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Abstract: Optimal control of fractional order systems is a long established domain of fractional
calculus. Nevertheless, it relies on equations expressed in terms of pseudo-state variables which raise
fundamental questions. So in order remedy these problems, the authors propose in this paper a new
and original approach to fractional optimal control based on a frequency distributed representation
of fractional differential equations called the infinite state approach, associated with an original
formulation of fractional energy, which is intended to really control the internal system state. In
the first step, the fractional calculus of variations is revisited to express appropriate Euler Lagrange
equations. Then, the quadratic optimal control of fractional linear systems is formulated. Thanks
to a frequency discretization technique, the previous theoretical equations are converted into an
equivalent large dimension integer order system which permits the implementation of a feasible
optimal solution. A numerical example illustrates the validity of this new approach.

Keywords: fractional integrator; frequency distributed model; distributed state variable; fractional
energy; calculus of variations; Euler Lagrange equations; optimal control

1. Introduction

The calculus of variations [1], a fundamental optimality problem, has been solved
by the contributions of renowned mathematicians Bernoulli, Euler, Lagrange, Hamilton,
and Jacobi. Optimal control, a direct emanation of fractional calculus, has raised a great
interest of automatic control researchers since the works of Pontryaguine, Belman, Kalman,
and many others (see the two historical surveys [2,3] and the references therein). These
early works were stimulated by the availability of electronic computers and appropriate
numerical techniques. Nowadays, optimal state control of integer order systems are a well
established and developed topic, presented in many monographs (see for example [4,5]).

Since the seminal monographs of Oldham and Spanier [6] and Podlubny [7], frac-
tional system theory has become an active research field. Quite naturally, optimal control
of fractional order systems has given rise to a great interest among fractional calculus
researchers during the last 30 years. One can cite the original works of Agrawal [8–11]
and many other contributions (see for example [12,13] and the references therein). In [8],
the author generalized classical variational calculus to the fractional order domain and
introduced the optimal control of fractional order systems in [9]. Presently, it is accepted by
the fractional calculus community that the theory of fractional optimal control has reached
maturity. In fact, a fundamental problem of fractional differential systems relies on the
definition of state variables and consequently of initial conditions necessary for system
initialization. For a long time, researchers have considered that the state of the system
Dn(X

−
(t)) = A X

−
(t) + B

−
u(t) is the state vector X

−
(t) as a generalization of the integer order

case, since x(0) is usually interpreted as the initial condition of the Caputo derivative [7,14].
In the last approximately 15 years, it has been proved by several researchers with different
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approaches that the pseudo initial condition x(0) is unable to predict the dynamic behavior
of a fractional system for t > 0 [15–19]. Consequently, X

−
(t) does not represent system

state and it has to be called the pseudo-state. Moreover, since the cost function of optimal
state control is generally expressed in terms of a quadratic form of X

−
(t), the research works

presented in the previous references do not apply to the true state of fractional systems
and have to be called pseudo optimal control.

An alternative to the modeling of fractional systems is based on the diffusive represen-
tation [20,21] or the frequency distributed representation [22,23]. The internal state z(ω, t)
of the fractional integrator, which is the basic element for system modeling, is defined by

the relation x(t) =
∞∫
0

µn(ω) z(ω, t) dω. This relation expresses that the pseudo-state vari-

able x(t) depends on the infinite dimensional distributed state variable z(ω, t)ω ∈ [ 0 , ∞ ].
It has been proved that the initial state z(ω, 0) permits the prediction of x(t) for t > 0 [24];
moreover, it has been proved that this modeling technique, known as the infinite state
approach [23], is equivalent to the history function approach of Lorenzo and Hartley [25].

Some researchers have applied diffusive representation to the optimal control problem
in order to reformulate previous works in a more satisfactory framework [26–29], i.e.,
replacing the pseudo-state variable by a distributed variable. Though not directly expressed
in terms of the diffusive representation, the works of Tricaud and Chen [30,31] can be
associated with this approach.

In fact, a more rigorous formulation of the fractional optimal control problem requires
the general representation of fractional systems with the distributed variable z(ω, t) and the
definition of fractional energy to derive appropriate cost functions [32]. This formulation
of fractional energy has already been used to solve the fractional Lyapunov stability
problem [33,34]. Moreover, it is necessary to specify what is fractional state control. In
chapters 4 and 5 of volume 2 [32], it has been demonstrated that pseudo-state control
cannot satisfy integer order state control requirements. Hence it has been proposed to
control the internal system state z(ω, t) , which is of course a more difficult, though non
optimal, control problem.

Consequently, as an extension of this previous work, the objective of this paper is to
present an original formulation of fractional optimal control in terms of the infinite state
approach where optimal control applies really to the distributed variable z(ω, t) instead of
the pseudo-state variable x(t). The formulation of this new theory requires the fractional
calculus of variations to be revisited in order to apply the reformulated Euler Lagrange
equations to the optimal state control of fractional order systems.

The paper is composed of six sections. Section 1 is the introduction. Section 2 deals
with the materials and methods required in the understanding of the proposed theory.
Section 3 briefly recalls the modeling of fractional systems based on the infinite state
approach. The fractional calculus of variations is revisited with the frequency distributed
variable in Section 4. Optimal state control of fractional differential systems is derived
in Section 5. Finally, we intend to prove the feasibility of this new approach thanks to
the numerical implementation of optimal control equations with an academic example in
Section 6.

2. Materials and Methods
2.1. The Infinite State Approach

This article relies completely on the infinite state approach, which is an alterna-
tive to the conventional modeling of fractional order differential systems. Reading and
understanding this article requires knowledge of the basic principles of this technique,
essentially those related to the modeling with fractional integrators and the definition of
fractional energy.

The fundamental feature of this method is to transform any differential fractional
equation into a set of infinite dimensional integer order differential equations. Paradoxically,
it does not require extensive knowledge of the usual techniques of the fractional calculus.
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On the contrary, it requires knowledge of the fundamental principles of integer order
system theory and classical calculus of variations. Consequently, this methodology allows
the generalization of well established concepts to the fractional domain, however at the
price of managing infinite dimensional equations.

The practical implementation of this technique requires the frequency discretization
of the fractional integrator, i.e., its approximation by a finite dimension modal model
(Section 6).

All of these principles are briefly recalled in Section 3. However, a complete knowledge
of this approach requires to refer to the two volumes of the infinite state monograph [32].

