mittag-
Leffler kernel.

Let us firstly compare the Prabhakar fractional integral with the bivariate fractional
integral considered in this paper. We have

P
a Iα,β,ρ,ω

t f (t) =
∫ t

a
f (τ)(t− τ)β−1Eρ

α,β

(
ω(t− τ)α

)
dτ

=
∞

∑
k=0

(ρ)kωk

k! a Iβ+αk
t f (t),

versus

a,bI
γ;λ
α1,α2;β1,β2

( f )(x, y) =
∫ x

a

∫ y

b
f (t, s)(x− t)β1−1(y− s)β2−1Eγ

α1,α2;β1,β2
(λ(x− t)α1(y− s)α2)ds dt

=
∞

∑
k=0

(γ)kλk

k! b Iβ2+α2k
y a Iβ1+α1k

x ( f )(x, y).

It is clear that our parameters α1, α2 correspond to the α of Prabhakar, our β1, β2
correspond to the β of Prabhakar, our γ corresponds to the ρ of Prabhakar, and our λ
corresponds to the ω of Prabhakar, using all notation as above.

Therefore, for our operator, the process of obtaining a non-singular finite-sum version
should involve setting β1 = β2 = 0 and γ = ±1. Note that, since Definition 3 for the
fractional integral operator requires Re(β1) > 0 and Re(β2) > 0, we must use Definition 4
for the case when β1 = β + 2 = 0. We find:

a,bI
−1;λ
α1,α2;0,0( f )(x, y) = a,bD

1;λ
α1,α2;0,0( f )(x, y) =

∂2

∂x∂y a,bI
−1;λ
α1,α2;1,1( f )(x, y)

=
∂2

∂x∂y

∫ x

a

∫ y

b
f (t, s)E−1

α1,α2;1,1(λ(x− t)α1(y− s)α2)ds dt

=
∂2

∂x∂y

∫ x

a

∫ y

b
f (t, s)

[
1− λ(x− t)α1(y− s)α2

Γ(α1 + 1)Γ(α2 + 1)

]
ds dt

= f (x, y)− λ
∂2

∂x∂y b Iα2+1
y a Iα1+1

x ( f )(x, y)

= f (x, y)− λ b Iα2
y a Iα1

x ( f )(x, y). (16)

The same formula can also be obtained more directly from the series formula (13):

a,bI
−1;λ
α1,α2;0,0( f )(x, y) =

∞

∑
k=0

(−1)kλk

k! b Iα2k
y a Iα1k

x ( f )(x, y)

= f (x, y)− λ b Iα2
y a Iα1

x ( f )(x, y),

where again we use the fact that (−1)k equals 1 if k = 0, −1 if k = 1, and 0 for all k ≥ 2.
The inverse operator is given by setting γ = 1 instead of γ = −1, but this one cannot

be written in such an elementary way:
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a,bI
1;λ
α1,α2;0,0( f )(x, y) = a,bD

−1;λ
α1,α2;0,0( f )(x, y) =

∂2

∂x∂y a,bI
1;λ
α1,α2;1,1( f )(x, y)

=
∂2

∂x∂y

∫ x

a

∫ y

b
f (t, s)E1

α1,α2;1,1(λ(x− t)α1(y− s)α2)ds dt

=
∂2

∂x∂y

∫ x

a

∫ y

b
f (t, s)

[
∞

∑
k=0

λk(x− t)α1k(y− s)α2k

Γ(α1k + 1)Γ(α2k + 1)

]
ds dt, (17)

or equivalently, using the series formula (13),

a,bI
1;λ
α1,α2;0,0( f )(x, y) =

∞

∑
k=0

λk
b Iα2k

y a Iα1k
x ( f )(x, y). (18)

The pair of integro-differential operators given by (16) and (17) is of course reminiscent
of the so-called Atangana–Baleanu (AB) integral and derivative [48,49]. The latter are
defined similarly: the integral by a linear combination of a function with its Riemann–
Liouville fractional integral and the derivative by a derivative of an integral transform
involving a Mittag-Leffler function kernel. The new development here is that the operators
are now bivariate: we can think of the operators (16) and (17) as forming a two-dimensional
Atangana–Baleanu calculus.

We also note that there is now a direct connection with the bivariate Abel equation (1)
which we considered at first to motivate this paper. The aforementioned Abel equation
was rewritten in a form involving the operator (16), and its solution was constructed in a
form involving the inverse operator (17).

