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Abstract: Porous structures exhibiting randomly sized and distributed pores are required in bio-
medical applications (producing implants), materials science (developing cermet-based materials 
with desired properties), engineering applications (objects having controlled mass and energy trans-
fer properties), and smart agriculture (devices for soilless cultivation). In most cases, a scaffold-
based method is used to design porous structures. This approach fails to produce randomly sized 
and distributed pores, which is a pressing need as far as the aforementioned application areas are 
concerned. Thus, more effective porous structure design methods are required. This article presents 
how to utilize fractal geometry to model porous structures and then print them using 3D printing 
technology. A mathematical procedure was developed to create stochastic point clouds using the 
affine maps of a predefined Iterative Function Systems (IFS)-based fractal. In addition, a method is 
developed to modify a given IFS fractal-generated point cloud. The modification process controls 
the self-similarity levels of the fractal and ultimately results in a model of porous structure exhibit-
ing randomly sized and distributed pores. The model can be transformed into a 3D Computer-
Aided Design (CAD) model using voxel-based modeling or other means for digitization and 3D 
printing. The efficacy of the proposed method is demonstrated by transforming the Sierpinski Car-
pet (an IFS-based fractal) into 3D-printed porous structures with randomly sized and distributed 
pores. Other IFS-based fractals than the Sierpinski Carpet can be used to model and fabricate porous 
structures effectively. This issue remains open for further research. 
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1. Introduction 
This study relates three issues, namely fractal geometry, porous structure, and three-

dimensional (3D) printing. These issues and their interplay are described as follows. 
First, consider the issue of fractal geometry [1,2]. Fractal geometry provides a new 

outlook into geometric modeling. It can realistically model objects found in the natural 
world and living organisms, which is perhaps beyond the scope of Euclidean geometry. 
Moreover, it can model micro–nano-level details of artificially created objects. Two key 
concepts of fractal geometry are self-affine shape (popularly referred to as self-similar 
shape) and fractal dimension. The concept of self-similar shape has been used in biology 
to model structures, identify patterns, investigate theoretical problems, and measure com-
plexity [3,4]. It has been used in telecommunication to design antennas and relevant de-
vices, ensuring simultaneous multi-frequency transmission [5–7]. (Without the fractal an-
tenna, mobile phones do not work.) It has been used in image processing and data com-
pression [8,9], as well as in chemical systems and fracture mechanics studies [10,11]. It has 
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also been used in architectural design to understand the intrinsic complexity and aesthet-
ics of patterns and structures [12,13]—the list of its applications continues. Like the con-
cept of self-similar shape, the concept of fractal dimension [14–17] has been extensively 
used to quantify the complexity of objects or phenomena. For example, it has been used 
in manufacturing engineering to process signals [18], detect tool-wear [19,20], and quan-
tify roughness [21]. 

Secondly, consider the issue of porous structure. Porous structures perform better 
than their non-porous counterparts on many occasions. As a result, these structures have 
been used in many areas, including energy [22–24], biomedical [25–28], structural design 
[29–31], construction [32–34], and safety [35]. The remarkable thing is that there is an in-
terplay between porous the structure and fractal geometry (particularly, fractal dimen-
sion). The description is as follows. Fractal dimension can quantify the intrinsic complex-
ity of porous structures [36–38], including the cermet-based porous structures [39]. It is 
shown that the properties of cermet-based porous structures such as thermal conductiv-
ity, electric resistivity, permeability and diffusion, fluidity, and mechanical strengths de-
pend on their fractal dimensions [40]. Thus, fractal dimension has become a design pa-
rameter to optimize cermet-based porous structures’ chemical composition and porosity. 
To be more specific, consider the articles in [41–44]. Wang et al. [41] found that a certain 
percent of silica fume in low-heat Portland cement concrete can refine the pores and 
change its shrinkage behavior. Moreover, the fractal dimension of the porous surface ex-
hibits a linear correlation with the concrete shrinkage. Therefore, fractal dimension can be 
used as a design parameter for designing cermet-based materials with the right shrinkage 
behavior. In a similar study, Wang et al. [42] investigated the effectiveness of adding fly 
ash, polymer-based reinforcement, magnesium oxide, and shrinkage-reducing admix-
tures in enhancing the frost resistance of concrete. In this study, the fractal dimension 
played a vital role in establishing the right design rule (right compositions of additives 
mentioned above). In addition, the frost resistance of concrete can be increased by increas-
ing the fractal dimension by choosing the right combination of fly ash and polymer-based 
fiber reinforcements [43]. Moreover, fractal dimension has a more profound effect on the 
abrasion resistance of concrete than the porosity and helps determine the right composi-
tion of silica fume and fly ash, ensuring cracking and abrasion resistance properties [44]. 