2.2. Paper Organization

This paper mainly deals with the presentation of an original theory of fractional
optimal control.

The presentation of this theory is articulated around three sections:

• A recall of the basic principles of fractional system modeling based on the infinite
state approach (Section 3);

• The derivation of new fractional Euler Lagrange equations (Section 4);
• The application of these variational equations to the optimal state control of fractional

linear systems (Section 5).

The results presented in Sections 4 and 5 are essentially theoretical. Their practical
implementation relies on a frequency discretization of theoretical equations, i.e., on a modal
expression of the previous optimal control laws which are nothing other than the optimal
control of a large dimension integer order system (first part of Section 6).

We do not intend to propose a complete methodology covering all of the theoretical
and practical aspects of fractional optimal control. The objective of the second part of
Section 6 is only to present a validation of the proposed theory thanks to an academic ex-
ample and a brief comparison with the original approach proposed in [9] by Agrawal. The
numerical implementation of this example Equations (79)–(82) is based on the elementary
matrix algebra available in any mathematical solver.

3. Modeling of Fractional Systems
3.1. The Fractional Integrator

Though several definitions of fractional derivatives are available (Riemann-Liouville,
Caputo, Grünwald-Letnikov, . . . ), only one definition corresponds to Riemann-Liouville
fractional integration [7].

Consider a function v(t); its nth order fractional integral is expressed as:

x(t) = In(v(t)) =

t∫
0

µn−1

Γ(n)
v(t− µ) dµ = hn(t) ∗ v(t) (1)

where

hn(t) =
tn−1

Γ(n)
(2)

The fractional integration operator is defined as:

In(s) = L{hn(t)} =
1
sn (3)

such that
x(s) =

1
sn v(s) (4)
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Thanks to the inverse Laplace transform, we obtain the diffusive representation [20]
or the frequency distributed model [22,32] of the fractional integrator:

∂z(ω,t)
∂t = −ω z(ω, t) + v(t) ω ∈ [ 0 , +∞ [

x(t) =
∞∫
0

µn(ω) z(ω, t) dω

µn(ω) = sin nπ
π ω−n 0 < n < 1

(5)

Remarks: First Equation (5) represents the first order differential equation associated to
frequency or mode ω. Its Laplace transform corresponds to z(ω, s) = 1

s+ω v(s) where the
mode ω is the inverse of a time constant τ.

Second Equation (5) expresses that x(t) is the weighted sum of all the elementary
monochromatic contributions z(ω, t). Its Laplace transform

x(s) =

∞∫
0

µn(ω) z(ω, t) dω =

∞∫
0

µn(ω)

s + ω
dω v(s) =

1
sn v(s)

represents the infinite dimensional modal model of the fractional integrator, where the
modes ω are continuously distributed from 0 to infinity. It highlights the long memory
behavior of the fractional integrator, which is composed of very slow components ( ω → 0)
and very fast ones ( ω → ∞ ).

Note that first Equation (5) is independent of fractional order n whereas x(t) depends
indirectly on n through the weighting term µn(ω) (third Equation (5)).

This distributed model is the basic element of the infinite state approach [23].
Note that x(t), the output of the operator, is not a state variable like in the integer

order case: z(ω, t) is the true distributed state variable, whereas x(t) is only a pseudo
state variable.

3.2. Modeling with Fractional Integrators

Consider the elementary fractional differential equation (FDE):

Dn(x(t)) = f (x, u, t) (6)

The usual approach to fractional modeling is based on the choice of a derivative for
Dn(x(t)) : generally the Caputo derivative and its pseudo initial condition x(0) are used [7].
Unfortunately, x(0) is unable to predict the behavior of x(t) for t > 0 [14,22].

Thanks to the modeling technique based on the fractional integrator, it is no longer
necessary to choose a derivative, which becomes implicit. Moreover, the initial state z(ω, 0)
permits the prediction of x(t) for t > 0.

This modeling technique fundamentally corresponds to the graph of Figure 1 [22,23,32].
Note that this modeling technique is not specific to fractional calculus, it is used implicitly
by any simulation technique [23]:
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Figure 1. Modeling with a fractional integrator.

The input of the integrator is v(t) = Dn(x(t)) and its internal state z(ω, t) corresponds
to the system state. The graph of Figure 1 introduces the distributed model of the FDE;
the non integer order model has been replaced by an integer order distributed differential
system, allowing the use of the integer order system theory.

∂z(ω,t)
∂t = −ω z(ω, t) + f (x, u, t) ω ∈ [ 0 , +∞ [

x(t) =
∞∫
0

µn(ω) z(ω, t) dω

µn(ω) = sin nπ
π ω−n 0 < n < 1

(7)

Note that in contrary to Equation (5), the distributed modes ω are coupled in
Equation (7), due to v(t) = f (x, u, t): this is an essential feature of the modeling with
fractional integrators.

This modeling principle can be directly generalized to the case of N derivatives
FDEs [22,32]:

D
n
−(X
−
(t)) = F

−
(X
−

, u, t) (8)

z(ω, t) is replaced by Z
−
(ω, t)

n
−

T = [ n1 . . . ni . . . nN ] 0 < ni ≤ 1

µn
−
(ω) =

 µn1(ω) 0
µni(ω)

0 µnN(ω)

 (9)

and 
∂Z
−
(ω,t)

∂t = −ω Z
−
(ω, t) + F

−
(X
−

, u, t) ω ∈ [ 0 , +∞ [

X
−
(t) =

∞∫
0

[
µn
−
(ω)

]
Z
−
(ω, t) dω

(10)

3.3. Energy of a Fractional Order System

Within the usual fractional approach, 1
2 x2(t) is interpreted as an energy, like in the

integer order case.