It is also important to realise that both operators (16) and (17) involve mixed partial
integro-differential operators: the AB-type integral operator (16) is defined using fractional
integrals with respect to x and y together, and the AB-type derivative operator (17) is
defined using mixed partial derivatives with respect to x and y. Thus, these operators
may be useful in the study and understanding of fractional PDEs involving mixed partial
derivatives, which we note above are under-appreciated in fractional calculus.

To fully recover a bivariate analogue of the AB operators, we need to choose a value for
the parameter λ so that appropriate boundary conditions are realised when the parameters
α1, α2 go to 0 or 1. This is the reason for the choice of multipliers in the definition of the AB
integral and derivative to order α: so that the ordinary first-order integral and derivative
are recovered when α→ 1 and the original function itself when α→ 0. Thus, the following
definition is motivated.

Definition 5. The mixed bivariate AB integral is defined to be

AB
a,b Iα1,α2

x,y f (x, y) =
(1− α1)(1− α2)

B(α1, α2)
f (x, y) +

α1α2

B(α1, α2)
b Iα2

y a Iα1
x ( f )(x, y),

where B(α1, α2) is a normalisation function which is assumed to satisfy B(0, 0) = 1 and B(1, 1) = 1.
The mixed bivariate AB derivatives, of Riemann–Liouville and Caputo type, respectively, are

defined to be

ABR
a,bDα1,α2

x,y f (x, y)

=
B(α1, α2)

(1− α1)(1− α2)
· ∂2

∂x∂y

∫ x

a

∫ y

b
f (t, s)E1

α1,α2;1,1

(
−α1α2

(1− α1)(1− α2)
(x− t)α1(y− s)α2

)
ds dt
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and

ABC
a,bDα1,α2

x,y f (x, y)

=
B(α1, α2)

(1− α1)(1− α2)

∫ x

a

∫ y

b

∂2 f (t, s)
∂t∂s

·E1
α1,α2;1,1

(
−α1α2

(1− α1)(1− α2)
(x− t)α1(y− s)α2

)
ds dt,

where B(α1, α2) is the same normalisation function as above.
These definitions are valid for any α1, α2 ∈ C with positive real parts, although the main case

of interest is when α1, α2 ∈ (0, 1).

Remark 3. The multiplier function B(α1, α2) is introduced by analogy with the original definition
of the AB derivative and AB integral [48], and the restrictions on this function are imposed in order
to ensure the following limiting behaviour as the fractional orders α1, α2 approach 0 or 1:

lim
α1,α2→0

(
AB
a,b Iα1,α2

x,y f (x, y)
)
= f (x, y),

lim
α1,α2→1

(
AB
a,b Iα1,α2

x,y f (x, y)
)
= b I1

y a I1
x( f )(x, y),

lim
α1,α2→0

(
ABR

a,bDα1,α2
x,y f (x, y)

)
= f (x, y),

lim
α1,α2→0

(
ABC

a,bDα1,α2
x,y f (x, y)

)
= f (x, y)− f (a, y)− f (b, x) + f (a, b).

Note that if the pair (α1, α2) takes the values (0, 1) or (1, 0), then the mixed bivariate AB
integral becomes zero. This is why we call it specifically a mixed bivariate operator: in the square
set [0, 1]× [0, 1] for values of the pair (α1, α2), the values of the mixed bivariate AB integral are
weighted towards the diagonal (where both the fractional orders α1 and α2 have more similar values)
rather than towards the asymmetric corners.

The following result is the bivariate analogue of [47] (Theorem 3.1) or [11] (Proposition 2.4).
It follows directly from our consideration above of the non-singular finite-sum special case of
the five-parameter Mittag-Leffler kernel operators which culminated in Equations (16) and (17).

Proposition 3. The mixed bivariate AB integral and derivatives can be written in terms of the
five-parameter Mittag-Leffler kernel operators as follows:

AB
a,b Iα1,α2

x,y f (x, y) =
(1− α1)(1− α2)

B(α1, α2)
· a,bI

−1; −α1α2
(1−α1)(1−α2)

α1,α2;0,0 ( f )(x, y)

=
(1− α1)(1− α2)

B(α1, α2)
· a,bD

1; −α1α2
(1−α1)(1−α2)

α1,α2;0,0 ( f )(x, y);

ABR
a,bDα1,α2

x,y f (x, y) =
B(α1, α2)

(1− α1)(1− α2)
· a,bD

−1; −α1α2
(1−α1)(1−α2)

α1,α2;0,0 ( f )(x, y)

=
B(α1, α2)

(1− α1)(1− α2)
· a,bI

1; −α1α2
(1−α1)(1−α2)

α1,α2;0,0 ( f )(x, y);

ABC
a,bDα1,α2

x,y f (x, y) =
B(α1, α2)

(1− α1)(1− α2)
· C

a,bD
−1; −α1α2

(1−α1)(1−α2)
α1,α2;0,0 ( f )(x, y).