Consider the other issue, i.e., 3D printing or additive manufacturing. 3D printing can 
revolutionize the way in which products have been designed and manufactured [45]. 
Nowadays, it is used to produce nutritious food (complex protein) [46], tablets for visually 
impaired patients [47], and wooden composites extracting shape information from micro 
X-ray computed tomography [48]. It is used to produce prototypes of culturally significant 
complex objects [49], complex structures of hydroponics (soilless cultivation) [50], hierar-
chically porous micro-lattice electrodes for lithium-ion batteries [51], and even weft-knit-
ted flexible textile [52,53]. The list continues. Advanced research studies have been carried 
out to make 3D printing even more robust and cost-effective, resulting in novel devices 
[54–56], geometric modeling techniques [57,58], and materials [59]. The list continues. De-
spite myriad applications and advancements, 3D printing faces challenges, e.g., topology, 
support, and surface optimization [60]. 

The remarkable thing is that porous structure, 3D printing, and fractal geometry have 
an intimate relationship. The description is as follows. Some porous structures used in 
biomedical, materials, and engineering applications cannot be fabricated without using 
additive manufacturing or 3D printing [61–65]. This fastens porous structure and 3D 
printing. Conducting experimental studies employing real porous structures (including 
cermet-based porous structures [41–44]) is expensive and requires a long time. Before per-
forming experimental studies employing real porous structures, preliminary experiments 
can be performed using 3D printed artificial porous structures. The results of preliminary 
experiments can be used to optimize the experimental studies employing real porous 
structures. 



Fractal Fract. 2021, 5, 40 3 of 19 
 

 

Thus, “design for additive manufacturing” of porous structure is an important issue 
of research and implementation [60–62]. Developing methods, enabling design for addi-
tive manufacturing of porous structure, fastens fractal geometry, porous structure, and 
3D printing. The explanation is as follows. In most cases, porous structures to be fabri-
cated by 3D printing are designed using scaffold-based approaches [31,66–68]. These 
structures exhibit regularly distributed pores, which is not the case in real porous struc-
tures. For example, consider the cases shown in Figures 1 and 2. In Figure 1, a scaffold-
based porous structure is shown [31]. Particularly, Figure 1a shows the unit cell which is 
used to create the scaffold (Figure 1b). Figure 1c shows the 3D printed scaffold (porous 
structure), and Figure 1d shows a magnified view of the printed porous structure. These 
kinds of structures do not mimic the real porous structures. 

 
Figure 1. The 3D-printed scaffold-based porous structure: (a) unit-cell; (b) scaffold; (c) 3D-printed 
porous structure; and (d) the magnified view of the structure shown in (b). 

For example, consider the two real porous structures shown in Figure 2. The structure 
shown in Figure 2a is a clay pot used to grow indoor plants. The other structure shown in 
Figure 2b is a ceramics-based coffee filter. In both cases (Figure 2), the pores have random 
sizes and are distributed randomly, as well. This kind of structure exhibits percolation 
[69]. As a result, fluids and gases can pass through the structure as required. Stochastic 
point cloud-based methods can create a porous structure like the real ones [61,62,70]. 
Some simple geometric entities can fill the spaces offered by the randomly distributed 
points inside a boundary (e.g., polyhedrons [62] and cylindrical tentacles [70]), leading to 
a realistic porous structure. 
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Figure 2. Real porous structures: (a) a clay-based ceramics pot; and (b) a ceramics coffee filter. 
Figure (a) (right-hand-side figure) is reprinted with permission from ref. [62]. Copyright 2021 
ELSEVIER LICENSE. 