Since x(t) =
∞∫
0

µn(ω) z(ω, t) dω, there can be an infinity of z(ω, t) values

(ω ∈ [0 , +∞ [) corresponding to x(t) = 0, although the system is not at rest (refer
to counter examples [22,32]).
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This means that 1
2 x2(t) = 1

2

[
∞∫
0

µn(ω) z(ω, t) dω

]2

does not represent an energy, only

a pseudo energy.
The fractional energy of the system is based on the distributed variable z(ω, t) :
1
2 z(ω, t)2 is the monochromatic energy density.
dE = 1

2 z(ω, t)2 dω is the energy in the frequency band dω and

E(t) =

∞∫
0

µn(ω) dE =
1
2

∞∫
0

µn(ω) z(ω, t)2 dω (11)

is the weighted fractional energy of the system [33].
Note that this energy can only be equal to 0 if z(ω, t) = 0 ∀ ω ∈ [ 0 , +∞ [, i.e., if the

system is really at rest.
This definition of energy has been validated by a physical interpretation [32,35].
Fractional energy has been used to derive system stability based on the Lyapunov

method [33,34]. It plays a fundamental role in fractional optimal control to define a
cost function.

Remark: The infinite state fundamentals have already been presented in several conference
and journal papers (see for example [19,22–25,33–35]). A two volume monograph [32]
provides a “state of the art” of this methodology and its application to different problems
arising in fractional system theory.

4. Basic Principles of Fractional Calculus of Variations
4.1. Fractional Lagrangian and Euler Conditions
4.1.1. Integer Order Case

Let x be a function of the t variable.
One defines the Lagrangian L(x,

.
x, t) and the functional (or cost function) [1,4]:

J =

T∫
0

L(x,
.
x, t) dt (12)

The objective of the calculus of variations is to determine the function x(t) t ∈ [0 , T]
which minimizes (or maximizes) the functional J, with the boundary conditions x(0)
and x(T).

The fundamental result is that the Lagrangian has to satisfy the Euler condition:

∂L(x,
.
x, t)

∂x
− d

dt

(
∂L(x,

.
x, t)

d
.
x

)
= 0 (13)

with the boundary conditions x(0) and x(T).
If the final state x(T) is free, we have to satisfy the transversality condition:(

∂L(x,
.
x, t

∂
.
x

)
T
= 0 (14)

4.1.2. Fractional Order Case

Within the usual fractional order approach, L(x,
.
x, t) is replaced by L(x, Dn(x), t).

Integration by parts, necessary to the derivation of Euler conditions, requires the definition
of left and right fractional derivatives [8,9].

However, there are two remaining problems. x(t) is no longer a state variable as in
the integer order case, only a pseudo state variable. Moreover, the choice L(t) = 1

2 x(t)2 is
no longer an energy, only a pseudo energy.
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These problems disappear with the infinite state approach where x(t) is replaced by
z(ω, t) and

.
x(t) by

.
z(ω, t).

Consequently, we define the monochromatic Lagrangian as l(ω,
.
z, z, t) and the weighted

fractional Lagrangian as:

L(z, z, t) =

∞∫
0

µn(ω) l(ω, z,
.
z, t) dω (15)

Finally, the functional J is defined as:

J =

T∫
0

L(z,
.
z, t) dt =

T∫
0

∞∫
0

µn(ω) l(ω, z,
.
z, t) dω dt (16)

Hence, we can pose the following optimality problem:

Consider the functional J and the function x(t) =
∞∫
0

µn(ω) z(ω, t) dω.

Determine the function x(t), i.e., the distributed state variable z(ω, t), which mini-
mizes (or maximizes) J with the boundary conditions z(ω, 0) and z(ω, T) ∀ ω ∈ [ 0,+∞[.

The demonstration is similar to the integer order case, since
.
z(ω, t) is an integer

order derivative.
Then,

dJ =
∞∫

0

µn(ω)

T∫
0

[
∂ l
∂ z

dz +
∂ l
∂

.
z

d
.
z
]

dt dω (17)

We can use conventional integration by parts technique, i.e.,

T∫
0

∂ l
∂

.
z

d
.
z dt =

[
∂ l
∂

.
z

dz
]T

0
−

T∫
0

∂

∂t

(
∂ l
∂

.
z

)
dz dt (18)

Since
[

∂ l
∂

.
z

dz
]T

0
= ∂ l

∂
.
z

dz(ω, T) − ∂ l
∂

.
z

dz(ω, 0) = 0

because
{

dz(ω, 0) = 0
dz(ω, T) = 0

∀ω ∈ [ 0 , +∞ [

we get dJ =
∞∫
0

µn(ω)
T∫
0

[
∂ l
∂ z −

∂
∂ t

[
∂ l
∂

.
z

]]
dz dt dω .

The optimality condition dJ = 0 is satisfied if:

∂ l
∂ z
− ∂

∂ t

[
∂ l
∂

.
z

]
= 0 ∀ ω ∈ [ 0 , +∞ [ (19)

with the boundary conditions
{

z(ω, 0)
z(ω, T)

∀ω ∈ [ 0 , +∞ [

Remark 1: The above condition is the monochromatic Euler condition.

Since L(z, z, t) =
∞∫
0

µn(ω) l(ω, z,
.
z, t) dω we can write for the fractional Lagrangian

∂ L(z, z, t)
∂ z

− ∂

∂ t

[
∂ L(z,

.
z, t)

∂
.
z

]
=

∞∫
0

µn(ω)

[
∂ l
∂ z
− ∂

∂ t

[
∂ l
∂

.
z

]]
dω = 0 (20)

This means that this fractional Euler condition is the frequency integral form of the
previous monochromatic Euler condition.
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Remark 2: The transversality condition corresponds to z(ω, 0) specified and z(ω, T) free.
In the integration by parts

∂ l
∂

.
z

dz(ω, T) = 0 ∀ ω ∈ [ 0 , +∞ [ (21)

If
[

∂ l
∂

.
z

]
T
= 0 ∀ ω (22)

Then the optimality monochromatic Euler condition is:

∂ l
∂ z
− ∂

∂ t

[
∂ l
∂

.
z

]
= 0 ∀ω ∈ [ 0 , +∞ [ (23)

with the boundary conditions

{
z(ω, 0)[

∂ l
∂

.
z

]
T
= 0 ∀ω ∈ [ 0 , +∞ [ and for the fractional

Lagrangian:
∂ L
∂ z
− ∂

∂ t

[
∂ L
∂

.
z

]
= 0 (24)

with the boundary conditions z(ω, 0) ∀ω and
∞∫
0

µn(ω)
[

∂ l
∂

.
z

]
T

dω = 0, i.e.,

[
∂ L
∂

.
z

]
T
= 0 (25)

Remark 3: We can note that the fractional Euler condition, within the infinite state approach,
is very similar to the integer order case (Equation (13)) where the state variable x(t) is
replaced by the distributed variable z(ω, t) (Equation (24)). However, there is an important
difference; whereas Equation (13) is a classical equation, Equation (24) is a frequency
distributed equation, where the monochromatic equation, corresponding to the mode ω is
Equation (19).