However, due to the non-singularity properties of the AB-type operators, they can
be defined on a larger function space than the general fractional derivatives with five-
parameter Mittag-Leffler kernel: no differentiability assumptions are required. The fol-
lowing result is the bivariate analogue in [49] (Lemma 2.1) which was the first result to
establish appropriate function spaces for the AB derivatives.
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Theorem 8. The mixed bivariate AB integral AB
a,b Iα1,α2

x,y f (x, y) is defined for any function f ∈
L1([a, c]× [b, d]). The mixed bivariate ABR derivative ABR

a,bDα1,α2
x,y f (x, y) can also be defined for

any function f ∈ L1([a, c]× [b, d]), while its ABC counterpart ABC
a,bDα1,α2

x,y f (x, y) is defined for

any twice differentiable function f on [a, c]× [b, d] such that ∂2

∂x∂y f ∈ L1([a, c]× [b, d]).

Proof. For the mixed bivariate AB integral, the result is clear, since this is just a linear
combination of f (x, y) with its double Riemann–Liouville integral.

For the mixed bivariate ABC derivative, the result follows from Theorem 2, since this
operator is defined by applying a special case of the five-parameter Mittag-Leffler kernel
operator to the function ∂2

∂x∂y f (x, y).
It remains to consider the mixed bivariate ABR derivative, which we can simplify in

the following way since the kernel is non-singular, as a bivariate version of the arguments
used in [11,49]:

(1− α1)(1− α2)

B(α1, α2)
· ABR

a,bDα1,α2
x,y f (x, y)

=
∂2

∂x∂y

∫ x

a

∫ y

b
f (t, s)E1

α1,α2;1,1

(
−α1α2

(1− α1)(1− α2)
(x− t)α1(y− s)α2

)
ds dt

= f (x, y) +
∫ x

a
f (t, s)

∂

∂x

[
E1

α1,α2;1,1

(
−α1α2

(1− α1)(1− α2)
(x− t)α1(y− s)α2

)]
s=y

dt

+
∫ y

b
f (t, s)

∂

∂y

[
E1

α1,α2;1,1

(
−α1α2

(1− α1)(1− α2)
(x− t)α1(y− s)α2

)]
t=x

ds

+
∫ x

a

∫ y

b
f (t, s)

∂2

∂x∂y
E1

α1,α2;1,1

(
−α1α2

(1− α1)(1− α2)
(x− t)α1(y− s)α2

)
ds dt

= f (x, y) +
∫ x

a

∫ y

b
f (t, s)

∂2

∂x∂y
E1

α1,α2;1,1

(
−α1α2

(1− α1)(1− α2)
(x− t)α1(y− s)α2

)
ds dt,

where the new kernel function is

∂2

∂x∂y
E1

α1,α2;1,1

(
−α1α2

(1− α1)(1− α2)
(x− t)α1(y− s)α2

)
=

∞

∑
k=1

(x− t)α1k−1(y− s)α2k−1

Γ(α1k)Γ(α2k)

∼ (x− t)α1−1(y− s)α2−1

Γ(α1)Γ(α2)
,

and therefore integrable, as x− t→ 0 and y− s→ 0. Thus, the ABR derivative of f (x, y)
equals the function f (x, y) plus an integral term which behaves as a double Riemann–
Liouville integral of f (x, y) in the singular limit x − t → 0, y − s → 0. This means the
operator is well-defined for any f ∈ L1([a, c]× [b, d]), as required.

The following result is the bivariate analogue of the original series formulae for AB
derivatives, [49] (Theorems 2.1 and 2.2). It follows directly from the work we did above to
obtain Equation (18).

