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Abstract: The Koch curve was first described by the Swedish mathematician Helge von Koch
in 1904 as an example of a continuous but nowhere differentiable curve. Such functions are now
characterised as fractal since their graphs are in general fractal sets. Furthermore, it can be obtained
as the graph of an appropriately chosen iterated function system. On the other hand, a fractal
interpolation function can be seen as a special case of an iterated function system thus maintaining
all of its characteristics. Fractal interpolation functions are continuous functions that can be used
to model continuous signals. An in-depth discussion on the theory of affine fractal interpolation
functions generating the Koch Curve by using fractal analysis as well as its recent development
including some of the research made by the authors is provided. We ensure that the graph of fractal
interpolation functions on the Koch Curve are attractors of an iterated function system constructed
by non-constant harmonic functions.

Keywords: fractal functions; harmonic functions; Hölder continuity; interpolation; Koch Curve

1. Introduction

The Koch curve appeared in a 1904 paper entitled “On a Continuous Curve Without
Tangents, Constructible from Elementary Geometry” by the Swedish mathematician Helge
von Koch. The Sierpiński gasket was introduced in 1915 by the Polish mathematician
W. Sierpiński, about forty years after the discovery of the Cantor set. An interval, the Sier-
pinski Gasket, or SG for short, and the Koch Curve, or KC for short, are connected typical
self-similar sets (see [1]). The functions or the curves that are continuous but nowhere
differentiable are now called fractal functions or fractal curves; see [2], p. 46. An interval is
not a fractal curve, but it is self-similar (see [3]). Although a fractal interpolation function,
or FIF for short, is usually defined on line segments, there is insufficient discussion of a FIF
defined on fractal curves like the SG or the KC.

In [4] the authors showed how one can construct space-filling curves by using hidden
variable linear fractal interpolation functions. These curves resulted from the projection of
the attractor of an iterated function system, or IFS for short. In [5] the authors showed how
the theory of linear fractal interpolation functions together with the Deterministic Iteration
Algorithm can be used to construct space-filling curves. Interpreting the polynomials of
degree 1 as classical harmonic functions on an interval and replacing them on the KC by
harmonic functions, the authors of [6] obtained an analogue of Theorem 2.2. Chapter VI
of [7] for the KC. The authors of [8] showed how it is possible to generalise a fractal
interpolation problem to certain post critically finite, or PCF for short, compact sets in Rn by
using harmonic functions to solve this fractal interpolation problem. Since non-constant
harmonic functions on KC are not Lipschitz continuous (see [8]), to prove the uniqueness of
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invariant sets of IFSs on KC is not possible by using the classic fractal interpolation method.
It is well known that fractal analysis is assessing fractal characteristics of data. The results
of [8] and [6] enable us to study Hölder continuity of non-constant harmonic functions on
KC and inspire us to ensure that graphs of FIFs generated on KC by non-constant harmonic
functions of fractal analysis are attractors of some IFSs.

Fractal interpolation functions generated on some special affine fractal interpolation
curve by harmonic functions of fractal analysis are given in [9]. The authors did not give
all the details about the KC such as new and suitable IFS constructing KC, something
very suitable in the proof of Hölder continuity of non-constant harmonic functions on KC.
Although an affine fractal interpolation curve can be seen as the graph of some continuous
function, the KC is not the graph of a continuous function but only a continuous image
(more precisely, a continuous map) from a segment of a line to R3. However, it is possible
to ensure that graphs of fractal interpolation functions on the KC are attractors of iterated
function systems. So, fractal interpolation curves of R3 generated on KC are much more
important than the one on affine fractal interpolation curves. We should use another IFS
for the generation of the KC because the proofs of existence and uniqueness of attractor of
an IFS constructed on KC are dependent on the first point (or end point) of each curve. For
this reason, there is an important difference between the proof of uniqueness of invariant
set of IFS on KC and the one on a special affine fractal interpolation curve.

