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Abstract: Stochastic fractal search (SFS) is a novel method inspired by the process of stochastic
growth in nature and the use of the fractal mathematical concept. Considering the chaotic stochastic
diffusion property, an improved dynamic stochastic fractal search (DSFS) optimization algorithm is
presented. The DSFS algorithm was tested with benchmark functions, such as the multimodal, hybrid,
and composite functions, to evaluate the performance of the algorithm with dynamic parameter
adaptation with type-1 and type-2 fuzzy inference models. The main contribution of the article is
the utilization of fuzzy logic in the adaptation of the diffusion parameter in a dynamic fashion. This
parameter is in charge of creating new fractal particles, and the diversity and iteration are the input
information used in the fuzzy system to control the values of diffusion.

Keywords: fractal search; fuzzy logic; parameter adaptation; CEC 2017

1. Introduction

Metaheuristic algorithms are applied to optimization problems due to their charac-
teristics that help in searching for the global optimum, while simple heuristics are mostly
capable of searching for the local optimum and are not very effective for finding optimal
solutions in real problems. The multi-metaheuristic models are those formed by more than
two metaheuristics to solve a common optimization problem where each of the metaheuris-
tics is used as an optimization tool. The chosen metaheuristic depends on the problem to be
solved; most of the metaheuristic methods have the same inspiration and goal means, and
generally, their performance is better than a simple heuristic. All metaheuristic algorithms
use certain trade-offs between randomization and local search. These algorithms have two
main characteristics, intensification and diversification. Diversification refers to generating
solutions to explore the search space on a global scale, and intensification refers to focusing
on the search for a local region until the best region is found. The combination of these two
features results in global optimization [1]. Stochastic methods have the peculiarity of being
characterized by stochastic random variables. In the current literature, several of the most
popular stochastic algorithms for optimization can be found, like the genetic algorithm
(GA) [2,3], which was inspired by biological evolution, with random genetic combinations
and mutations in a chromosome, and is based on the selection, crossover, mutation, and
replacement operators. The inspiration for particle swarm optimization (PSO) was natural
fish and bird behavior when moving in swarms; each particle moves randomly to find the
global optimum, updating its speed and position until finding the best global solution [4].
Tabu search (TS) [5,6] is an iterative method that builds meta-strategies to build a neighbor-
hood and avoids getting trapped in local optima. As mentioned above, these algorithms are
the most widely used; for example, in [7], an algorithm for optimization of hybrid particle
swarms incorporating chaos is proposed, where the adaptive inertia weight factor (AIWF)
is used for enhancing the PSO in balancing, in an efficient way, the diversification and
intensification abilities of the algorithm. In this case, the hybridization of PSO with AIWF
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and chaos was used to build a chaotic PSO (CPSO) by prudently combining the evolution-
ary search ability based on the population of the PSO and the behavior of the chaotic search.
Furthermore, [8] proposes a new PSO algorithm that relies on chaotic equation maps for
parameter adaptation, and this is done through the use of chaotic number generators every
time the classical PSO algorithm needs a random number [9]. On the other hand, [10]
developed an improved particle swarm optimization (IPSO) algorithm for enhancing the
performance of the traditional PSO, which uses a dynamic inertia weight. In [11], the
authors present an invasive weed optimization (IWO) metaheuristic, which is a weed
colony-based population optimization approach also based on chaos theory. In addition
to the improvements to stochastic optimization methods, there are also combinations or
hybridizations with fuzzy logic to improve performance or reach a specific solution. For
example, in [12], an adaptive fuzzy control approach to control chaotic unified systems
was proposed. In addition, in [13–16], a multi-metaheuristic model was developed for the
optimal design of fuzzy controllers. An enhancement to the Bat algorithm was carried
out in [17] for the dynamic adaptation of parameters. There are different applications
using metaheuristics and fuzzy logic for optimization [18,19]. In this article, we focus on
testing the efficiency of the dynamic stochastic fractal search (DSFS) method in optimiz-
ing unimodal, multimodal, hybrid, and composite functions. First, the stochastic fractal
search (SFS) algorithm was considered by analyzing its chaotic stochastic characteristics in
the diffusion process, where each of its particles was generated and moved in a random
stochastic way. Second, it was detected that the stochastic movement of each particle may
not be optimal due to the formation of the fractal not being able to achieve exploration
and exploitation of the entire search space. Therefore, diversity was introduced for each
iteration to eventually get closer to the global optima by looking for the particles with the
best fitness and adapting an inference system for their adjustment. To obtain a comparison
of the efficiency of the improved method, 30 functions with different dimensions were
evaluated, generating satisfactory results compared to other algorithms. The main con-
tribution of this article is the improvement of the SFS method since the algorithm had a
disadvantage in the diffusion parameter because it only uses the Gaussian distribution
as its randomness method to compensate for the fact that the particles might not be able
to cover all of the search space. Thus, it was decided to add dynamic adjustment to the
mentioned parameter to achieve better movement in each of the newly generated fractal
particles; this improvement was implemented using type-1 and type-2 fuzzy systems. This
was done by making dynamic changes with a controller, which had diversity as Input
1 and iteration as Input 2. Diversification is a charge of spreading the particles throughout
the search area for each iteration. As a result, a dynamically adapted method was obtained,
which does not stagnate as fast in the optimal local ones, thus reaching the global opti-
mum, and therefore, improving the effectiveness of the dynamic stochastic fractal search
(DSFS) method. The motivation for the development of this article was the creation of a
stochastic fractal method with dynamic adjustment that does not remain stagnant in the
local optimum and achieves reaching the global optimum of the objective function. To
comply with this, it was designed with a fuzzy inference system that controls the diffusion
of the particles in each iteration through diversity. Applied in this way, the method has less
chance of stagnation and premature convergence. The goal was to build an efficient but
practical algorithm that works most of the time and is capable of producing good quality
solutions for finding the overall optimal solution of real-world problems.

The rest of this article is structured as follows. Section 2 puts forward the stochastic
fractal search (SFS) method. Section 3 outlines the proposed dynamic stochastic fractal
search (DSFS). In Section 4, a summary of the experimental results is presented. In Section 5,
the advantages of the method are highlighted with a discussion of the achieved results.
Lastly, in Section 6, conclusions about the modified dynamic stochastic fractal search (DSFS)
method are presented.
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2. Materials and Methods for Stochastic Fractal Search (SFS)

The term “fractal” was used for the first time by Benoit Mandelbrot [20], who de-
scribed it, in his theory of fractals, as geometric patterns generated in nature. There are
some methods to generate fractals, such as systems of iterated functions [21], strange attrac-
tors [22], L-systems [23], finite subdivision rules [24], and random fractals [25]. On the part
of the generation of random fractals, we can find the Diffusion Limited Aggregation (DLA),
which consists of the formation of fractals, starting with an initial particle that is called
a “seed” and is usually situated at the origin [26,27]. Then, other particles are randomly
generated near the origin, causing diffusion. This diffusion process is carried out with
a mathematical algorithm as a random walk, where the diffuser particle adheres to the
initial particle. This process is iteratively repeated and stops only when a group of particles
is formed. While the group is forming, the probability of a particle getting stuck at the
end is incremented with respect to those that reach the interior, forming a cluster with a
structure similar to a branch. These branches can shape chaotic stochastic patterns, such as
the formation of lightning in nature [28].