4.2. Fractional Lagrange Multiplier
4.2.1. Integer Order Case

Consider the functional J =
T∫
0

L(x,
.
x, u, t) dt where x(t) satisfies the Ordinary Differ-

ential Equation (ODE):
.
x(t) = f (x, u, t) (26)

The objective is to determine û(t) which minimizes (or maximizes) the functional.
The ODE equation is interpreted as an equality constraint

.
x(t) − f (x, u, t) = 0 and

an augmented function M(x,
.
x, u, t) is defined as:

M(x,
.
x, u, t) = L(x,

.
x, u, t) − λ(t)

( .
x − f (x, u, t)

)
(27)

where λ(t) is a Lagrange multiplier.
M(x,

.
x, u, t) has to satisfy the Euler conditions with respect to x(t) and u(t):{

∂ L
∂ x + λ(t) ∂ f

∂ x +
.
λ(t) = 0

∂ L
∂ u + λ(t) ∂ f

∂ u = 0
(28)

with
.
x(t) = f (x, u, t) and the boundary conditions x(0) and x(T).
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If the final state x(T) is not specified, the transversality condition has to be satisfied:[
∂ M
∂

.
x

]
T
= − λ(T) = 0 (29)

4.2.2. Fractional Order Case

Consider the functional J =
T∫
0

L(z,
.
z, u, t) dt where x(t) satisfies the FDE

Dn(x(t)) = f (x, u, t) (30)

i.e., the frequency distributed differential system:
∂z(ω,t)

∂t = −ω z(ω, t) + f (x, u, t) ω ∈ [ 0 , +∞ [

x(t) =
∞∫
0

µn(ω) z(ω, t) dω

µn(ω) = sin nπ
π ω−n 0 < n < 1

(31)

with the boundary conditions
{

z(ω, 0)
z(ω, T)

∀ ω ∈ [ 0 , +∞ [.

In order to determine the optimal excitation û(t) which minimizes (or maximizes) the
functional J, we have to define the frequency distributed Lagrange multipliers λ(ω, t).

Let Dn(x(t)) − f (x, u, t) = 0 be an equality constraint which can be also expressed as:

∂z(ω, t)
∂ t

− g(z, x, u, t) = 0 ω ∈ [ 0 , +∞ [ (32)

where g(z, x, u, t) = −ω z(ω, t) + f (x, u, t).
Then, we can define the augmented function M(z,

.
z, u, t) such that:

M(z,
.
z, u, t) = L(z,

.
z, u, t) −

∞∫
0

λ(ω, t)
[

∂z(ω, t)
∂ t

− g(z, x, u, t)
]

dω (33)

As in the case of the fractional Lagrangian, the Lagrange multipliers have to satisfy
an integral relation with respect to ω. Note that the second term is not weighted by
µn(ω), because of u(t). This particularity will be explained by the fractional cost function
(Equation (41)) which is the sum of a fractional order term and an integer order one
corresponding to u(t).

Then, as in the integer order case, the function M(z,
.
z, u, t) has to satisfy the Euler

conditions with respect to z(ω, t) and u(t):
∂M
∂ z −

∂
∂ t

[
∂M
∂

.
z

]
= 0

∂M
∂ u −

∂
∂ t

[
∂M
∂

.
u

]
= 0

(34)

According to the definition of M(z,
.
z, u, t), we can write:

∂ M
∂z

=
∂ L
∂z

+

∞∫
0

λ(ω, t)
∂ g
∂z

dω

and
∂ M
∂

.
z

= −
∞∫

0

λ(ω, t) dω
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i.e., the first Euler condition is expressed as:

∂ L
∂z

+

∞∫
0

λ(ω, t)
∂ g
∂z

dω +

∞∫
0

∂ λ(ω, t)
∂ t

dω = 0 (35)

Moreover:
∂ M
∂u

=
∂ L
∂u

+

∞∫
0

λ(ω, t)
∂ g
∂u

dω

and ∂ M
∂

.
u

= 0 since M(z,
.
z, u, t) is independent of

.
u(t).

Consequently, the second Euler condition is expressed as:

∂ L
∂u

+

∞∫
0

λ(ω, t)
∂ g
∂u

dω = 0 (36)

Conclusion:
The optimal excitation û(t) has to satisfy the two Euler conditions (35) and (36)

with the boundary conditions
{

z(ω, 0)
z(ω, T)

∀ ω ∈ [ 0 , +∞ [ and the FDE equation

Dn(x(t)) = f (x, u, t).
If the final state z(ω, T) is not specified, the distributed Lagrange multiplier has to

satisfy the transversality condition:

[
∂ M
∂

.
z

]
T
= −

∞∫
0

λ(ω, T) dω = 0 (37)

The monochromatic transversality condition is derived by differentiation of the previ-
ous condition (with respect to ω):

λ(ω, T) = 0 ∀ω ∈ [ 0 ,+∞ [ (38)

As previously with the Euler condition, the Euler Lagrange Equations (35) and (36) are
again very similar to the integer order case (Equation (28)), where the Lagrange multiplier
λ(t) has been replaced by a distributed Lagrange multiplier λ(ω, t). Consequently, the
fractional adjoint system is a frequency distributed system, as will be highlighted in the
next section.

5. Quadratic Optimal Control of a Fractional Linear System
5.1. Quadratic Optimal Control of the Elementary System

Considering the complexity of the general case with N non-commensurate order
derivatives, we present in a first step the one derivative elementary case, which is never-
theless an infinite dimensional quadratic optimal control problem. Moreover, this simple
case will permit attention to be paid to the distributed adjoint system.

Consider the time invariant FDE

Dn(x(t)) = a x(t) + bu(t) 0 < n < 1 (39)

which is equivalent to the frequency distributed differential system:
∂z(ω,t)

∂t = −ω z(ω, t) + ax(t) + bu(t) ω ∈ [ 0 , +∞ [

x(t) =
∞∫
0

µn(ω) z(ω, t) dω

µn(ω) = sin nπ
π ω−n 0 < n < 1

(40)
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Remember that in the integer order case, with
.
x(t) = a x(t) + bu(t) , the functional J

is defined as J =
T∫
0

L(x,
.
z, u, t) dt where L(x,

.
z, u, t) = 1

2 x(t)2 + 1
2 u(t)2.