Proposition 4. The mixed bivariate AB derivatives can be given by the following infinite series of
double Riemann–Liouville fractional integrals:

ABR
a,bDα1,α2

x,y f (x, y) =
B(α1, α2)

(1− α1)(1− α2)

∞

∑
k=0

(
−α1α2

(1− α1)(1− α2)

)k

b Iα2k
y a Iα1k

x ( f )(x, y),

ABC
a,bDα1,α2

x,y f (x, y) =
B(α1, α2)

(1− α1)(1− α2)

∞

∑
k=0

(
−α1α2

(1− α1)(1− α2)

)k

b Iα2k+1
y a Iα1k+1

x

(
∂2 f

∂x∂y

)
(x, y).

where this series is locally uniformly convergent for any f ∈ L1([a, c]× [b, d]).
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Corollary 1. From the series formulae above, it is clear that the mixed bivariate ABC derivative
can be written in terms of its ABR counterpart as follows:

ABC
a,bDα1,α2

x,y f (x, y) = ABR
a,bDα1,α2

x,y

[
f (x, y)− f (a, y)− f (b, x) + f (a, b)

]
.

Therefore, the domain of this operator can be extended from the one mentioned in Theorem 8,
and the mixed bivariate ABC derivative can also be defined on the whole space L1([a, c]× [b, d]),
without any differentiability conditions.

Theorem 9. The mixed bivariate AB integral is both a left and right inverse of the mixed bivariate
ABR derivative on the space L1([a, c]× [b, d]), and it shares the following relationship with the
mixed bivariate ABC derivative:

AB
a,b Iα1,α2

x,y
ABC

a,bDα1,α2
x,y f (x, y) = f (x, y)− f (a, y)− f (b, x) + f (a, b).

Proof. This is immediate from Proposition 4 and Corollary 1. Note that the series for
the ABR derivative consists only of Riemann–Liouville fractional integrals, which have a
semigroup property unlike their fractional derivative counterparts.

The following result is the bivariate analogue of the Laplace transform for AB deriva-
tives [48,49].

Proposition 5. The double Laplace transforms of the mixed bivariate AB integral and derivatives,
in the case a = b = 0, can be expressed as follows:

L2

[
AB
0,0 Iα1,α2

x,y f (x, y)
]
(p, q) =

(1− α1)(1− α2)

B(α1, α2)

(
1 +

α1α2

(1− α1)(1− α2)
p−α1 q−α2

)
L2[ f ](p, q);

L2

[
ABR

0,0Dα1,α2
x,y f (x, y)

]
(p, q) =

B(α1, α2)

(1− α1)(1− α2)

(
1 +

α1α2

(1− α1)(1− α2)
p−α1 q−α2

)−1
L2[ f ](p, q);

L2

[
ABC

0,0Dα1,α2
x,y f (x, y)

]
(p, q) =

B(α1, α2)

(1− α1)(1− α2)

(
1 +

α1α2

(1− α1)(1− α2)
p−α1 q−α2

)−1

×
(
L2[ f ](p, q)− 1

p
Ly→q[ f ](0, q)− 1

q
Lx→p[ f ](p, 0) +

1
pq

f (0, 0)
)

.

Proof. For the mixed bivariate AB integral, the result follows directly from the definition
and the known facts on Laplace transforms of Riemann–Liouville fractional integrals.

For the mixed bivariate AB derivative of Riemann–Liouville type, the result follows
from the series formula of Proposition 4 and a simple application of the binomial theorem.
An important fact to notice here is that, via the series formula, this Riemann–Liouville type
operator can be written solely in terms of Riemann–Liouville integrals, so there is no need
to involve initial conditions here.

For the mixed bivariate AB derivative of Caputo type, derivatives and therefore initial
conditions become involved. We use the correct form for the double Laplace transform of a
mixed partial derivative, given in [46,50], to achieve the result:

L2

[
ABC

a,bDα1,α2
x,y f (x, y)

]
(p, q)=

=
B(α1, α2)

(1− α1)(1− α2)

∞

∑
k=0

(
−α1α2

(1− α1)(1− α2)

)k
q−α2k−1 p−α1k−1L2

[
∂2 f

∂x∂y
(x, y)

]
(p, q)

=
B(α1, α2)

(1− α1)(1− α2)

(
1 +

α1α2

(1− α1)(1− α2)
p−α1 q−α2

)−1
p−1q−1

(
pqL2[ f ](p, q)

− qLy→q[ f ](0, q)− pLx→p[ f ](p, 0) + f (0, 0)
)

,

which trivially rearranges to the stated result.
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5. Discussion and Conclusions

In this paper, we construct a type of bivariate fractional calculus based originally on
a function of a single variable defined by a single power series. We prove some of the
fundamental properties of this type of fractional calculus: boundedness of operators, series
formulae, Laplace transforms, semigroup and inversion properties, etc. As a special case,
we also consider the non-singular versions of our bivariate operators, in order to construct
a two-dimensional version of the well-known Atangana–Baleanu calculus.