In stochastic fractal search (SFS) [29], two important processes occur: the diffusion
and the update. In the first one, the particles diffuse near their position to fulfill the intensi-
fication property (exploitation); with this, the possibility of finding the global minima is
increased, and at the same time, it avoids getting stuck at a local minima. In the second one,
a simulation of how one point is updating its position using the positions of other points in
the group is made. In this process, the best particle produced from diffusion is the only
one that is taken into account, and the remaining particles are eliminated. The equations
used in each of the aforementioned processes are explained below. Equation (1) establishes
how to generate an initial population for a particular problem based on its constraints:

P = LB + ε ∗ (UP− LB) (1)

where the particle population P is randomly produced, considering the problem constraints
after setting the lower (LB) and the upper (UB) limits, and ε represents a number randomly
produced in the range 0–1.

The process of diffusion (exploitation in fractal search) is expressed as follows:

GW1 = Gaussian (µBP, σ) +
(
ε× BP− ε′ × Pi

)
(2)

GW2 = Gaussian (µP, σ) (3)

where ε and ε′ represent randomly generated numbers in the range of 0–1, BP represents
the best position of the point, i-th indicates a point Pi and Gaussian represents a normal
distribution that randomly generates numbers with a mean µ and a standard deviation σ:

σ =
log g

g
× |Pi − BP| (4)

where log g
g tends to a zero value as g increases.

The update process (representing exploration in a fractal search) is expressed as follows:

Pai =
rank(Pi)

N
(5)

where N represents the number of particles and Pai is the estimated particle probability,
whose rank is given by the “rank” function. A classification of the particles is done
according to their fitness value. Finally, a probability is assigned to each particle i.

P′i (j) = Px(j)− ε×
(

Py(j)− Pi(j)
)

(6)
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where the augmented component is given by P′i (j), and Px and Py are different points se-
lected from the group in a random fashion. P′i replaces Pi if it achieves a better fitness value.

P′i = Pi − ε× (Px − BP)
∣∣ε′ ≤ 0.5 (7)

P′i = Pi − ε×
(

Px − Py
)∣∣otherwise (8)

Once the first updating stage is finished, the second one is initiated with a ranking of
all the points based on Equations (7) and (8). As previously mentioned, if Pai is lower than
a random ε, the current point, Pi, is changed by using the previous equations, in which the
x and y indices should be different. Of course, the new P′i is substituted by Pi if it has a
better value.

3. Proposed Dynamic Stochastic Fractal Search (DSFS)

As mentioned above, the SFS [30–32] has two important processes: the diffusion
method and the updating strategy. In analyzing the diffusion method, we know that a seed
particle is initialized, and others are generated and adhere to it through diffusion, which
forms a chaotic stochastic fractal branch. By taking this fact into account, the stochastic
fractal search (SFS) method has been improved by adding diversity to the diffusion process
for the particles in each iteration. In this way, the Gaussian random walk was improved
because the particles have more possibilities to exploit the search space and therefore do
not stagnate in a suboptimal location. To control the diffusion parameter, a fuzzy inference
system was introduced, which dynamically adjusted the diffusion of the particles in a
range of 0–1. This fuzzy system for control has two inputs (iteration and diversity) and
one output (diffusion), as illustrated in Figures 1 and 2. The implemented fuzzy system
has 9 if–then rules, which allow for the expression of the knowledge available about the
relationship between the antecedents and consequents. These rules determine the behavior
of the fuzzy controller and it is here that the output parameter is emulated. The idea was to
have an efficient algorithm that improves the disadvantages of the SFS, which is capable of
producing solutions of good quality. In this case, Equations (11) and (12) represent diversity
and iteration, respectively.

Fractal Fract. 2021, 5, x FOR PEER REVIEW 4 of 17 
 

 

where the augmented component is given by 푃 (푗) , and 푃  and  푃  are different points 
selected from the group in a random fashion. 푃  replaces 푃  if it achieves a better fitness 
value. 

푃 =  푃 −  휀 × (푃  − 퐵푃)휀 ´ 0.5  (7)

 푃 =  푃 −  휀 × 푃  − 푃 otherwise (8)

Once the first updating stage is finished, the second one is initiated with a ranking of 
all the points based on Equations (7) and (8). As previously mentioned, if 푃푎  is lower 
than a random 휀, the current point, 푃 , is changed by using the previous equations, in 
which the 푥 and y indices should be different. Of course, the new 푃  is substituted by 푃  
if it has a better value. 

3. Proposed Dynamic Stochastic Fractal Search (DSFS) 
As mentioned above, the SFS [30–32] has two important processes: the diffusion 

method and the updating strategy. In analyzing the diffusion method, we know that a 
seed particle is initialized, and others are generated and adhere to it through diffusion, 
which forms a chaotic stochastic fractal branch. By taking this fact into account, the sto-
chastic fractal search (SFS) method has been improved by adding diversity to the diffusion 
process for the particles in each iteration. In this way, the Gaussian random walk was 
improved because the particles have more possibilities to exploit the search space and 
therefore do not stagnate in a suboptimal location. To control the diffusion parameter, a 
fuzzy inference system was introduced, which dynamically adjusted the diffusion of the 
particles in a range of 0–1. This fuzzy system for control has two inputs (iteration and 
diversity) and one output (diffusion), as illustrated in Figures 1 and 2. The implemented 
fuzzy system has 9 if–then rules, which allow for the expression of the knowledge availa-
ble about the relationship between the antecedents and consequents. These rules deter-
mine the behavior of the fuzzy controller and it is here that the output parameter is emu-
lated. The idea was to have an efficient algorithm that improves the disadvantages of the 
SFS, which is capable of producing solutions of good quality. In this case, Equations (11) 
and (12) represent diversity and iteration, respectively. 

 
Figure 1. Type-1 fuzzy system for controlling diffusion. Figure 1. Type-1 fuzzy system for controlling diffusion.



Fractal Fract. 2021, 5, 33 5 of 17Fractal Fract. 2021, 5, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 2. Type-2 fuzzy system for controlling the diffusion. 

The fuzzy if–then rules are as follows: 
If (Iteration is Low) and (Diversity is Low) then (Diffusion is High). 
If (Iteration is Low) and (Diversity is Medium) then (Diffusion is Medium). 
If (Iteration is Low) and (Diversity is High) then (Diffusion is Medium). 
If (Iteration is Medium) and (Diversity is Low) then (Diffusion is Medium). 
If (Iteration is Medium) and (Diversity is Medium) then (Diffusion is Medium). 
If (Iteration is Medium) and (Diversity is High) then (Diffusion is Medium). 
If (Iteration is High) and (Diversity is Low) then (Diffusion is Medium). 
If (Iteration is High) and (Diversity is Medium) then (Diffusion is Medium). 
If (Iteration is High) and (Diversity is High) then (Diffusion is Low). 