In this article, by using the important fact that the existence and uniqueness of in-
variant sets of IFSs on KC is closely related to the same suitable metric associated with
Hölder exponent of non-constant harmonic functions on KC, that is, through strict accu-
rate mathematical description for an IFS constructing KC, we improve and clarify some
results for fractal interpolation on KC. The rest of this article is organised as follows and
can be generally seen as an organised study and especially as an in-depth discussion of
Corollary 4.8, Theorem 4.10 and Corollary 4.11 presented in [9]. In Section 2 we recall
some already known results, and we give certain IFSs on KC. In Section 3 we give fractal
interpolation as attractors of IFSs constructed on KC by non-constant harmonic functions
of fractal analysis. In Section 4 we discuss and cite research areas presented in international
journals dealing with similar topic. Finally, in Section 5 we draw our conclusions.

2. Fractal Interpolation on a Line Segment

In this section, we review some already known results about fractal interpolation on
a closed interval in order to derive interpolation functions as attractors of IFSs constructed
on KC by non-constant harmonic functions of fractal analysis; see [10], pp. 44–45 or [2],
Definition 2.2, p. 44.

Let N be a positive integer greater than 1, V0 = {x0, xN}, V1 = {x0, x1, . . . , xN} ⊂ R,
where x0 < x1 < x2 < · · · < xN and v : V1 → R be any given function such that
v(x0) = y0, v(x1) = y1, . . . , v(xN) = yN . Let for n = 1, 2, . . . , N, each hn : [x0, xN ] → R be
a function such that

hn(x) =
(

yn − yn−1

xN − x0
− sn

yN − y0

xN − x0

)
x +

xNyn−1 − x0yn

xN − x0
− sn

xNy0 − x0yN
xN − x0

,

where |sn| < 1 (see [11], p. 344, see [7], p. 214, see [12], p. 308). Then each hn is a unique
classic nonconstant harmonic function on an interval [x0, xN ] such that, see [13],

hn(x0) = v(un(x0))− snv(x0) = v(xn−1)− snv(x0) = yn−1 − sny0,

hn(xN) = v(un(xN))− snv(xN) = v(xn)− snv(xN) = yn − snyN .

Definition 1. Let (X, ρ) be a metric space and α ∈ (0, 1]. A function f : X → X is said to be
Hölder continuous on X with respect to ρ and α, if there exists a constant k ≥ 0 such that for
all x, y ∈ X,

ρ( f (x), f (y)) ≤ k [ρ(x, y)]α.
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The above constant k is called the Hölder constant of a function f . Let

α f = sup{α ∈ (0, 1] | ρ( f (x), f (y)) ≤ k [ρ(x, y)]α}.

Then we call α f ∈ (0, 1] the Hölder exponent of a function f (cf. [14], p. 36). If α f = 1,
then a function f is said to be Lipschitz continuous on X. A function f is said to be Banach
contraction, if α f = 1 and 0 ≤ k < 1.

Theorem 1. For all n ∈ {1, 2, . . . , N}, each harmonic function hn : [x0, xN ] → R is
Hölder continuous.

Proof. In fact,

|hn(x′)− hn(x′′)| ≤
∣∣∣∣yn − yn−1

xN − x0
− sn

yN − y0

xN − x0

∣∣∣∣|x′ − x′′|

≤ M |x′ − x′′|α,

where

M =

∣∣∣∣yn − yn−1

xN − x0
− sn

yN − y0

xN − x0

∣∣∣∣|xN − x0|1−α

and α ∈ (0, 1]. So, for all n ∈ {1, 2, . . . , N}, each harmonic function hn on [x0, xN ] is
Hölder continuous.

Let {[x0, xN ]×R; wn, n = 1, 2, . . . , N} be an IFS of the form

wn

(
x
y

)
=

(
un(x)

Fn(x, y)

)
=

(
un(x)

sny + hn(x)

)
,

where |sn| < 1 and for n = 1, 2, . . . , N and x ∈ [x0, xN ],

un(x) =
xn − xn−1

xN − x0
x +

xN xn−1 − x0xn

xN − x0
.

Then we can see that for n = 1, 2, . . . , N,

wn

(
x0
y0

)
=

(
xn−1
yn−1

)
, wn

(
xN
yN

)
=

(
xn
yn

)
.