In stochastic point cloud-based porous structuring, the critical issue is how to gener-
ate the point cloud itself [61,62]. Depending on the density and distribution of points, the 
structure changes a lot. For example, consider the case shown in Figure 3. The structures 
shown in Figure 3 were created using the system developed by Ullah et al. [62]. Figure 3a 
presents the porous structure. Figure 3b shows the representative cross-sections of the 
respective porous structures. Figure 3c shows the cross-sections of the respective porous 
structures when the density of points was increased by eight times. Thus, depending on 
the density and distribution of points, the underlying porous structure exhibits a different 
porosity and distribution of pores. 

 
Figure 3. Point cloud-based porous structuring: (a) porous structures having different boundaries; (b) cross-sections of the 
respective porous structures; (c) cross-sections when the density of points increased by eight times. Reprinted with per-
mission from ref. [62].Copyright 2021 ELSEVIER LICENSE.  
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As far as the stochastic point cloud-based porous structuring is concerned, fractal 
geometry can play an active role. Particularly, point clouds generated by iterative function 
system (IFS)-based fractals can help design realistic porous structures. This aspect of frac-
tal geometry (IFS fractal generated point cloud) has not yet been explored from the per-
spective of porous structuring. This article fills this gap and provides some insights into 
fractal geometry-based realistic porous structure design and fabrication. 

The rest of this article is organized as follows. Section 2 presents the settings to define 
an IFS fractal for generating stochastic point clouds. Section 3 presents a mathematical 
procedure to control the self-similarity levels in an IFS-fractal-generated point cloud. Sec-
tion 4 presents some results of porous structuring using the modified point clouds rele-
vant to an IFS fractal called the Sierpinski Carpet. (The Sierpinski Carpet is described in 
Sections 3 and 4.) The outcomes of Section 3 are used in Section 4. Section 5 presents the 
solid CAD models and 3D-printed porous structures based on the outcomes of Section 4. 
The contents presented in Section 5 demonstrate the efficacy of utilizing fractals in the 
modeling and 3D printing of realistic porous structures. Section 6 concludes this study. 

2. Settings of IFS-Based Fractals 
This section presents the mathematical settings to generate IFS-based fractals. 
IFS-based fractals are created by some strictly contracting affine maps, as described 

in [71–74]. Predefined probabilities control the frequency of participation of each map. To 
be more specific, we consider the following mathematical settings. 

Let {(xi, yi) | i = 1, …, N} be the set of the recursively created point clouds where the 
initial point is (x0, y0) = (0, 0). The relationship between two consecutive points (xi−1, yi−1) 
and (xi, yi), i = 1, …, N, is as follows: ݔ௜ = ௝ܽݔ௜ିଵ + ௝ܾݕ௜ିଵ + ௝݁, ௜ݕ  = ௝ܿݔ௜ିଵ + ௝݀ݕ௜ିଵ + ௝݂, ∃݆ ∈ ሼ1, … , ሽ (1)ܯ

The vector of parameters (aj, bj, cj, dj, ej, fj) defines the j-th map. The values of the ele-
ments of this vector must be set in a way so that they collectively ensure a strictly con-
tracting map as described in [71–74]. In the mapping processes, multiple maps can be 
used. Let M be the number of maps to be used. While mapping (xi−1, yi−1) into (xi, yi), a map 
out of M maps can be selected randomly. The (random) selection process must be con-
trolled. As such, probabilities pj ∈ [0,1], ∀j ∈ {1, …, M} are assigned to the maps so 
that p1 + … + pM = 1. Thus, after performing the mapping process N times, the frequency of 
the j-th map participating in the mapping process must be about pj × N. To achieve this, 
first, the cumulative probability of each map, denoted as cpj, is calculated as follows:  ܿ݌௝ = ଵ݌ + ⋯ + ௝ (2)݌

The two consecutive cumulative probabilities produce an interval. This interval, in 
turn, determines the weight (wj) of the respective map. For the first and last maps, the 
weights are w1 = [0, cp1) and wM = [cpM−1, cpM], respectively. For others, the weights are wj = 
[cpj−1, cpj), ∀j∈{2, … , M – 1}. This means that the weights are mutually exclusive intervals 
that partition the interval [0,1] so that {wj | j = 1, … , M} = [0, 1] and wj ∩ wj + 1 = Ø, ∀j∈{1, 
…, M – 1}. Thus, the following relationship holds: 