Equations (9) and (10) mathematically define the geometrical shape of the triangular 
functions for type-1 and type-2 fuzzy logic, respectively [33–37]. 

푡푟푖푎푛푔푢푙푎푟(푢; 푎, 푏, 푐) =

⎩
⎪
⎨

⎪
⎧

0,                  푢 ≤ 푎  
푢 − 푎
푏 − 푐

,        푎 ≤ 푥 ≤ 푏
푐 − 푥
푐 − 푏

,      푏 ≤ 푥 ≤ 푐

0,                  푐 ≤ 푥

 (9)

휇(푥) = 휇(푥), 휇(푥) = itrapatype2(x, [푎 , 푏 , 푐 , 푑 , 푎 , 푏 , 푐 , 푑 , 훼]) 

where 푎 < 푎 , 푏 < 푏 , 푐 < 푐 , 푑 < 푑 . 

휇 (푥) = max min
푥 − 푎
푏 − 푎

, 1,
푑 − 푥
푑 − 푐

, 0  

휇 (푥) = max min
푥 − 푎
푏 − 푎

, 1,
푑 − 푥
푑 − 푐

, 0  

(10)

Figure 2. Type-2 fuzzy system for controlling the diffusion.

The fuzzy if–then rules are as follows:

If (Iteration is Low) and (Diversity is Low) then (Diffusion is High).
If (Iteration is Low) and (Diversity is Medium) then (Diffusion is Medium).
If (Iteration is Low) and (Diversity is High) then (Diffusion is Medium).
If (Iteration is Medium) and (Diversity is Low) then (Diffusion is Medium).
If (Iteration is Medium) and (Diversity is Medium) then (Diffusion is Medium).
If (Iteration is Medium) and (Diversity is High) then (Diffusion is Medium).
If (Iteration is High) and (Diversity is Low) then (Diffusion is Medium).
If (Iteration is High) and (Diversity is Medium) then (Diffusion is Medium).
If (Iteration is High) and (Diversity is High) then (Diffusion is Low).

Equations (9) and (10) mathematically define the geometrical shape of the triangular
functions for type-1 and type-2 fuzzy logic, respectively [33–37].

triangular(u; a, b, c) =


0, u ≤ a

u−a
b−c , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c

0, c ≤ x

(9)

µ̃(x) =
[
µ(x), µ(x)

]
= itrapatype2(x, [a1, b1, c1, d1, a2, b2, c2, d2, α])

where a1 < a2, b1 < b2, c1 < c2, d1 < d2.

µ1(x) = max
(

min
(

x−a1
b1−a1

, 1, d1−x
d1−c1

)
, 0
)

µ2(x) = max
(

min
(

x−a2
b2−a2

, 1, d2−x
d2−c2

)
, 0
)

µ(x) =

max(µ1(x), µ2(x)) ∀ x /∈ (b1, c2)

1 ∀ x ∈ (b1, c2)
µ(x) = min(α, min(µ1(x), µ2(x)))

(10)

Iteration =
Current Iteration
Total o f Iterations

(11)
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Diversity (S(t)) =
1
n

n

∑
x=1

√√√√ D

∑
y=1

[
Px(t)− Py(t)

]2 (12)

Diversity contributes to the stochastic movement of the particles by having more
possibilities of exploiting the entire search space. In this case, in each iteration of the search
process, the parameter is dynamically adjusted close to the global optimum, and thus, the
diffusion process is improved and we have a more efficient search method.

4. Experimental Results

To obtain an understanding of the effectiveness of the proposed dynamic stochastic
fractal search (DSFS) method, 30 optimization functions of the Congress on Evolutionary
Computing 2017 (CEC 2017) competition [38], summarized in Table 1, were evaluated. In
Table 1, we can find several types of functions, such as unimodal, multimodal, hybrid, and
composite. To compare the optimization performance of the proposal with respect to other
methods, different numbers of dimensions (10, 30, 50, and 100) and different adaptation
strategies for the parameters (using type-1 and type-2 fuzzy systems) were used.

Table 1. CEC 2017 optimization functions.

Type of
Function No Name of Function fi

Unimodal
Functions

1 Shifted and Rotated Bent Cigar Function 100
2 Shifted and Rotated Sum of Different Power Function 200
3 Shifted and Rotated Zakharov Function 300

Simple
Multimodal
Functions

4 Shifted and Rotated Rosenbrock’s Function 400
5 Shifted and Rotated Rastrigin’s Function 500
6 Shifted and Rotated Expanded Schaffer’s Function 600
7 Shifted and Rotated Lunacek Bi-Rastrigin Function 700
8 Shifted and Rotated Non-Continuous Rastrigin’s Function 800
9 Shifted and Rotated Levy Function 900

10 Shifted and Rotated Schwefel’s Function 1000

Hybrid
Functions

11 Hybrid Function 1 (N = 3) 1100
12 Hybrid Function 2 (N = 3) 1200
13 Hybrid Function 3 (N = 3) 1300
14 Hybrid Function 4 (N = 4) 1400
15 Hybrid Function 5 (N = 4) 1500
16 Hybrid Function 6 (N = 4) 1600
17 Hybrid Function 6 (N = 5) 1700
18 Hybrid Function 6 (N = 5) 1800
19 Hybrid Function 6 (N = 5) 1900
20 Hybrid Function 6 (N = 6) 2000
21 Composition Function 1 (N = 3) 2100

Composition
Functions

22 Composition Function 2 (N = 3) 2200
23 Composition Function 3 (N = 4) 2300
24 Composition Function 4 (N = 4) 2400
25 Composition Function 5 (N = 5) 2500
26 Composition Function 6 (N = 3) 2600
27 Composition Function 7 (N = 6) 2700
28 Composition Function 8 (N = 3) 2800
29 Composition Function 9 (N = 3) 2900
30 Composition Function 10 (N = 3) 3000
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To evaluate the proposed method, the CEC 2017 benchmark mathematical functions
that have been widely used in the literature [39] were considered in the tests. Table 2
shows, at the top, the number of dimensions used for each function. Column 1 shows the
function that is given as f1, f2, f3, f4, . . . , f30, Column 2, represented as “fi” shows the
global optimum (minimum) of each function. The next two columns of Table 2 contain the
obtained results by the dynamic stochastic fractal search (DSFS) algorithm using type-1
fuzzy logic. The observable results are the average and standard deviation of each of the
functions. Finally, Columns 5 and 6 show the mean and standard deviations, respectively,
of the functions when using type-2 fuzzy logic for the adaptation of the parameter values
in DSFS.

Table 2. Dynamic Stochastic Fractal Search (DSFS) results with 10 dimensions.