Theorem 2. (see [11], p. 344, see [7], p. 218, Theorem 2) If {[x0, xN ]×R; wn, n = 1, 2, . . . , N}
denotes the IFS defined above, then for any given numbers sn, n = 1, 2, . . . , N with |sn| < 1, there
exists a unique continuous function f : R ⊃ [x0, xN ]→ R, such that f |V1 = v : R ⊃ V1 → R,

f (un(x)) = sn f (x) + hn(x)

and

G =
N⋃

n=1

wn(G),

where x ∈ [x0, xN ] ⊂ R and G is the graph of f .

Theorem 3. (see [7], p. 217, Theorem 1) Let {[x0, xN ]×R; wn, n = 1, 2, . . . , N} denote the IFS
defined above, associated with the points (p, v(p)) ∈ R2 (p ∈ V1 ⊂ R). Let for all (x′, y′),
(x′′, y′′) ∈ R2,

dθ((x′, y′), (x′′, y′′)) = |x′ − x′′|+ θ|y′ − y′′|,

where |sn| < 1 and θ is some positive real number (see [7], p. 218). Then each wn is Banach
contraction with respect to dθ , and so there exists a unique nonempty compact set G ⊂ [x0, xN ]×R
such that
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G =
N⋃

n=1

wn(G).

3. Fractal Interpolation on the KC

Let V0 := {p1 = (p1
1, p2

1) := (0, 0), p2 = (p1
2, p2

2) := (1, 0)} ⊂ R2 (see [8], see [6]).
Consider for i = 1, 2, 3, 4, ui : R2 → R2 such that

u1(x, y) = (u1
1(x, y), u2

1(x, y)) :=
( x

3
,

y
3

)
=

1
3
(x, y) + (0, 0),

u2(x, y) = (u1
2(x, y), u2

2(x, y)) :=

(
x
6
−
√

3y
6

+
1
3

,

√
3x
6

+
y
6

)
,

u3(x, y) = (u1
3(x, y), u2

3(x, y)) :=

(
x
6
+

√
3y
6

+
1
2

,−
√

3x
6

+
y
6
+

√
3

6

)
,

u4(x, y) = (u1
4(x, y), u2

4(x, y)) :=
(

x
3
+

2
3

,
y
3

)
=

1
3
(x, y) +

(
2
3

, 0
)

.

Then for all i = 1, 2, 3, 4, ui : R2 → R2 are Banach contractions, because for all
(x′, y′), (x′′, y′′) ∈ R2,

‖ui(x′, y′)− ui(x′′, y′′)‖R2 =
1
3
‖(x′, y′)− (x′′, y′′)‖R2 .

Then
KC = u1(KC) ∪ u2(KC) ∪ u3(KC) ∪ u4(KC).

Given here are some figures of K2, K3 and the Koch curve (see Figures 1 and 2), where
K0 := [0, 1]× {0} ⊂ R2 and for all n ∈ N,

Kn := u1(Kn−1) ∪ u2(Kn−1) ∪ u3(Kn−1) ∪ u4(Kn−1) ⊂ R2.

Figure 1. K2 and K3.
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Figure 2. Koch curve.

Let n ∈ N and uw := uw1 uw2 · · · uwn : R2 → R2 for any sequence w = (w1, w2, . . . , wn) ∈
{1, 2, 3, 4}n. Let Vn ⊂ R2 be the union of the images of V0 ⊂ R2 under these iterations. Let
hi : R2 ⊃ KC → R be a non-constant harmonic function on the KC (see [6], cf. [8], cf. [11],
cf. [1], cf. [3]).

Lemma 1. Given two numbers α, β, there exists a unique non-constant harmonic function h on
KC satisfying h(p1) = α and h(p2) = β.

Proof. The proof is similar to the one of [3] (or [1]) and is omitted here.

The graphs of harmonic functions on K2, K3 and Koch curve (see Figures 3–5) are
given below. Compare and contrast them with Figure 4 of page 3233 in [6], where a graph
of 1-nonconstant harmonic function on KC can be seen.