We have previously highlighted that 1
2 x(t)2 cannot represent a true energy in the

fractional order case. Thus, we have to define the fractional Lagrangian as:

L(z,
.
z, u, t) =

1
2

∞∫
0

µn(ω) z2(ω, t) dω +
1
2

u2(t) (41)

and the functional J as:

J =

T∫
0

L(z,
.
z, u, t) dt (42)

The objective is to determine the optimal excitation û(t) t ∈ [ 0 , T] which minimizes

the functional J with the boundary conditions
{

z(ω, 0)
z(ω, T)

∀ ω ∈ [ 0 , +∞ [.

This problem is solved using the distributed frequency Lagrange multiplier λ(ω, t)
and an augmented function M(z,

.
z, u, t):

M(z,
.
z, u, t) = L(z,

.
z, u, t) −

∞∫
0

λ(ω, t)
[

∂z(ω, t)
∂ t

− g(z, u, t)
]

dω (43)

where g(z, u, t) = −ω z(ω, t) + ax(t) + bu(t) (44)

M(z,
.
z, u, t) has to satisfy the two Euler conditions:

∂M
∂ z −

∂
∂ t

[
∂M
∂

.
z

]
= 0

∂M
∂ u −

∂
∂ t

[
∂M
∂

.
u

]
= 0

(45)

Remark: Equation (45) requires differentiation with respect to the distributed
variable z(ω, t):

∂

∂ z

∞∫
0

λ(ω, t)
[

∂ z(ω, t)
∂ t

− ax(t) − bu(t)
]

dω

Note that x(t) =
∞∫
0

µn(ξ) z(ξ, t) dξ: in this weighted integral, x(t) depends on the

mode ω, but also all the other modes due to the coupling introduced by the term a x(t) in
Equation (44). Consequently, it is important to pay attention to this differentiation which is
discussed in the corresponding lemma of Appendix A. Consequently, with A(t) = a and
B
−
(t) = b, we can write:

∂ M
∂z = ∂ L

∂z −
∂

∂ z

∞∫
0

λ(ω, t)
[

∂ z(ω,t)
∂ t − ax(t) − bu(t)

]
dω

= ∂ L
∂z −

∞∫
0

[
ωλ(ω, t) − a

∞∫
0

µn(ξ) λ(ξ, t) dξ

]
dω
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Since ∂L(z,
.
z,u,t)

∂ z =
∞∫
0

µn(ω) z(ω, t) dω and ∂M(z,
.
z,u,t)

∂
.
z

= −
∞∫
0

λ(ω, t) dω, the first Euler

condition can be expressed as:

∞∫
0

µn(ω) z(ω, t) dω −
∞∫

0

ωλ(ω, t) − a
∞∫

0

µn(ξ) λ(ξ, t) dξ

 dω +
∂

∂ t

∞∫
0

λ(ω, t) dω = 0

i.e.,

∂

∂ t

∞∫
0

λ(ω, t) dω =

∞∫
0

ωλ(ω, t) − a
∞∫

0

µn(ξ) λ(ξ, t) dξ

 dω −
∞∫

0

µn(ω) z(ω, t) dω (46)

This is the integral form (with respect to ω) of the adjoint differential equation related
to λ(ω, t). We obtain the frequency distributed equation of the adjoint system by frequency
differentiation of the previous equation, i.e.,:

∂λ(ω, t)
∂ t

= ωλ(ω, t) − a
∞∫

0

µn(ξ) λ(ξ, t) dξ − µn(ω) z(ω, t) (47)

Remark: Equation (47) is the monochromatic differential equation of the adjoint system
that we can compare to the first equation of Equation (44): note that this equation is
unstable, like in the integer order case. Moreover, for the large values of ω, the mode
λ(ω, t) quickly diverges, which is certainly a major difficulty for a practical implementation
of fractional optimal control.

Since ∂L(z,
.
z, u,t)

∂ u = u and ∂L(z,
.
z,u,t)

∂
.
u

= 0 the second Euler condition is expressed as:

u(t) + b
∞∫

0

λ(ω, t) dω = 0 (48)

This equation provides the optimal excitation û(t).

Conclusion:

The functional J =
T∫
0

[
1
2

∞∫
0

µn(ω) z2(ω, t) dω + 1
2 u2(t)

]
dt is minimal if z(ω, t) and

u(t) satisfy the optimality conditions:

∂λ(ω,t)
∂ t = ωλ(ω, t) − a

∞∫
0

µn(ξ) λ(ξ, t) dξ − µn(ω) z(ω, t)

û(t) = − b
∞∫
0

λ(ω, t) dω

where z(ω, t) satisfies the frequency distributed differential system (40) with the boundary

conditions
{

z(ω, 0)
z(ω, T)

∀ ω ∈ [ 0 , +∞ [

Remark: If the final state z(ω, T) is not specified, we have to satisfy the transversality
condition: [

∂ M
∂

.
z

]
T
= −

∞∫
0

λ(ω, T) dω = 0 (49)
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Frequency differentiation of this condition provides the monochromatic transversality
condition:

λ(ω, T) = 0 ∀ω ∈ [ 0 ,+∞ [ (50)

5.2. Optimal Control of the Generalized Linear System

Consider the generalized time variant fractional linear system:

D
n
−(X
−
(t)) = A(t) X

−
(t) + B

−
(t) u(t) (51)

and the functional J =
T∫
0

L(Z
−

,
.
Z
−

, u, t) dt

where the fractional Lagrangian is defined as:

L(Z
−

,
.
Z
−

, u, t) =
1
2

∞∫
0

Z
−
(ω, t)T [R, µ] Z

−
(ω, t) dω +

1
2

u2(t) (52)

Thanks to the frequency distributed representation, the system (51) can be expressed as:
∂Z
−

∂ t (ω, t) = −ωZ
−
(ω, t) + A(t) X

−
(t) + B

−
(t) u(t) = G

−
(Z
−

, u, t)

X
−
(t) =

∞∫
0

[
µn
−
(ω)

]
Z
−
(ω, t) dω

(53)

with:

µn
−
(ω) =

 µn1(ω) 0
µni(ω)

0 µnN(ω)