Dynamic Stochastic Fractal Search (DSFS) with 10 Dimensions

Type-1 Fuzzy Logic Type-2 Fuzzy Logic

Function fi Main Std Main Std

f1 100 1.01 × 102 4.87 × 10−1 1.01 × 102 7.85 × 10−1

f2 200 2.00 × 102 0.00 2.00 × 102 0.00
f3 300 3.00 × 102 3.73 × 10−6 3.00 × 102 5.04 × 10−6

f4 400 4.01 × 102 7.81 × 10−1 4.00 × 102 6.19 × 10−1

f5 500 5.06 × 102 2.04 5.07 × 102 2.64
f6 600 6.00 × 102 7.21 × 10−8 6.00 × 102 6.24 × 10−8

f7 700 7.19 × 102 3.45 7.20 × 102 3.32
f8 800 8.07 × 102 3.04 8.07 × 102 2.44
f9 900 9.00 × 102 0.00 9.00 × 102 0.00

f10 1000 1.40 × 103 1.70 × 102 1.34 × 103 1.31 × 102

f11 1100 1.10 × 103 9.31 × 10−1 1.10 × 103 1.00
f12 1200 1.50 × 103 1.04 × 102 1.52 × 103 1.02 × 102

f13 1300 1.31 × 103 4.03 1.31 × 103 4.14
f14 1400 1.40 × 103 1.69 1.40 × 103 2.01
f15 1500 1.50 × 103 7.24 × 10−1 1.50 × 103 8.88 × 10−1

f16 1600 1.60 × 103 2.79 × 10−1 1.60 × 103 3.64 × 10−1

f17 1700 1.70 × 103 2.68 1.71 × 103 4.41
f18 1800 1.81 × 103 2.56 1.81 × 103 2.57
f19 1900 1.90 × 103 4.15 × 10−1 1.90 × 103 4.45 × 10−1

f20 2000 2.00 × 103 1.39 × 10−1 2.00 × 103 4.73 × 10−3

f21 2100 2.23 × 103 5.08 × 10 2.24 × 103 5.40 × 10
f22 2200 2.29 × 103 2.17 × 10 2.28 × 103 3.93 × 10
f23 2300 2.61 × 103 2.80 2.60 × 103 5.61 × 10
f24 2400 2.61 × 103 1.22 × 102 2.63 × 103 1.14 × 102

f25 2500 2.90 × 103 1.08 × 10 2.90 × 103 1.15 × 10
f26 2600 2.90 × 103 2.15 × 10−10 2.90 × 103 3.02 × 10−10

f27 2700 3.09 × 103 1.97 3.09 × 103 2.14
f28 2800 3.09 × 103 4.20 × 10 3.11 × 103 5.69 × 10
f29 2900 3.16 × 103 1.01 × 10 3.16 × 103 9.65
f30 3000 3.56 × 103 2.30 × 102 3.55 × 103 1.19 × 102

As can be seen, the results using type-1 and type-2 fuzzy systems did not have a
significant visible difference using 10 dimensions. Even so, the results obtained were good
on average because most reached the optimal global of the functions. In Table 3, Row 3,
the first column shows the number of the function that is being evaluated. In Column
2, the optimum of each function is observed. In Column 3, the average results of each
of the functions are given, and Column 4 shows the standard deviation; these two were
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obtained with type-1 fuzzy logic. Finally, the last columns illustrate the results in average
and standard deviation, respectively, with type-2 fuzzy logic. It can be appreciated that the
difference between these results was minimal, even though these results were obtained
with experimentation using 30 dimensions. With this number of dimensions, the algorithm
has a wider search space. In addition, the functions that were optimized are complex.
Despite this situation, the method showed that it was approaching the optimum of each
function, and the values obtained with both types of fuzzy logic were also very close.

Table 3. Dynamic Stochastic Fractal Search (DSFS) results with 30 dimensions.

Dynamic Stochastic Fractal Search (DFSF) with 30 Dimensions

Type-1 Fuzzy Logic Type-2 Fuzzy Logic

Function fi Main Std Main Std

f1 100 3.49 × 103 2.76 × 103 3.24 × 103 2.74 × 103

f2 200 3.06 × 1016 7.11 × 1016 7.59 × 1017 3.98 × 1018

f3 300 8.40 × 103 3.95 × 103 8.79 × 103 4.60 × 103

f4 400 4.87 × 102 3.56 × 10 4.80 × 102 3.39 × 10
f5 500 6.11 × 102 2.27 × 10 6.00 × 102 2.02 × 10
f6 600 6.00 × 102 1.36 × 10−2 6.00 × 102 1.13 × 10−2

f7 700 8.53 × 102 1.68 × 10 8.60 × 102 1.70 × 10
f8 800 9.05 × 102 2.12 × 10 9.06 × 102 2.27 × 10
f9 900 9.01 × 102 6.89 × 10−1 9.04 × 102 1.44 × 10

f10 1000 6.21 × 103 6.89 × 10−1 6.05 × 103 5.03 × 102

f11 1100 1.19 × 103 2.31 × 10 1.19 × 103 2.90 × 10
f12 1200 1.56 × 105 1.03 × 105 1.81 × 105 1.48 × 105

f13 1300 3.56 × 103 9.09 × 102 4.01 × 103 1.00 × 103

f14 1400 1.50 × 103 1.03 × 10 1.50 × 103 1.06 × 10
f15 1500 1.70 × 103 4.43 × 10 1.70 × 103 3.95 × 10
f16 1600 2.45 × 103 2.66 × 102 2.47 × 103 2.14 × 102

f17 1700 1.85 × 103 6.65 × 10 1.86 × 103 8.06 × 10
f18 1800 2.87 × 103 6.86 × 102 2.69 × 103 3.69 × 102

f19 1900 1.99 × 103 1.88 × 10 1.99 × 103 1.87 × 10
f20 2000 2.39 × 103 2.58 × 10 2.22 × 103 1.12 × 102

f21 2100 2.40 × 103 2.28 × 10 2.39 × 103 2.51 × 10
f22 2200 2.30 × 103 1.50 × 10−2 2.30 × 103 7.44 × 10−3

f23 2300 2.74 × 103 2.86 × 10 2.73 × 103 2.26 × 10
f24 2400 2.91 × 103 3.37 × 10 2.90 × 103 3.04 × 10
f25 2500 2.89 × 103 1.73 2.89 × 103 9.76 × 10−1

f26 2600 4.28 × 103 5.50 × 102 4.22 × 103 6.59 × 102

f27 2700 3.22 × 103 8.08 3.22 × 103 7.37
f28 2800 3.21 × 103 1.25 × 10 3.21 × 103 1.27 × 10
f29 2900 3.63 × 103 1.06 × 102 3.59 × 103 1.13 × 102

f30 3000 1.32 × 104 3.29 × 103 1.51 × 104 5.55 × 103

Multimodal functions are more difficult to optimize than unimodal ones due to the
complexity that they represent because the algorithms must escape or avoid local optima
and arrive at the global optimal solution. In this study, not only unimodal and multimodal
functions were optimized but also hybrid and complex functions were optimized using
different values of dimensions, as can be seen in Tables 4 and 5, with 50 and 100 dimensions,
respectively. In addition, the values obtained with the variants using type-1 and type-2
fuzzy systems for the adaptation of parameters show that the method had some degree of
difficulty in reaching the global optimum. Even so, they provided good approximation
values, showing that the improved method is efficient in optimization tasks. The explana-
tion of the rows and columns of Tables 4 and 5 is analogous to the previously mentioned
description for Table 3.
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Table 4. Dynamic Stochastic Fractal Search (DSFS) results with 50 dimensions.