Without loss of generality, we may assume that n = 1 (see [15], p. 314).

Theorem 4. A harmonic function h : R2 ⊃ KC → R on KC is Hölder continuous.

Proof. Since V0 = {p1 = (p1
1, p2

1) := (0, 0), p2 = (p1
2, p2

2) := (1, 0)}, for convenience,
we assume that

q1 = (q1
1, q2

1) :=
(

1
3

, 0
)

,

q2 = (q1
2, q2

2) :=

(
1
2

,

√
3

6

)
,

q3 = (q1
3, q2

3) :=
(

2
3

, 0
)

.

Let h(p1) := β and h(p2) := γ. Then, by the definition of non-constant harmonic
function on V1 ⊂ R2, since H1( f )(p) = 0 for all p ∈ V1\V0 ⊂ R2, we obtain that
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h(u2(p1)) = h(u1(p2)) =
3β + γ

4
,

h(u3(p1)) = h(u2(p2)) =
2β + 2γ

4
,

h(u4(p1)) = h(u3(p2)) =
β + 3γ

4
.

Let k := |β− γ|. Then p1, p2 ∈ V0,

|h(p1)− h(p2)| = |h(p1
1, p2

1)− h(p1
2, p2

2)| = |β− γ|
≤ k(|p1

1 − p1
2|+ |p2

1 − p2
2|).

On the other hand, since 0 < α ≤ ln 2
ln 3 , we can see that 0 < 3α

2 ≤ 1 and

|h(q2)− h(p2)| =
|β− γ|

2
≤ 3α|β− γ|

2

((
1
2

)α

+

(√
3

2

)α)
1
3α

≤ |β− γ|
((

1
6

)α

+

(√
3

6

)α)
≤ |β− γ|

((
1
2

)α

+

(√
3

6

)α)
(1)

= k(|q1
2 − p1

2|α + |q2
2 − p2

2|α).

By using the similar method, we can see that for all qj ∈ V1 \V0 and pi ∈ V0,

|h(qj)− h(pi)| ≤ k(|q1
j − p1

i |α + |q2
j − p2

i |α).

Also,

|h(q1)− h(q3)| =
|β− γ|

2
=

3α|β− γ|
2

1
3α

≤ k(|q1
1 − q1

3|α + |q2
1 − q2

3|α),

|h(q1)− h(q2)| =
|β− γ|

4
≤ 3α|β− γ|

4

((
1
2

)α

+

(√
3

2

)α)
1
3α

≤ |β− γ|
((

1
6

)α

+

(√
3

6

)α)
= k(|q1

1 − q1
2|α + |q2

1 − q2
2|α),

|h(q2)− h(q3)| =
|β− γ|

4
≤ 3α|β− γ|

4

((
1
2

)α

+

(√
3

2

)α)
1
3α

≤ |β− γ|
((

1
6

)α

+

(√
3

6

)α)
= k(|q1

2 − q1
3|α + |q2

2 − q2
3|α).

So, a harmonic function h : R2 ⊃ KC → R on KC is Hölder continuous. On the other
hand, if α > ln 2

ln 3 , then h is not Hölder continuous function. In fact, we can easily see that
since 3α

2 > 1, inequality 1 is false.



Fractal Fract. 2021, 5, 28 7 of 13

Figure 3. A harmonic function on K2.

Figure 4. A harmonic function on K3.
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Figure 5. A harmonic function on the Koch curve.

Now, we give certain IFSs on KC. Let v : R2 ⊃ KC ⊃ V1 → R be any given func-
tion (not necessarily a non-constant harmonic function on V1 ⊂ KC ⊂ R2), where
V1 = {(0, 0), ( 1

3 , 0), ( 1
2 ,
√

3
6 ), ( 2

3 , 0), (1, 0)} (see [6]). Let hn : R2 ⊃ KC → R be non-constant
harmonic functions on the KC such that for n = 1, 2, 3, 4,

hn(p1) = v(un(p1))− snv(p1) = v(u1
n(0, 0), u2

i (0, 0))− snv(0, 0),

hn(p2) = v(un(p2))− snv(p2) = v(u1
n(1, 0), u2

i (1, 0))− snv(1, 0).