௝ݓ = ቐ ሾ0, ,ଵሻ݌ܿ ݆ = 1ሾܿ݌ெିଵ, ெ݌ܿ = 1ሿ, ݆ = ,௝ିଵ݌ܿൣ ܯ ݁ݏ݅ݓݎℎ݁ݐ݋ ௝൯݌ܿ  (3)

If a random number denoted as ri ∀ [0, 1] (i = 1, 2, …) belongs to wj, the correspond-
ing map participates in the mapping process, others not. This ensures the relative frequen-
cies of the respective maps according to pj provided that the number of iterations N is 
relatively large. 
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Based on the above consideration, the IFS-based point cloud creation process follows 
an algorithmic approach. This approach can be defined by an algorithm denoted as the 
IFS Algorithm. The main processes of the IFS Algorithm are presented in (4). 

 1: 

2: 

3: 

4: 

Define 

N ∈ ℕ (iteration number) 

M ∈ ℕ (number of maps) 

{(aj, bj, cj, dj, ej, fj, pj)|j = 1, …, M} (affine maps) 

(x0 = 0, y0 = 0) (initialize) 

(4) 

    

 5: 

6: 

7: 

Calculate 

For j = 1, …, M ܿ݌௝ = ଵ݌ + ⋯ +   ௝݌

End For 

    

 8: 

9: 

10: 

11: 

Define 

w1 = [0, cp1), wM = [cpM−1,cpM = 1] 

For j = 2, …, M – 1 

wj = [cpj−1, cpj) 

End For 

    

 
12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

Map 

For i = 1, …, N 

Generate a random number ri ∈ [0,1] 

For j = 1, …, M 

If ri ∈ wj 

Then   ݔ௜ = ௝ܽݔ௜ – ଵ + ௝ܾݕ௜ିଵ + ௝݁                 ݕ௜ = ௝ܿݔ௜ – ଵ + ௝݀ݕ௜ ି ଵ + ௝݂ 

End For 

End For 

    

 20: Define PC = {(xi, yi)|i = 0, …, N} (output) 

The point cloud denoted as PC produced by the IFS Algorithm is the stochastic point 
cloud representing the given fractal shape. For example, Figure 4 shows nine point-clouds 
representing nine different fractal shapes (tree, seahorse, fern leaf, snowflakes, and the 
Sierpinski Carpet). The settings of the affine maps {(aj, bj, cj, dj, ej, fj, pj) | j = 1, …, M} can be 
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found in [71–74]. The Sierpinski Carpet (Figure 4i) is considered in this study to model a 
porous structure. As far as manufacturing is concerned, the IFS Algorithm generated 
point cloud must undergo some transformation, controlling the self-similarity levels. For 
example, consider the case in Figure 5. Figure 5a shows a point cloud of fern leaf (same as 
Figure 4c). Figure 5b shows the same shape; this time, the self-similarity is controlled up 
to level three. The self-similarity level controlling mechanism employs a set of one-to-one 
maps. Sometimes, selected affine maps out of M maps can be omitted for the sake of con-
trolling the level of self-similarity. See [72,73] for the details. It is worth mentioning that 
self-similar structures created by tree-like fractals have been used to reinforce a 3D printed 
structure [75,76]. In this case, solid models, not the point cloud, of the self-similar seg-
ments are used, which is not the focus in this study. However, the manufacturability of 
these self-similar segments limits the level up to which the self-similar tentacles can be 
fabricated with required accuracy [72,73,77]. 

 
Figure 4. Nine point-clouds showing some well-known fractals: (a) tree; (b) seahorse; (c) fern leaf; 
(d–h) snowflakes; (i) the Sierpinski Carpet. Reprinted with permission from ref. [72]. Copyright 
2021 Fuji Technology Press Ltd. (Tokyo, Japan). 
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Figure 5. Concept of controlling self-similarity levels of a fractal: (a) original point cloud; and (b) 
point cloud controlled up to self-similarity level three. 

3. Controlling Self-Similarity Levels 
This section presents how to control self-similarity levels of IFS fractal-driven point 

clouds to create models of porous structures. 
A process consisting of five steps is proposed to control the self-similarity levels of 

IFS fractal-driven point clouds. The description of these steps is as follows. 
Step 1: This step generates a seed point cloud denoted as PCS = {(xsi, ysi)|i = 0,1, … , 

N} by an IFS-based fractal or by any other means. The number of points PCS must be 
chosen carefully so that the desired pore size can be achieved after performing the modi-
fications described in Steps 2, …, 5. 