Dynamic Stochastic Fractal Search (DSFS) with 50 Dimensions

Type-1 Fuzzy Logic Type-2 Fuzzy Logic

Function fi Main Std Main Std

f1 100 9.00 × 104 4.30 × 104 8.42 × 104 6.69 × 104

f2 200 1.20 × 1040 4.53 × 1040 5.08 × 1039 1.52 × 1040

f3 300 6.01 × 104 9.72 × 103 6.28 × 104 1.39 × 104

f4 400 5.72 × 102 4.05 × 10 5.69 × 102 4.26 × 10
f5 500 7.68 × 102 4.35 × 10 7.69 × 102 4.59 × 10
f6 600 6.01 × 102 1.35 × 10−1 6.01 × 102 1.55 × 10−1

f7 700 1.05 × 103 3.18 × 10 1.06 × 103 2.61 × 10
f8 800 1.06 × 103 3.69 × 10 1.06 × 103 4.42 × 10
f9 900 1.13 × 103 1.49 × 102 1.14 × 103 1.22 × 102

f10 1000 1.13 × 104 4.84 × 102 1.12 × 104 6.53 × 102

f11 1100 1.36 × 103 3.00 × 10 1.36 × 103 4.30 × 10
f12 1200 3.54 × 106 1.42 × 106 3.47 × 106 1.96 × 106

f13 1300 1.48 × 104 1.17 × 104 1.67 × 104 1.36 × 104

f14 1400 1.50 × 103 1.03 × 10 1.80 × 103 8.36 × 10
f15 1500 4.14 × 103 1.54 × 103 3.75 × 103 8.43 × 102

f16 1600 3.52 × 103 3.87 × 102 3.58 × 103 4.80 × 102

f17 1700 3.05 × 103 2.37 × 102 3.04 × 103 2.56 × 102

f18 1800 5.42 × 104 3.34 × 104 5.39 × 104 3.20 × 104

f19 1900 7.10 × 103 4.05 × 103 7.73 × 103 5.45 × 103

f20 2000 3.10 × 103 2.16 × 102 3.14 × 103 2.36 × 102

f21 2100 2.55 × 103 4.55 × 10 2.55 × 103 4.99 × 10
f22 2200 1.10 × 104 4.12 × 103 1.23 × 104 3.40 × 103

f23 2300 3.00 × 103 4.43 × 10 2.98 × 103 4.91 × 10
f24 2400 3.14 × 103 5.98 × 10 3.14 × 103 5.85 × 10
f25 2500 3.07 × 103 2.52 × 10 3.08 × 103 2.22 × 10
f26 2600 6.07 × 103 5.92 × 102 6.16 × 103 4.77 × 102

f27 2700 3.41 × 103 4.40 × 10 3.40 × 103 4.09 × 10
f28 2800 3.36 × 103 3.36 × 10 3.35 × 103 3.44 × 10
f29 2900 4.15 × 103 2.71 × 102 4.17 × 103 2.55 × 102

f30 3000 3.25 × 106 6.84 × 105 3.24 × 106 8.20 × 105

Table 5. Dynamic Stochastic Fractal Search (DSFS) results with 100 dimensions.

Dynamic Stochastic Fractal Search DSFS with 100 Dimensions

Type-1 Fuzzy Logic Type-2 Fuzzy Logic

Function fi Main Std Main Std

f1 100 1.15 × 108 4.36 × 107 1.08 × 108 3.31 × 107

f2 200 1.34 × 10108 8.85 × 10108 1.14 × 10111 5.81 × 10111

f3 300 2.53 × 105 2.78 × 104 2.56 × 105 2.78 × 104

f4 400 9.23 × 102 4.74 × 10 9.37 × 102 6.10 × 10
f5 500 1.29 × 103 9.15 × 10 1.29 × 103 7.11 × 10
f6 600 6.07 × 102 1.33 6.07 × 102 1.02
f7 700 1.72 × 103 5.61 × 10 1.73 × 103 5.30 × 10
f8 800 1.58 × 103 7.70 × 10 1.59 × 103 8.69 × 10
f9 900 1.19 × 104 3.07 × 103 1.28 × 104 4.21 × 103

f10 1000 2.71 × 104 1.04 × 103 2.72 × 104 9.91 × 102

f11 1100 1.62 × 104 3.86 × 103 1.63 × 104 4.35 × 103

f12 1200 6.66 × 107 2.09 × 107 7.05 × 107 1.74 × 107

f13 1300 5.66 × 103 1.80 × 103 6.16 × 103 2.89 × 103

f14 1400 3.36 × 105 2.50 × 105 2.36 × 105 1.44 × 105

f15 1500 4.46 × 103 4.66 × 103 4.39 × 103 3.13 × 103
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Table 5. Cont.

Dynamic Stochastic Fractal Search DSFS with 100 Dimensions

f16 1600 7.97 × 103 8.58 × 102 7.70 × 103 7.93 × 102

f17 1700 6.04 × 103 3.39 × 102 5.90 × 103 5.76 × 102

f18 1800 5.97 × 105 3.86 × 105 6.45 × 105 3.99 × 105

f19 1900 3.60 × 103 1.65 × 103 3.49 × 103 1.56 × 103

f20 2000 2.18 × 103 8.28 × 10 6.27 × 103 4.30 × 102

f21 2100 3.11 × 103 6.75 × 10 3.11 × 103 6.06 × 10
f22 2200 2.96 × 104 8.67 × 102 2.97 × 104 8.23 × 102

f23 2300 3.59 × 103 5.69 × 10 3.57 × 103 7.87 × 10
f24 2400 4.09 × 103 9.76 × 10 4.08 × 103 1.19 × 102

f25 2500 3.63 × 103 6.17 × 10 3.63 × 103 5.46 × 10
f26 2600 1.41 × 104 1.04 × 103 1.42 × 104 8.28 × 102

f27 2700 3.72 × 103 7.06 × 10 3.73 × 103 5.89 × 10
f28 2800 3.96 × 103 1.11 × 102 3.96 × 103 1.35 × 102

f29 2900 7.96 × 103 5.34 × 102 7.96 × 103 5.11 × 102

f30 3000 3.04 × 105 1.27 × 105 3.18 × 105 1.68 × 105

5. Discussion of Results

In the literature, we can find the hybrid firefly and particle swarm optimization
algorithm for solving expensive computational problems [40], which was also used for the
optimization of the CEC 2017 functions, and the performance of which was compared to
another four optimization methods. The comparison was done in [40] with the combination
of the hybrid firefly algorithm and particles swarm optimization (HFPSO), as well as with
the Firefly Algorithm (FA), particle swarm optimization (PSO), Hybrid PSO and Firefly
Algorithm (HPSOFF), and Hybrid Firefly and PSO (FFPSO). For this reason, we decided
to consider it as a reference for comparison to test the efficacy of the dynamic stochastic
fractal search (DFSF) method. The experimentation was carried out with the following
specifications: 20 independent runs, and for each case, the maximum number of evaluations
of 500 was used for 10 dimensions (10D), and 1500 for 30 dimensions (30D).