Then, by Lemma 1, for each n ∈ {1, 2, 3, 4}, there exists a unique non-constant har-
monic function hn on KC satisfying

hn(0, 0) = v(un(0, 0))− snv(0, 0),

hn(1, 0) = v(un(1, 0))− snv(1, 0).

Let {R2 ×R ⊃ KC×R; wn, n = 1, 2, 3, 4} be the IFS such that

wn

 x
y
z

 =

 u1
n(x, y)

u2
n(x, y)

Fn(x, y, z)

 =

 u1
n(x, y)

u2
n(x, y)

snz + hn(x, y)

,

where (x, y, z) ∈ KC×R. Then we can see that for n = 1, 2, 3, 4,

wn

 p1
1

p2
1

v(p1
1, p2

1)

 = wn

 0
0

v(0, 0)

 =

 u1
n(0, 0)

u2
n(0, 0)

v(u1
n(0, 0), u2

n(0, 0))



wn

 p1
2

p2
2

v(p1
2, p2

2)

 = wn

 1
0

v(1, 0)

 =

 u1
n(1, 0)

u2
n(1, 0)

v(u1
n(1, 0), u2

n(1, 0)).

.
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Theorem 5. If {KC × R; wn, n = 1, 2, 3, 4} denotes the IFS defined above, then for any given
numbers dn (n = 1, 2, 3, 4) with |dn| < 1, there exists a unique continuous function f : R2 ⊃
KC → R, such that f |V1 = v : R2 ⊃ V1 → R,

f (un(x, y)) = dn f (x, y) + hn(x, y)

and

G =
4⋃

n=1

wn(G).

where (x, y) ∈ KC ⊂ R2 and G is the graph of f .

Proof. cf. [6].

The following motivation will be the key in the proof of Theorem 6.

(1) Piecewise linear interpolation functions on an interval are special FIFs that are Lip-
schitz continuous (see [7], p. 212, p. 214), and so Lipschitz continuity with respect
to the first variable x of functions Fn(x, y) and metrically equivalent metric are used
in the proof of the uniqueness of invariant of IFS (see [7], p. 217, Theorem 1).

(2) Harmonic functions on KC are special FIFs on KC (cf. [6], cf. [8]).
(3) The graph of a constant harmonic function f (x, y) ≡ c, (x, y) ∈ KC is KC itself,

and Hausdorff dimension of KC is log 4
log 3 , (see [2], p. 135, see [3]), and so box dimensions

of graphs of non-constant harmonic functions on KC can be non-integers, and non-
constant harmonic functions on KC can be Hölder continuous.

(4) Since non-constant harmonic functions on KC are not Lipschitz continuous (see [8],
p. 36), to obtain FIFs on KC as attractors of some IFSs is not possible from Barnsley’s
fractal interpolation method.

(5) The assertion that two metrics d1 and d2 are metrically equivalent is much stronger
than the statement that they are topologically equivalent: to be metrically equivalent
there must exist constants c1 and c2 such that for all x, y ∈ Rn,

c1 d1(x, y) ≤ d2(x, y) ≤ c2 d1(x, y),

and to be topologically equivalent must ensure that a sequence {(xn, yn)}∞
n=1 ⊂

Rn which is d1-convergent to (x0, y0) ∈ Rn is also d2-convergent to (x0, y0) ∈ Rn,
and a sequence {(xn, yn)}∞

n=1 ⊂ Rn which is d2-convergent to (x0, y0) ∈ Rn is also
d1-convergent to (x0, y0) ∈ Rn.

(6) There can exist some metric d on Rn, topologically equivalent (not necessarily met-
rically equivalent) to the Euclidean metric, such that IFS has a unique invariant set
because the existence of metrically equivalent metric is a sufficient condition so that
functions wi(x, y) are Banach contractions with respect to some metric.

(7) The results of [6,8] inspire us to ensure that graphs of FIFs generated on KC by
non-constant harmonic functions of fractal analysis are attractors of some IFSs.