Step 2: This step generates the first generation modified point cloud representing the 
first level of the underlying self-similar fractal or porous structure denoted as PCG−1 = 
{(xG−1,i, yG−1,i) | i = 0,1, …, N}. The following one-to-one map is applied to each point in PCS 
to get its counterpart in PCG−1. Thus, the following relationship holds:  ିீݔଵ,௜ = ܽ௖ݔ௦௜ + ܾ௖ݕ௦௜ + ݁௖, ଵ,௜ିீݕ = ܿ௖ݔ௦௜ + ݀௖ݕ௦௜ + ௖݂, ∀݅ ∈ ሼ0, … , ܰሽ (5)

The mapping parameters (ac, bc, cc, dc, ec, fc) are denoted as critical parameters. The 
goal here is to bring the PCS to a region resulting in the first level self-similar shape of the 
underlying fractal or porous structure. 

Step 3: This step generates the second generation modified point cloud denoted as 
PCG−2 = {(xG−2,i, yG−2,i) | i = 0,1, …, N} representing the second level of the underlying self-
similar fractal or porous structure. The following one-to-one map is applied to each point 
in PCG−1 to get its counterpart in PCG−2. As defined in (5), one of the affine maps of the 
underlying IFS fractal out of M maps are randomly selected to map a point (xG−1,i, yG−1,i) to 
(xG−2,i, yG−2,i). Thus, the random selection process is defined in (6), which is like “Map” seg-
ment of IFS Algorithm (equation (4)): 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

Map 

For i = 1, …, N 

Generate a random number ri ∈ [0, 1] 

For j = 1, …, M 

If ri ∈ wj 

Then ିீݔଶ,௜ = ௝ܽିீݔଵ,௜ + ௝ܾିீݕଵ,௜ + ௝݁ ିீݕଶ,௜ = ௝ܿିீݔଵ,௜ + ௝݀ିீݕଵ,௜ + ௝݂             
End For 

End For 
 

(6)

Step 4: This step generates the third, fourth, …, generations of modified point clouds, 
denoted as PCG−3, PCG−4, …, respectively, repeating the mapping process defined in Step 3. 
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The repetition process can be terminated based on the preference of the modeler. For ex-
ample, if the modeler wants the third level self-similar shapes, Step 4 will be repeated one 
time only. Similarly, if the modeler wants the fourth level self-similar shapes, Step 4 will 
be repeated twice. 

Step 5: This step first generates a filler point could denoted as PCF = {(xF,k, yF,k) | k = 0, 
…, L} and fills the empty regions PCG−1, PCG−2, PCG−3, …, following the mapping processes 
defined in Step 2,3, …, respectively. Let PCF′ be the point clouds generated in this step.  

A point cloud consisting of PCG−1, PCG−2, …, and PCF′ can be used to model a porous 
structure. Nevertheless, the above steps are the general procedure for creating a model of 
a porous structure. The sequences of the steps can be designed based on the need of the 
modeler. For example, a modeler can apply Step 1, Step 2, Step 5, Step 3, Step 4, Step 4, 
and Step 4 successively. Another modeler can apply Step 1, Step 2, Step 3, Step 4, Step 5, 
successively. This means that depending on the need or preferences of a model, the steps 
and their sequence can be determined. There is no restriction as such. 

4. Modeling Porous Structures Using Sierpinski Carpet 
This section shows how to modify the Sierpinski Carpet-driven point cloud (an IFS 

fractal, shown in Figure 4i) so that it becomes a porous structure model. The steps pre-
sented in the previous section will be used to achieve this goal. 

First, consider the settings of the IFS fractal called the Sierpinski Carpet. The settings 
of the Sierpinski Carpet [74] are listed in Table 1. As listed in Table 1, the Sierpinski Carpet 
needs eight affine maps with equal weights (probability) of 1/8. The maps create a point 
cloud that resides in a square-shaped boundary given by vertices (0, 0) (1, 0), (1, 1), and 
(0, 1). The distribution of points creates self-similar squares, as shown in Figure 6. As seen 
in Figure 6, the self-similarity is scaled by 1/3. The maps symmetrically distribute the 
points around the scaled squares. As seen in Figure 6, the self-similar levels above the 
third level are not visible. If more points are injected (i.e., N is increased), the higher levels 
might be visible. This issue is, however, beyond the scope of this study. 