 µni(ω) =
sin niπ

π
ω−n i (54)

and

[R, µ] =

 R1 µn1(ω) 0
Ri µni(ω)

0 RN µnN(ω)

 Ri > 0 (55)

dim n
−

= dim X
−

= dim Z
−

= N 0 < ni ≤ 1

The objective is to determine the optimal excitation û(t) t ∈ [0 , T] minimizing the

functional J with the boundary conditions

 Z
−
(ω, 0)

Z
−
(ω, T)

∀ ω ∈ [ 0 , +∞ [

As with the previous model, we have to define N frequency distributed Lagrange
multipliers λ

−
(ω, t) such that:

M(Z
−

,
.
Z
−

, u, t) = L(Z
−

,
.
Z
−

, u, t) −
∞∫

0

λ
−
(ω, t)T

∂Z
−
(ω, t)

∂ t
− G
−
(Z
−

, u, t)

 dω (56)

M(Z
−

,
.
Z
−

, u, t) has to satisfy the two Euler conditions with respect to Z
−
(ω, t) and u(t):


∂M
∂ Z
−
− ∂

∂ t

[
∂M
∂

.
Z
−

]
= 0

∂M
∂ u −

∂
∂ t

[
∂M
∂

.
u

]
= 0

(57)
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Since:

∂ M
∂Z
−

=
∂ L
∂Z
−
− ∂

∂ Z
−

∞∫
0

λ
−
(ω, t)T

∂ Z
−
(ω, t)

∂t
− G
−
(Z
−

, u, t)

 dω

∂ M

∂
.
Z
−

= −
∞∫

0

λ
−
(ω, t) dω

and
∂ L
∂Z
−

=

∞∫
0

[R, µ] Z
−
(ω, t) dω

we can write, thanks to the differentiation lemma of Appendix A:

∂ L
∂Z
−
− ∂

∂ Z
−

∞∫
0

λ
−
(ω, t)T

[
∂ Z
−
(ω,t)

∂t − G
−
(Z
−

, u, t)
]

dω

= ∂ L
∂Z
−
−

∞∫
0

[
ω λ
−
(ω, t) − A(t)

∞∫
0

[
µn
−

]
λ
−
(ξ, t) dξ

]
dω

(58)

Then the first Euler condition can be expressed as:
∞∫

0

[R, µ] Z
−
(ω, t) dω −

∞∫
0

ωλ
−
(ω, t) − A(t)

∞∫
0

[
µn
−

]
λ
−
(ξ, t) dξ

 dω +
∂

∂ t

∞∫
0

λ
−
(ω, t) dω = 0 (59)

Frequency differentiation of this equation provides the frequency distributed model
of the adjoint system:

∂λ
−
(ω, t)

∂ t
= ωλ

−
(ω, t) − A(t)

∞∫
0

[
µn
−

]
λ(ξ, t) dξ − [R, µ] Z

−
(ω, t) (60)

Moreover, since ∂L
∂ u = u and ∂L

∂
.
u
= 0 the second Euler condition is expressed as:

u(t) +

∞∫
0

λ
−
(ω, t)T B

−
(t) dω = 0 (61)

This equation provides the optimal excitation û(t) with the boundary conditions: Z
−
(ω, 0)

Z
−
(ω, T)

∀ ω ∈ [ 0 , +∞ [

Remark: If the final state Z
−
(ω, T) is not specified, the transversality condition has to

be satisfied: ∂ M

∂
.
Z
−


T

= −
∞∫

0

λ
−
(ω, T) dω = 0 (62)

Frequency differentiation of this condition provides the monochromatic transversality
condition:

λ
−
(ω, T) = 0 ∀ ω ∈ [ 0 ,+∞ [ (63)
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6. Implementation of a Numerical Solution
6.1. Frequency Discretized Model of the Fractional Integrator

Since the optimal solutions derived in Section 5 are based on frequency distributed
equations, they are not directly usable. Their practical implementation requires the approx-
imation of these distributed equations by finite dimension equations.

Hence, the solution is to use the finite dimension approximation or frequency dis-
cretized model of the fractional integrator.

Several techniques can be used to perform this frequency discretization. However, the
success of our approach is based on an approximate model which retains an infinite gain
integral action at ω = 0 and a fractional behavior in the frequency band [ωmin ; ωmax ]. This
approximation has already been described in several papers, such as [23] and particularly
in [32].

Thus, we get the frequency discretized fractional integrator:
dzj(t)

d t = −ωjzj(t) + v(t) j = 0 to J

x(t) =
J

∑
j=0

cj zj(t)
(64)

Note that for j = 0 ω0 = 0 and dz0(t)
d t = v(t) which is the model of an integer

order integrator.
For more information, refer to [22,32].

6.2. Frequency Discretized Model of the Elementary System

Our objective is to determine the optimal excitation û(t) for the time invariant system:

Dn(x(t)) = a x(t) + b u(t) (65)

Its frequency discretization is based on the previous integrator model where
v(t) = a x(t) + b u(t): 

dzj(t)
d t = −ωjzj(t) + a x(t) + b u(t)

x(t) =
J

∑
j=0

cj zj(t)
(66)

Let us define the following vectors:

Z
−
(t)T =

[
z0(t) . . . zj(t) . . . zJ(t)

]
C
− I

=
[
c0 . . . cj . . . cJ

] (67)

then x(t) = C
− I

Z
−
(t)

Moreover:

AI =


0 0
−ω1

−ωj
0 −ωJ

 and B
−I

=


1
1
1
1

 (68)

Then, the differential system (66) is represented by:

dZ
−
(t)

d t = AI Z
−
(t) + a B

−I
C
− I

Z
−
(t) + b B

−I
u(t)

= Asyst Z
−
(t) + b B

−I
u(t)

= g
−
(Z
−

, u, t)

(69)
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with

 Asyst = AI + a B
−I

C
− I

dim Z
−

= J + 1 dim Asyst = (J + 1) (J + 1)

Remark: Note that the elementary fractional system (65) has been transformed into an
equivalent large dimension (J + 1) integer order system (69). This large dimension is one
of the difficulties that the user has to encounter with the practical implementation of the
infinite state approach.