The combination of the Firefly Algorithm and Particle Swarm Optimization (HFPSO)
was the one that generated the best results in the comparison that was made in the refer-
ence article [40], with respect to the other four optimization algorithms. For this reason, in
Tables 6 and 7, only the results of the HFPSO are compared against the proposed DSFS with
both types of fuzzy logic. The experimentation of the CEC 2017 functions with 10 and 30 di-
mensions, respectively, show us that the dynamic stochastic fractal search method obtained,
on average, better results in finding the global solutions of the functions. As previously
mentioned, the results of the dynamic stochastic fractal search with type-1 and type-2 fuzzy
systems were very close. Therefore, in comparison with HFPSO, better overall results were
also obtained for each function. Figures 3 and 4 graphically illustrate a comparison of the
proposed DSFS against the HFPSO for 10 and 30 dimensions, respectively.

Table 6. HFPSO vs. DSFS results with 10 dimensions.

HFPSO [40] DSFS
Type-1 Fuzzy Logic

DSFS
Type-2 Fuzzy Logic

Function fi Mean Std Mean Std Mean Std

f1 100 9.81 × 108 1.01 × 102 1.01 × 102 4.87 × 10−1 1.01 × 102 7.85 × 10−1

f2 200 4.91 × 108 2.00 × 102 2.00 × 102 0.00 2.00 × 102 0.00
f3 300 5.96 × 103 3.00 × 102 3.00 × 102 3.73 × 10−6 3.00 × 102 5.04 × 10−6

f4 400 4.55 × 10 4.01 × 102 4.01 × 102 7.81 × 10−1 4.00 × 102 6.19 × 10−1

f5 500 1.84 × 10 5.06 × 102 5.06 × 102 2.04 5.07 × 102 2.64
f6 600 1.35 × 10 6.00 × 102 6.00 × 102 7.21 × 10−8 6.00 × 102 6.24 × 10−8

f7 700 1.73 × 10 7.19 × 102 7.19 × 102 3.45 7.20 × 102 3.32
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Table 6. Cont.

HFPSO [40] DSFS
Type-1 Fuzzy Logic

DSFS
Type-2 Fuzzy Logic

Function fi Mean Std Mean Std Mean Std

f8 800 1.44 × 10 8.07 × 102 8.07 × 102 3.04 8.07 × 102 2.44
f9 900 3.07 × 102 9.00 × 102 9.00 × 102 0.00 9.00 × 102 0.00
f10 1000 3.79 × 102 1.40 × 103 1.40 × 103 1.70 × 102 1.34 × 103 1.31 × 102

f11 1100 5.24 × 10 1.10 × 103 1.10 × 103 9.31 × 10−1 1.10 × 103 1.00
f12 1200 4.13 × 106 1.50 × 103 1.50 × 103 1.04 × 102 1.52 × 103 1.02 × 102

f13 1300 7.68 × 103 1.31 × 103 1.31 × 103 4.03 1.31 × 103 4.14
f14 1400 4.18 × 103 1.40 × 103 1.40 × 103 1.69 1.40 × 103 2.01
f15 1500 2.37 × 104 1.50 × 103 1.50 × 103 7.24 × 10−1 1.50 × 103 8.88 × 10−1

f16 1600 1.59 × 102 1.60 × 103 1.60 × 103 2.79 × 10−1 1.60 × 103 3.64 × 10−1

f17 1700 8.40 × 10 1.70 × 103 1.70 × 103 2.68 1.71 × 103 4.41
f18 1800 1.79 × 104 1.81 × 103 1.81 × 103 2.56 1.81 × 103 2.57
f19 1900 3.83 × 104 1.90 × 103 1.90 × 103 4.15 × 10−1 1.90 × 103 4.45 × 10−1

f20 2000 1.08 × 102 2.00 × 103 2.00 × 103 1.39 × 10−1 2.00 × 103 4.73 × 10−3

f21 2100 4.78 × 10 2.23 × 103 2.23 × 103 5.08 × 10 2.24 × 103 5.40 × 10
f22 2200 5.88 × 102 2.29 × 103 2.29 × 103 2.17 × 10 2.28 × 103 3.93 × 10
f23 2300 2.87 × 10 2.61 × 103 2.61 × 103 2.80 2.60 × 103 5.61 × 10
f24 2400 1.47 × 102 2.61 × 103 2.61 × 103 1.22 × 102 2.63 × 103 1.14 × 102

f25 2500 5.02 × 10 2.90 × 103 2.90 × 103 1.08 × 10 2.90 × 103 1.15 × 10
f26 2600 3.42 × 102 2.90 × 103 2.90 × 103 2.15 × 10−10 2.90 × 103 3.02 × 10−10

f27 2700 3.94 × 10 3.09 × 103 3.09 × 103 1.97 3.09 × 103 2.14
f28 2800 1.08 × 102 3.09 × 103 3.09 × 103 4.20 × 10 3.11 × 103 5.69 × 10
f29 2900 9.40 × 10 3.16 × 103 3.16 × 103 1.01 × 10 3.16 × 103 9.65
f30 3000 3.75 × 106 3.56 × 103 3.56 × 103 2.30 × 102 3.55 × 103 1.19 × 102

Table 7. HFPSO vs. DSFS results with 30 dimensions.

HFPSO [40] DSFS
Type-1 Fuzzy Logic

DSFS
Type-2 Fuzzy Logic

Function fi Mean Std Mean Std Mean Std

f1 100 9.81 × 108 1.01 × 102 3.49 × 103 2.76 × 103 3.24 × 103 2.74 × 103

f2 200 4.91 × 108 2.00 × 102 3.06 × 1016 7.11 × 1016 7.59 × 1017 3.98 × 1018

f3 300 5.96 × 103 3.00 × 102 8.40 × 103 3.95 × 103 8.79 × 103 4.60 × 103

f4 400 4.55 × 10 4.01 × 102 4.87 × 102 3.56 × 10 4.80 × 102 3.39 × 10
f5 500 1.84 × 10 5.06 × 102 6.11 × 102 2.27 × 10 6.00 × 102 2.02 × 10
f6 600 1.35 × 10 6.00 × 102 6.00 × 102 1.36 × 10−2 6.00 × 102 1.13 × 10−2