Table 1. Settings of the Sierpinski Carpet [74]. 

Parameters 
Affine Maps 

j =  
1 2 3 4 5 6 7 8 

aj 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 
bj 0 0 0 0 0 0 0 0 
cj 0 0 0 0 0 0 0 0 
di 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 
ej 0 0 0 1/3 1/3 2/3 2/3 2/3 
fj 0 1/3 2/3 0 2/3 0 1/3 2/3 
pj 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 



Fractal Fract. 2021, 5, 40 10 of 19 
 

 

 
Figure 6. Sierpinski Carpet and its self-similarity nature. 

Let us apply Steps 1, …,5 and modify the point cloud in Figure 6.  
Step 1 is applied as follows: the seed point cloud (PCS) is created using the zero-level 

shape (Figure 6). The zero-level shape consists of lines P1P2, P2P3, P3P4, and P4P1, where 
P1 = (0, 0), P2 = (1, 0), P3 = (1, 1), and P4 = (0, 1), as shown in Figure 7a. As such, PCS = {(xsi, 
ysi)|i = 0,1, …, N} consists of the points on the lines P1P2, P2P3, P3P4, and P4P1. 

Step 2 is applied as follows: the first-level self-similar shape is created by scaling the 
points of PCS by a factor of 1/3, resulting in PCG−1 = {(xG−1,i, yG−1,i) | i = 0,1, …, N}. For this, 
the following formulation is used: ିீݔଵ,௜ = 13 ௦௜ݔ + 13 , ଵ,௜ିீݕ = 13 ௦௜ݕ + 13 , ∀݅ ∈ ሼ0, … , ܰሽ (7)

As such, the values of the critical parameters are ac = 1/3, bc = 0, cc = 0, dc = 1/3, ec = 1/3, 
and fc = 1/3. The point clouds PCS and PCG−1 are shown in Figure 7b. 

Step 3 is applied as follows. The affine maps shown in Table 1 are used to create the 
second-generation modified point cloud PCG−2 from PCG−1, as defined in (6). The point 
clouds PCS, PCG−1, and PCG−2 are shown in Figure 7c. 

Step 4 is applied as follows. This time, it is applied thrice. The first execution of Step 
4 on the point cloud PCG−2 results in the third level self-similar squares given by the point 
cloud PCG−3. The point clouds PCS, PCG−1, PCG−2, and PCG−3 are shown in Figure 7d. The 
second execution of Step 4 on the point cloud PCG−3 results in the fourth level self-similar 
squares given by the point cloud PCG−4. The point clouds PCS, PCG−1, PCG−2, PCG−3, and 
PCG−4 are shown in Figure 7e. The third execution of Step 4 on the point cloud PCG−4 results 
in the fifth level self-similar squares given by the point cloud PCG−5. The point clouds PCS, 
PCG−1, PCG−2, PCG−3, PCG−3, PCG−4, and PCG−5 are shown in Figure 7f. Note that starting from 
the fourth level, the self-similar squares are not clearly manifested. This is because of the 
shortage of points in the seed, i.e., the PCS. For example, Figure 8 shows a case of the point 
clouds up to the fourth level. This time, a smaller number of points in the seed point cloud 
is used compared to the case shown in Figure 7. As seen in Figure 8, starting from the 
third level, the self-similar squares were not clearly manifested. Whether or not this is 
desirable from the context of porous structuring needs further investigation. This issue is 
kept out of the scope of this study, however. 

Step 5 is applied as follows. Recall that Step 5 is an additional step, which can be 
applied before or after Steps 3 and 4. The goal is to fill the voids in certain regions of a 
given level of self-similarity. In this case, a filler point cloud PCF = {(xF,k, yF,k) | k = 0,1, …, 
L} is a random point cloud in the interval of [0,1]. Thus, xF,k ∈ [0,1] and yF,k ∈ [0,1], ∀k 
∈ {0, …, L}. One of the examples of PCF is shown in Figure 9a. This point cloud is mapped 
using the procedure underlying Steps 2–4, where the affine maps of the Sierpinski Carpet 
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are used. The resulting point cloud (PCF′) is shown in Figure 9b. As seen in Figure 9b, this 
time, the level-controlled pores are filled by points. Therefore, this point cloud (PCF’) can 
be added to the level-controlled point cloud if the pores are not desired. 