6.3. Finite Dimension Optimal Solution

The discretization of the functional J =
T∫
0

L(z,
.
z, u, t) dt and of the Lagrangian

L(z,
.
z, u, t) = 1

2

∞∫
0

µn(ω) z(ω, t)2 dω + 1
2 u2(t) provides

L(Z
−

,
.
Z
−

, u, t) =
1
2

J

∑
j=0

cjzj(t)
2 +

1
2

u2(t) (70)

Let [LI ] =


c0 0

c1
cj

0 cJ


Then L(Z

−
,

.
Z
−

, u, t) =
1
2

Z
−
(t)T [LI ] Z

−
(t) +

1
2

u2(t) (71)

The initial optimal problem has been transformed into a classical integer order problem
with, nevertheless, a large dimension J + 1.

Consider the Lagrange multipliers:

λ
−
(t)T =

[
λ0(t) . . . λj(t) . . . λJ(t)

]
(72)

and the augmented function:

M(Z
−

,
.
Z
−

, u, t) = L(Z
−

,
.
Z
−

, u, t) − λ
−
(t)T

(
.
Z
−
(t) − g

−
(Z
−

, u, t)
)

(73)

where M(Z
−

,
.
Z
−

, u, t) satisfies the Euler conditions:


∂M
∂ Z
−
− ∂

∂ t

[
∂M
∂

.
Z
−

]
= 0

∂M
∂ u −

∂
∂ t

[
∂M
∂

.
u

]
= 0

(74)

Since:

∂ L
∂ Z
−

= [LI ] Z
−
(t)

∂

∂ Z
−

(
.
Z
−
(t) − g

−
(Z
−

, u, t)
)

= − Asyst
∂

∂
.
Z
−

(
.
Z
−
(t) − g

−
(Z
−

, u, t)
)

= [I]

The first Euler condition provides the differential equation of the adjoint system:

dλ
−
(t)

d t
= − Asyst

T λ
−
(t) − [LI ] Z

−
(t) (75)
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The second Euler condition expresses the optimal excitation:

û(t) = − b λ
−
(t)T B

−I
= −b

J

∑
j=0

λj(t) (76)

Conclusion:
The optimal excitation û(t) is the solution of the differential system:

dZ
−
(t)

d t = Asyst Z
−
(t) + b B

−I
û(t)

dλ
−
(t)

d t = − Asyst
T λ
−
(t) − [LI ] Z

−
(t)

û(t) = − b λ
−
(t)T B

−I

(77)

with the boundary conditions:

 Z
−
(0)

Z
−
(T)

If the final state Z
−
(t) is not specified, it is replaced by the transversality condition

λ
−
(T) = 0 (78)

Remark: Since the frequency elementary system (65) has been replaced by an approximate
integer order differential system (69), the solution of the fractional optimal control problem
is equivalent to the solution of a large dimension integer order optimal control problem (77).

This result highlights the fact that fractional optimal control requires the optimal
control of all the components of z(ω, t), contrary to the usual fractional approach, which
considers only the pseudo-state x(t).

6.4. Numerical Computation of the Optimal Solution

The numerical implementation of the optimal solution (77) would require sophisti-
cated numerical techniques, which are out of the scope of this paper. Note that the usual
numerical algorithms cannot be directly used because even with an elementary system
like (65), the dimension of (77) is 2× (J + 1) with J >> 1. Moreover, since the modes ωj
are distributed on a large spectrum, the problem (77) is very difficult to solve, and it will
require adapted algorithms.

In fact, our purpose in the paper is less ambitious. In a first step, we intend to
demonstrate that a numerical implementation is feasible, even with an unrealistic approach.

The previous system (77) can be expressed as:

d
d t

 Z
−
(t)

λ
−
(t)

 =

[
Asyst − b B

−I
B
−I

T

− [LI ] − Asyst
T

]  Z
−
(t)

λ
−
(t)

 (79)

Let Y
−
(t) =

 Z
−
(t)

λ
−
(t)

 A =

[
Asyst − b B

−I
B
−I

T

− [LI ] − Asyst
T

]
Then d

d t Y
−
(t) = A Y

−
(t)

Since Equation (79) is a linear system, we can use the matrix exponential eA t, i.e.,
at t = T:

Y
−
(T) = eA T Y

−
(0) (refer to [32] volume 2 chapter 9 for more details) and reciprocally:

Y
−
(0) = e−A T Y

−
(T) =

[
M11 M12
M21 M22

]
Y
−
(T) (80)
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The boundary conditions correspond to
{

Z
−
(0) , Z

−
(T)
}

and
{

λ
−
(0) , λ

−
(T)
}

.

Moreover, the computation of the optimal solution requires the determination of λ
−
(0).

For the case of a free final state, the objective is to determine λ
−
(0) with Z

−
(0) and λ

−
(T).

The final state Z
−
(T) is free, thus according to (80):

Z
−
(T) = M11

−1
(

Z
−
(0) − M12 λ

−
(T)
)

(81)

Since λ
−
(T) = 0 we get:

λ
−
(0) = M21 M11

−1 Z
−
(0) (82)

Remark: The computation of λ
−
(0) seems to be a trivial problem relying on a simple

matrix inversion.
In fact, the computation of M11

−1 is really a difficult problem.
It is necessary to look at the dimension of matrix Asyst since J has to be a large value.

Moreover, the modes ωj of the fractional integrator are spread on a wide range from ωmin
to ωmax (with ω0 = 0) which have to satisfy the constraints ωmin → 0 and ωmax → ∞ .

Consequently, the matrix M11 is very ill conditioned. This problem has already been
highlighted in [32].

6.5. Simulation Results

As noted previously, the objective of fractional optimal control is to really control all
the components zj(t) of x(t). Since the optimal solution û(t) is obtained with Equation (76),
we have also to compute all the components λj(t) of the adjoint system.

Thus, the visualization of the control problem requires all of the components zj(t) (for
the system) and λj(t) (for the adjoint system) to be taken into account.

Practically, we represent the discretized distribution of zj(t) and λj(t) at the instants
t = 0 and t = T. Moreover, it is important to represent the dynamics of zj(t) and λj(t):
we have decided to only represent the dynamics corresponding to j = 0 , 10 , 20. Though
the major objective is to compute the optimal components zj(t), it is obviously interesting
to also represent the corresponding pseudo-state x(t), which is the weighted sum of the
optimal components zj(t).