f7 700 1.73 × 10 7.19 × 102 8.53 × 102 1.68 × 10 8.60 × 102 1.70 × 10
f8 800 1.44 × 10 8.07 × 102 9.05 × 102 2.12 × 10 9.06 × 102 2.27 × 10
f9 900 3.07 × 102 9.00 × 102 9.01 × 102 6.89 × 10−1 9.04 × 102 1.44 × 10

f10 1000 3.79 × 102 1.40 × 103 6.21 × 103 6.89 × 10−1 6.05 × 103 5.03 × 102

f11 1100 5.24 × 10 1.10 × 103 1.19 × 103 2.31 × 10 1.19 × 103 2.90 × 10
f12 1200 4.13 × 106 1.50 × 103 1.56 × 105 1.03 × 105 1.81 × 105 1.48 × 105

f13 1300 7.68 × 103 1.31 × 103 3.56 × 103 9.09 × 102 4.01 × 103 1.00 × 103

f14 1400 4.18 × 103 1.40 × 103 1.50 × 103 1.03 × 10 1.50 × 103 1.06 × 10
f15 1500 2.37 × 104 1.50 × 103 1.70 × 103 4.43 × 10 1.70 × 103 3.95 × 10
f16 1600 1.59 × 102 1.60 × 103 2.45 × 103 2.66 × 102 2.47 × 103 2.14 × 102

f17 1700 8.40 × 10 1.70 × 103 1.85 × 103 6.65 × 10 1.86 × 103 8.06 × 10
f18 1800 1.79 × 104 1.81 × 103 2.87 × 103 6.86 × 102 2.69 × 103 3.69 × 102

f19 1900 3.83 × 104 1.90 × 103 1.99 × 103 1.88 × 10 1.99 × 103 1.87 × 10
f20 2000 1.08 × 102 2.00 × 103 2.39 × 103 2.58 × 10 2.22 × 103 1.12 × 102

f21 2100 4.78 × 10 2.23 × 103 2.40 × 103 2.28 × 10 2.39 × 103 2.51 × 10
f22 2200 5.88 × 102 2.29 × 103 2.30 × 103 1.50 × 10−2 2.30 × 103 7.44 × 10−3
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Table 7. Cont.

HFPSO [40] DSFS
Type-1 Fuzzy Logic

DSFS
Type-2 Fuzzy Logic

Function fi Mean Std Mean Std Mean Std

f23 2300 2.87 × 10 2.61 × 103 2.74 × 103 2.86 × 10 2.73 × 103 2.26 × 10
f24 2400 1.47 × 102 2.61 × 103 2.91 × 103 3.37 × 10 2.90 × 103 3.04 × 10
f25 2500 5.02 × 10 2.90 × 103 2.89 × 103 1.73 2.89 × 103 9.76 × 10−1

f26 2600 3.42 × 102 2.90 × 103 4.28 × 103 5.50 × 102 4.22 × 103 6.59 × 102

f27 2700 3.94 × 10 3.09 × 103 3.22 × 103 8.08 3.22 × 103 7.37
f28 2800 1.08 × 102 3.09 × 103 3.21 × 103 1.25 × 10 3.21 × 103 1.27 × 10
f29 2900 9.40 × 10 3.16 × 103 3.63 × 103 1.06 × 102 3.59 × 103 1.13 × 102

f30 3000 3.75 × 106 3.56 × 103 1.32 × 104 3.29 × 103 1.51 × 104 5.55 × 103
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On the vertical axis, we can find the values obtained with the DSFS and HFPSO
methods, and the horizontal axis shows the corresponding functions. The DSFS approach,
indicated by the blue line, has better efficiency than the HFPSO (orange line) because the
values are closer to the global optima, as seen in Figure 3.

Figure 4 illustrates the results obtained with the DSFS and HFPSO using 30 dimensions.
The vertical axis contains the values reached by the methods when evaluating the CEC 2017
functions and the horizontal axis shows the corresponding function. The orange line is
representative of the HFPSO algorithm, where it is observed that, in the first functions, the
values were very separate from the optimal ones. Then, for the f1, f2, f3, and f4 functions,
the achieved performance can be viewed as unsatisfactory, with results up to 10+30. On the
other hand, the DFSF method obtained results closer to the global optimal, represented by
the blue line. We will have to remember that the dimensions are high, and therefore, the
performance of the methods is not the same as when using lower dimensions, where the
efficiency of the algorithms is much better for each of the functions.

To determine which of the HFPSO or DSFS provided the closest to the optimal result
for each function, a statistical comparison was performed using the parametric Z-test. The
formula for the Z-test is expressed mathematically in the following fashion:

Z =
(x1 − x2)− (µ1 − µ2)

σx1−x2

(13)

where x1 − x2 is the observed difference in the mean values of the methods, µ1 − µ2 is the
expected difference in the mean values of the methods, and σx1−x2 is the standard error of
the differences.

As can be seen in Table 8, Column 7, the values obtained by the Z-test provide
statistical evidence that the DSFS method using type-1 fuzzy logic is significantly better
than HFPSO in the functions with 10 dimensions (bold type indicates the best values).

Table 8. Z-test for 10 dimensions.

HFPSO [40]
DSFS

Type-1 Fuzzy Logic

Function fi Mean Std Mean Std z

f1 100 9.81 × 108 1.01 × 102 1.01 × 102 4.87 × 10−1 3.76 × 107

f2 200 4.91 × 108 2.00 × 102 2.00 × 102 0.00 9.51 × 106

f3 300 5.96 × 103 3.00 × 102 3.00 × 102 3.73 × 10−6 7.31 × 10
f4 400 4.55 × 10 4.01 × 102 4.01 × 102 7.81 × 10−1 −3.43
f5 500 1.84 × 10 5.06 × 102 5.06 × 102 2.04 −3.73
f6 600 1.35 × 10 6.00 × 102 6.00 × 102 7.21 × 10−8 −3.79
f7 700 1.73 × 10 7.19 × 102 7.19 × 102 3.45 −3.78
f8 800 1.44 × 10 8.07 × 102 8.07 × 102 3.04 −3.80
f9 900 3.07 × 102 9.00 × 102 9.00 × 102 0.00 −2.55

f10 1000 3.79 × 102 1.40 × 103 1.40 × 103 1.70 × 102 −2.82
f11 1100 5.24 × 10 1.10 × 103 1.10 × 103 9.31 × 10−1 −3.69
f12 1200 4.13 × 106 1.50 × 103 1.50 × 103 1.04 × 102 1.07 × 104

f13 1300 7.68 × 103 1.31 × 103 1.31 × 103 4.03 1.88 × 10
f14 1400 4.18 × 103 1.40 × 103 1.40 × 103 1.69 7.69
f15 1500 2.37 × 104 1.50 × 103 1.50 × 103 7.24 × 10−1 5.73 × 10
f16 1600 1.59 × 102 1.60 × 103 1.60 × 103 2.79 × 10−1 −3.49
f17 1700 8.40 × 10 1.70 × 103 1.70 × 103 2.68 −3.68
f18 1800 1.79 × 104 1.81 × 103 1.81 × 103 2.56 3.44 × 10
f19 1900 3.83 × 104 1.90 × 103 1.90 × 103 4.15 × 10−1 7.42 × 10
f20 2000 1.08 × 102 2.00 × 103 2.00 × 103 1.39 × 10−1 −3.66
f21 2100 4.78 × 10 2.23 × 103 2.23 × 103 5.08 × 10 −3.79
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Table 8. Cont.