 

(b)

(c)

(e)

(a)

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P1

P2 P3

P4

x
y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P1

P2 P3

P4

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d)

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(f)



Fractal Fract. 2021, 5, 40 12 of 19 
 

 

Figure 7. Level-controlled point clouds of the Sierpinski Carpet: (a) seed point cloud; (b) point 
cloud of (a) and the first level point cloud; (c) point clouds of (b) and the second level point cloud; 
(d) point clouds of (c) and the third level point cloud; (e) point clouds of (d) and the fourth level 
point cloud; and (f) point clouds of (e) and the fifth level point cloud. 

 
Figure 8. Level-controlled point clouds of the Sierpinski Carpet up to the fourth level generated 
from a relatively small seed point cloud. 

 
Figure 9. Filling pores using a random filler point cloud: (a) a random filler point cloud; and (b) 
the fifth level point cloud after filling operation by filler point cloud (a). 

5. Solid Modeling and 3D Printing 
This section shows some solid models of porous structures, as well as the 3D printed 

structures. 
Figure 10 shows the point clouds controlled up to the fourth level and its solid model. 

The point clouds used in this case are shown in Figure 10a. The solid CAD model, shown 
in Figure 10b, is created using commercially available software that can convert a raster 
graphics entity into a vector graphics entity using voxel-based geometric modeling. Fig-
ure 11 shows another similar case. This time, the point clouds, shown in Figure 11a, con-
trolled up to the fifth level is considered. The corresponding solid CAD model is shown 
in Figure 11b. This way, a user can apply the procedure described in Sections 3 and 4 to 
digitize a porous structure model given the level-controlled point clouds of the IFS fractal. 
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Figure 10. Point clouds controlled up to the fourth level and its solid CAD model: (a) the point 
clouds; and (b) the solid CAD model. 

 
Figure 11. Point clouds controlled up to the fifth level and its solid CAD model: (a) the point 
clouds; (b) the solid CAD model. 

To obtain more insights into the fabrication of porous structures, a commercially 
available 3D printer is used. Several 3D-printed structures have been produced. Three of 
the results are shown in this section. Figure 12 shows the point clouds controlled up to 
level five, the corresponding 3D-printed structure, and a magnified view of the structure. 
As seen in Figure 12, the porous structure exhibits a complex network among the pores in 
the structure. This is partly because of the limitation of the solid CAD model and partly 
because of the limitation of the 3D printer.  
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Figure 12. Point clouds controlled up to the fifth level and the 3D-printed porous structure: (a) point clouds; (b) 3D-printed 
porous structure; and (c) a magnified view of the printed structure. 

Figure 13 shows the point clouds controlled up to level five, the corresponding 3D-
printed structure, and a magnified view of the structure. This time, the filling operation 
was carried out, as descried in the previous section. Thus, in the point clouds (Figure 13a), 
the first and second level self-similar square regions are not filled with points. The corre-
sponding porous structure (Figure 13b,c) exhibits a complex network among pores. As 
seen in Figure 13, the porous structure exhibits a complex network among the pores in the 
structure. Like the previous case, this is partly because of the limitation of the solid CAD 
model and partly because of the limitation of the 3D printer. 

 
Figure 13. Point clouds controlled up to the fifth level with a filling operation and the 3D-printed porous structure: (a) 
point clouds; (b) 3D-printed porous structure; and (c) a magnified view of the printed structure. 

What if the structure is scaled down while printing it? When the structure is pro-
duced by reducing the scale, the pore network becomes more complex. As a result, ran-
domness in the pore sizes increases. This is because of the limitation of the 3D printer. For 
example, consider the case shown in Figure 14. The point clouds shown in Figure 13 are 
used to print the structure shown in Figure 14. The structure is scaled down by half during 
the printing, resulting in a more complex network among the pores than that of Figure 13. 