The optimal excitation û(t) is calculated for the system Dn(x(t)) = a x(t) + b u(t)
a = −1 b = 1 with different values of the fractional order n = { 0.5 ; 0.6 ; 0.7 ; 0.8 ; 0, 9 }
as well as for the integer order case n = 1.

Numerical simulations are performed with the following parameters (refer to [22,32]
for more information related to the significance of these parameters):

Te = 10−3s T = 1.5 s J = Ncel = 20 ωmin = 10−7 rd/s ωmax = 10 rd/s.

As noted previously, matrix inversion of M11 is a tough problem; a compromise has
been necessary between the values of a, Ncel, ωmin and ωmax.

Initial state Z
−
(0) is chosen arbitrarily: zj(0) = 1 ∀ j, i.e., x(0) =

J
∑

j=0
cj zj(0).

In order to compare the fractional optimal control to the integer order one, Figure 2
presents the graphs of x(t) and û(t) for n = 1 (x(0) = 1 ).



Fractal Fract. 2021, 5, 29 19 of 23

Figure 2. Integer order optimal control.

The graphs of zj(t) and λj(t) are displayed respectively on Figures 3 and 4 for
n = 0.5 j = 0 j = 10 j = 20.

Figure 3. Distributed z(ω, t) states.

Figure 4. Distributed λ(ω, t) states.

We can note that the graphs of zj(t) for j = 0 and j = 10 are very close, which is
also verified in the graph of Figure 6 for n = 0.5: since zj(0) = 1 ∀ j and according to the
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dynamics of the modes ωj for j = 0 and j = 10, the graphs are necessarily very close for
t ∈ [ 0 , T ].

As imposed by the transversality condition (Equation (78)) we can verify that the
different graphs of the Lagrange multipliers converge to 0 for t = T on Figure 4, whereas
zj(T) 6= 0 ∀ j in Figure 3, as expected. This is an illustration of the fractional state control
objective as stated in [32] and highlighted in the introduction. Indeed, the transversality
condition implies that all of the components (λ(ω, t) ∀ω) of the adjoint system converge
to 0 for t = T. Of course, another objective would be to consider the imposed final state
problem, i.e., z(ω, t) = z(ω, T) ∀ ω , which is a classical optimal control problem.

The initial values λj(0), computed by matrix inversion (Equation (82)), are displayed
in Figure 5, for j varying from j = 0 to J = Ncel, for the different values of n. We can note
in Figure 4 that the graphs of λj(t) are initialized by the corresponding values of λj(0) for
n = 0.5.

Figure 5. Distributed λ(ω, 0) initial state.

The final values zj(T) are displayed on Figure 6 for the different values of n: again,
we can note as previously for n = 0.5 that the graphs of Figure 3 correspond to zj(T).

Figure 6. Distributed z(ω, T) final free state.

Finally, the graphs of x(t) and û(t) are displayed respectively in Figures 7 and 8 for the
different values of n. We can note that these graphs (for increasing values of n) converge to
the corresponding ones of Figure 2 (corresponding to n = 1).
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Figure 7. Optimal pseudo-state x(t).

Figure 8. Optimal excitation û(t).

We can also compare the graphs of x(t) (Figure 3) and û(t) (Figure 4) of the Agrawal
paper [9], on page 333, with those obtained by the present approach; we note an important
difference between the two methods (particularly for n = 0.5), since the Agrawal technique
is based on the pseudo-state variable x(t).

7. Conclusions

Based on the infinite state approach, an alternative theory has been proposed to solve
the fractional optimal control problem. The distributed model of the fractional integrator
permits to transform any fractional differential equation into a set of infinite dimension
integer order differential equations. Contrary to the usual fractional approach, this original
formulation is intended to control all the components of the distributed state, instead of
the pseudo-state.

The paper develops this new theory in two parts, the first, essentially theoretical part
deals with the distributed Euler-Lagrange equations and the optimal control of linear frac-
tional systems, whereas the second part proposes the basics of its practical implementation.
A numerical example has demonstrated the feasibility of this alternative theory, but it has
also highlighted the difficulties in its practical implementation.

Hence, the solution of many remaining problems will have to be the objective of
further research work. The present theory will have to be generalized to the fractional
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optimal control of nonlinear systems. However, a major research effort will be necessary to
provide specific and efficient numerical algorithms for realistic implementation.
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Appendix A

Lemma: Differentiation of a Frequency Distributed Model

Consider the generalized FDE:

∂Z
−

∂ t (ω, t) = −ωZ
−
(ω, t) + A(t) X

−
(t) + B

−
(t) u(t)

= −ωZ
−
(ω, t) + A(t)

∞∫
0

[
µn
−
(ξ)

]
Z
−
(ξ, t) dξ + B

−
(t) u(t)

(A1)

Let us define the following matrix (refer to [32], volume 1 chapter 9 for more details):

H(ω, ξ) = −ω δ(ξ −ω) + A(t)
[

µn
−
(ξ)

]
(A2)

Then, we can write:

∂Z
−

∂ t
(ω, t) =

∞∫
0

H(ω, ξ) Z
−
(ξ, t) d ξ + B

−
(t) u(t)

Thus:
∂

∂ Z
−

∞∫
0

λ
−
(ω, t)T

[
∞∫
0

H(ω, ξ) Z
−
(ξ, t) d ξ + B

−
(t)u(t)

]
dω

= ∂
∂ Z
−

∞∫
0

λ
−
(ω, t)T

∞∫
0

H(ω, ξ) Z
−
(ξ, t) d ξ dω

= ∂
∂ Z
−

∞∫
0

Z
−
(ω, t)T

∞∫
0

H(ω, ξ) λ
−
(ξ, t) d ξ dω

=
∞∫
0

∞∫
0

H(ω, ξ) λ
−
(ξ, t) d ξ dω

=
∞∫
0

[
−ωλ

−
(ω, t) + A(t)

∞∫
0

[
µn
−
(ξ)

]
λ
−
(ξ, t) dξ

]
dω

Consequently:

∂
∂ Z
−

∞∫
0

λ
−
(ω, t)T

[
∂ Z
−
(ω,t)

∂ t + ωZ
−
(ω, t)− A(t) X

−
(t) − B

−
(t) u(t)

]
dω

=
∞∫
0

[
ωλ
−
(ω, t) − A(t)

∞∫
0

[
µn
−
(ξ)

]
λ
−
(ξ, t) dξ

]
dω

(A3)
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