HFPSO [40]
DSFS

Type-1 Fuzzy Logic

Function fi Mean Std Mean Std z

f22 2200 5.88 × 102 2.29 × 103 2.29 × 103 2.17 × 10 −2.88
f23 2300 2.87 × 10 2.61 × 103 2.61 × 103 2.80 −3.83
f24 2400 1.47 × 102 2.61 × 103 2.61 × 103 1.22 × 102 −3.65
f25 2500 5.02 × 10 2.90 × 103 2.90 × 103 1.08 × 10 −3.81
f26 2600 3.42 × 102 2.90 × 103 2.90 × 103 2.15 × 10−10 −3.42
f27 2700 3.94 × 10 3.09 × 103 3.09 × 103 1.97 −3.82
f28 2800 1.08 × 102 3.09 × 103 3.09 × 103 4.20 × 10 −3.74
f29 2900 9.40 × 10 3.16 × 103 3.16 × 103 1.01 × 10 −3.76
f30 3000 3.75 × 106 3.56 × 103 3.56 × 103 2.30 × 102 4.08 × 103

Table 9 describes in Column 7 the results when applying the Z-test to the methods,
compared to DSFS with type-1 fuzzy logic vs. HFPSO using 30 dimensions. Again, the
proposed method is significantly better. For example, in Row 2, for the f2 function, the Z
value provides sufficient statistical evidence that the proposed DSFS method is better.

Table 9. Results Z-test for 30 dimensions.

HFPSO [40]
DSFS

Type-1 Fuzzy Logic

Function fi Mean Std Mean Std z

f1 100 9.81 × 108 1.01 × 102 3.49 × 103 2.76 × 103 1.95 × 106

f2 200 4.91 × 108 2.00 × 102 3.06 × 1016 7.11 × 1016 −2.36
f3 300 5.96 × 103 3.00 × 102 8.40 × 103 3.95 × 103 −3.37
f4 400 4.55 × 10 4.01 × 102 4.87 × 102 3.56 × 10 −6.01
f5 500 1.84 × 10 5.06 × 102 6.11 × 102 2.27 × 10 −6.41
f6 600 1.35 × 10 6.00 × 102 6.00 × 102 1.36 × 10−2 −5.35
f7 700 1.73 × 10 7.19 × 102 8.53 × 102 1.68 × 10 −6.36
f8 800 1.44 × 10 8.07 × 102 9.05 × 102 2.12 × 10 −6.04
f9 900 3.07 × 102 9.00 × 102 9.01 × 102 6.89 × 10−1 −3.61

f10 1000 3.79 × 102 1.40 × 103 6.21 × 103 6.89 × 10−1 −2.28 × 10
f11 1100 5.24 × 10 1.10 × 103 1.19 × 103 2.31 × 10 −5.66
f12 1200 4.13 × 106 1.50 × 103 1.56 × 105 1.03 × 105 2.11 × 102

f13 1300 7.68 × 103 1.31 × 103 3.56 × 103 9.09 × 102 1.42 × 10
f14 1400 4.18 × 103 1.40 × 103 1.50 × 103 1.03 × 10 1.05 × 10
f15 1500 2.37 × 104 1.50 × 103 1.70 × 103 4.43 × 10 8.03 × 10
f16 1600 1.59 × 102 1.60 × 103 2.45 × 103 2.66 × 102 −7.74
f17 1700 8.40 × 10 1.70 × 103 1.85 × 103 6.65 × 10 −5.69
f18 1800 1.79 × 104 1.81 × 103 2.87 × 103 6.86 × 102 4.25 × 10
f19 1900 3.83 × 104 1.90 × 103 1.99 × 103 1.88 × 10 1.05 × 102

f20 2000 1.08 × 102 2.00 × 103 2.39 × 103 2.58 × 10 −6.25
f21 2100 4.78 × 10 2.23 × 103 2.40 × 103 2.28 × 10 −5.78
f22 2200 5.88 × 102 2.29 × 103 2.30 × 103 1.50 × 10−2 −4.09
f23 2300 2.87 × 10 2.61 × 103 2.74 × 103 2.86 × 10 −5.69
f24 2400 1.47 × 102 2.61 × 103 2.91 × 103 3.37 × 10 −5.80
f25 2500 5.02 × 10 2.90 × 103 2.89 × 103 1.73 −5.36
f26 2600 3.42 × 102 2.90 × 103 4.28 × 103 5.50 × 102 −7.31
f27 2700 3.94 × 10 3.09 × 103 3.22 × 103 8.08 −5.64
f28 2800 1.08 × 102 3.09 × 103 3.21 × 103 1.25 × 10 −5.50
f29 2900 9.40 × 10 3.16 × 103 3.63 × 103 1.06 × 102 −6.13
f30 3000 3.75 × 106 3.56 × 103 1.32 × 104 3.29 × 103 4.22 × 103
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6. Conclusions

In conclusion, we can propose efficient stochastic methods, such as metaheuristics,
that include basic algorithms for global stochastic optimization, such as the random search,
which helps with the dispersion of the particles to reach the global optimum and avoid
local stagnation. In this study, an improvement was made to a recent method that has been
used in several optimization problems. This algorithm has two important processes for its
operation: the diffusion and the updating process, which make up the most important parts
of the stochastic fractal search (SFS). This algorithm has been dynamically analyzed and
improved with a fuzzy controller, which controls the diffusion of particles and diversity by
iteration, making this a better optimization method, as has been observed in the results
obtained, compared to others.

The experimentation was carried out first with the comparison of the results of the
dynamic stochastic fractal search method, adjusted with both kinds of fuzzy logic, where
we found that the values were very similar for all the CEC 2017 evaluation functions.
After that, a comparison with the combination of the hybrid firefly algorithm and particle
swarm optimization (HFPSO) was also done, showing a significant statistical advantage
for the proposed DSFS method of this paper. In addition, since HFPSO was better than
the FA, PSO, HPSOFF, and FFPSO [39], the proposed DSFS is also better than these five
metaheuristic optimization algorithms.

It is shown that the improvement applied to the method was satisfactory because of
its efficiency and optimization performance. This improvement was made by adding the
iteration and diversity equations to help the chaotic stochastic movement of the particles.
In addition, it was adjusted with a fuzzy inference controller. Finally, it can be concluded
that the combination of stochastic metaheuristics with fuzzy logic can generate good results
for the efficiency and improvement of the optimization algorithms, as was developed in
this study. In future work, we plan to apply the proposed DFSF to real-world problems in
different areas of application.
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