 
Figure 14. 3D-printed porous structure: (a) 3D-printed porous structure; and (b) a magnified view of the printed struc-
ture. 
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In addition to using a voxel-based solid modeling of porous structure from level-
controlled point clouds of IFS fractals, other solid modeling approaches can be used. In 
this respect, one of the obvious modeling approaches is to model each point of the point 
clouds by using special polyhedrons (e.g., prismoid). For example, consider the case 
shown in Figure 15. In this case, the modeling concept is to model each point of an IFS-
generated point cloud (in this case, a point cloud representing Sierpinski Carpet created 
by the IFS Algorithm defined in (4)) by a hexagonal cylinder (see Figure 15a). This way, 
multiple point clouds can be created and solid modeled. The point clouds look alike but 
are not the same due to the stochasticity involved in point cloud creation process (see IFS 
Algorithm defined in (4)). In Figure 15b, three point clouds are shown to be modeled by 
the proposed concept. The solid models of these point clouds are shown in Figure 15c. 
Finally, these solid models can be combined to print a porous structure. One printed po-
rous structure is shown in Figure 15d.  

In synopsis, IFS-generated stochastic point clouds provide a flexible means to model 
porous structures, and thereby, to fabricate them using 3D printing or additive manufac-
turing. 

 
Figure 15. Prismoid-based solid modeling of IFS fractal generated point clouds and a 3D printed porous structure: (a) 
modeling concept; (b) three different point clouds generated by the IFS Algorithm; (c) prismoid-based solid models of the 
respective point clouds; and (d) 3D-printed porous structure of combining solid models in (c). 

6. Concluding Remarks 
There are many application areas where porous structures with randomly sized and 

distributed pores are required, e.g., biomedical applications (producing implants), mate-
rials science (developing cermet-based materials with desired properties), engineering ap-
plications (objects having controlled mass and energy transfer properties), and smart ag-
riculture (devices for soilless cultivation). In most cases, a scaffold-based method is used 
to design porous structures. This approach fails to produce randomly sized and distrib-
uted pores. Thus, more effective porous structure design methods are required. In this 
respect, methods capable of filling the spaces offered by a stochastic point cloud are quite 
effective. IFS-based fractals manifest stochastic point clouds. Thus, these point clouds are 
candidates for porous structure design. This possibility is explored in this study, and some 
promising results are obtained. 
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A mathematical procedure is developed to create stochastic point clouds using the 
affine maps of a predefined IFS-based fractal. In addition, a method is developed to mod-
ify a given IFS fractal-generated point cloud. The modification process controls the self-
similarity levels of the fractal and ultimately results in a model of porous structure exhib-
iting randomly sized and distributed pores. The model can be transformed into a 3D CAD 
model using voxel-based modeling or other means for digitization and 3D printing. 

The efficacy of the proposed method is demonstrated by transforming the Sierpinski 
Carpet (an IFS-based fractal) into 3D printed porous structures. The condition of achieving 
fractal geometry-created porous structure must follow a definite sequence of mapping 
combining some predefined one-to-one and affine mappings. The sequence of mapping 
must control the self-similar structures as well as fill some preselected regions. The se-
quence of mapping for the Sierpinski Carpet-based porous structuring is elucidated. The 
proposed mathematical procedure is effective in this regard, as demonstrated in this study 
using the case of Sierpinski Carpet-generated point clouds. Other IFS-based fractals than 
the Sierpinski Carpet can be used to model and fabricate porous structures effectively. 
This issue remains open for further research. 

The four different printed porous structures presented here demonstrate that the 
fractal-based porous structuring creates a complex network among randomly sized and 
distributed pores in the structure. 

Fractal geometry is well known for modeling and quantifying complex shapes ob-
served in the natural world, living organisms, and artificial objects (particularly in micro-
nano scale). In this respect, the concepts of self-similarity and fractal dimensions are ex-
tensively used. On the other hand, fractal geometry’s ability to produce stochastic points 
has not yet been explored. As demonstrated in this study, IFS-based fractals are an effec-
tive means to produce a stochastic point cloud, which can model realistic porous struc-
tures. Thus, this study extends the scope of fractal geometry to a large extent. 

Conducting experimental studies employing real porous structures (including cer-
met-based porous structures), is expensive and requires a long time. Before performing 
experimental studies employing real porous structures, preliminary experiments can be 
performed using 3D printed artificial porous structures. The results of preliminary exper-
iments can be used to optimize the experimental studies employing real porous struc-
tures. Thus, the outcomes of this study can be used to reduce the expense and time of 
porous structure-related experimental studies. This issue is also open for further investi-
gation. 
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