Some of the ideas used in the above work are similar to those for previously existing
models of fractional calculus with various Mittag-Leffler type kernels; however, this is
the first time that a univariate function has been used in this way to construct bivariate
fractional-calculus operators. Previous contributions in this direction have included using
univariate single series to construct univariate operators [10], using bivariate double
series to construct univariate operators [18], and using bivariate double series to construct
bivariate operators [23,24].

At first glance, it may seem that our construction is unnatural: Given a function of one
variable defined by a single series, why would one make a simple thing more complicated
by replacing z with xα1 yα2 and introducing a bivariate integral operator? The answer is
that the underlying mathematical structure is still simple, because everything is defined by
a single series whose convergence is easy to describe, but the range of problems that can be
tackled is now richer and more diverse, because more variables and parameters allow for
more flexibility in adapting the operators to particular scenarios. Our “trick” of turning a
univariate function into a bivariate operator gives a shortcut, a possibility of modelling
complicated problems using simpler tools.

The bivariate operators that we define lend themselves more to partial differential
equations than to ordinary differential equations. Even our initial motivation for proposing
them, in the first section of this paper, arose from a bivariate Abel-type equation for a
function of two variables. In the literature thus far, Mittag-Leffler kernel operators have
mostly been applied to modelling problems with ordinary differential equations. While the
existing operators could of course be combined to trivially create bivariate derivatives and
integrals with Mittag-Leffler behaviour, we believe that a richer structure will emerge from
considering operators such as those here, where the behaviours with respect to x and y are
intertwined so that the operator cannot simply be broken down into one with respect to x
and another with respect to y. We believe that our work here may have useful ramifications
in the study of fractional partial differential equations in 2 or 2 + 1 dimensions.

For higher dimensions, it will be possible to construct similarly a model of trivariate
or multivariate fractional calculus based on a univariate function defined by a single
series with 3 or n different gamma functions on the denominator. We give here, without
justification, the trivariate version.

Starting from the following function, defined by a series convergent for parameters
αi, βi, γ ∈ C (i = 1, 2, 3) with Re(α1 + α2 + α3) > 0:

Eγ
α1,α2,α3;β1,β2,β3

(z) =
∞

∑
k=0

(γ)k
Γ(α1k + β1)Γ(α2k + β2)Γ(α3k + βk)

· zk

k!
,

it is possible to define the following trivariate fractional integral operator, convergent
for any function f ∈ L1([a1, b1]× [a2, b2]× [a3, b3]) and parameters αi, βi, γ, λ ∈ C with
Re(αi) > 0 and Re(βi) > 0 for i = 1, 2, 3:

a1,a2,a3
Iγ;λ

α1,α2,α3;β1,β2,β3
( f )(x, y)

:=
∫ x

a1

∫ y

a2

∫ z

a3

f (s, t, u)(x− s)β1−1(y− t)β2−1(z− u)β3−1

× Eγ
α1,α2,α3;β1,β2,β3

(
λ(x− s)α1(y− t)α2(z− u)α3

)
du dt ds,
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and then the corresponding trivariate fractional derivative operator are defined as follows
for parameters αi, βi, γ, λ ∈ C with Re(αi) > 0 and Re(βi) ≥ 0 for i = 1, 2, 3:

a1,a2,a3
Dγ;λ

α1,α2,α3;β1,β2,β3
( f )(x, y) =

∂N1+N2+N3

∂xN1 ∂yN2 ∂zN3

(
a1,a2,a3

D−γ;λ
α1,α2,α3;N1−β1,N2−β2,N3−β3

f
)
(x, y).

The detailed analysis and investigation of these functions and operators, including
verification of their essential properties and discussion of special cases and applications, is
left for a future research project.

Other related directions of research may include a deeper study of the function spaces
on which the integral and derivative operators considered here can be defined. For example,
Theorem 2 can be extended easily to show that the bivariate fractional integral operator is
bounded on an Lp space. Then, a measure-theoretical approach may yield extensions to
Morrey spaces [51], or a distributional approach may yield extensions to still larger spaces
related to generalised integral operators [52]. Describing more deeply the various relevant
function spaces may be useful in the qualitative theory of partial differential equations
related to these operators, for example regularity theory [29].
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