Our idea, based on the above motivation, is to use Hölder continuity of non-constant
harmonic functions on KC and use some suitable metric which is topologically equivalent
to the Euclidean metric but is not metrically equivalent to that.

Lemma 2. (see [16]) If we consider a metric dθ on R3 by

dθ((x′, y′, z′), (x′′, y′′, z′′)) := |x′ − x′′|α + |y′ − y′′|α + θ|z′ − z′′|,

where (x′, y′, z′), (x′′, y′′, z′′) ∈ R3, 0 < α ≤ 1 and θ is some positive real number, then the metric
dθ is topologically equivalent to the Euclidean metric d0 on R3.
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Theorem 6. Let {KC × R; wn, n = 1, 2, 3, 4} denote the IFS defined above, associated with
the points (p, v(p)) ∈ R3 (p ∈ V1 ⊂ R2). Then there exists a unique nonempty compact set
G ⊂ KC×R such that

G =
4⋃

n=1

wn(G).

Proof. We define a metric dθ on R3 ⊃ KC×R by

dθ((x′, y′, z′), (x′′, y′′, z′′)) := |x′ − x′′|α + |y′ − y′′|α + θ|z′ − z′′|,

where (x′, y′, z′), (x′′, y′′, z′′) ∈ R3, 0 < α ≤ ln 2
ln 3 ≈ 0.630929753 and θ := 1−( 2

3 )
α

2k . Since
Fn(x, y, z) := snz + hn(x, y), by Theorem 4, for all (x′, y′, z′), (x′′, y′′, z′′) ∈ KC×R,

|Fn(x′, y′, z′)− Fn(x′′, y′′, z′′)| = |snz′ + hn(x′, y′)− snz′′ − hn(x′′, y′′)|
≤ |hn(x′, y′)− hn(x′′, y′′)|+ |sn||z′ − z′′|
≤ k(|x′ − x′′|α + |y′ − y′′|α) + |sn||z′ − z′′|.

Hence we obtain for all (x′, y′, z′), (x′′, y′′, z′′) ∈ KC×R and n = 1, 4,

dθ(wn(x′, y′, z′), wn(x′′, y′′, z′′)) = |u1
n(x′, y′)− u1

n(x′′, y′′)|α

+ |u2
n(x′, y′)− u2

n(x′′, y′′)|α + θ|Fn(x′, y′, z′)− Fn(x′′, y′′, z′′)|

≤
(

1
3

)α
|x′ − x′′|α +

(
1
3

)α
|y′ − y′′|α

+ θ(k(|x′ − x′′|α + |y′ − y′′|α) + sn|z′ − z′′|)

=
((

1
3

)α
+ θk

)
(|x′ − x′′|α + |y′ − y′′|α) + θsn|z′ − z′′|

≤ max
{(

2
3

)α
+ θk, sn

}
dθ((x′, y′, z′), (x′′, y′′, z′′)).

(2)

Also, we obtain for all (x′, y′, z′), (x′′, y′′, z′′) ∈ KC×R and n = 2, 3,

dθ(wn(x′, y′, z′), wn(x′′, y′′, z′′)) = |u1
n(x′, y′)− u1

n(x′′, y′′)|α

+ |u2
n(x′, y′)− u2

n(x′′, y′′)|α + θ|Fn(x′, y′, z′)− Fn(x′′, y′′, z′′)|

≤
(

1
6

)α
|x′ − x′′|α +

∣∣∣±√3
6 x′ ∓

√
3

6 x′′ + 1
3 y′ − 1

3 y′′
∣∣∣α

+ θ(k(|x′ − x′′|α + |y′ − y′′|α) + sn|z′ − z′′|)
≤

(
1
6

)α
|x′ − x′′|α +

((√
3

6

)α
|x′ − x′′|α +

(
1
3

)α
|y′ − y′′|α

)
+ θ(k(|x′ − x′′|α + |y′ − y′′|α) + sn|z′ − z′′|)

≤
((

2
3

)α
+ θk

)
(|x′ − x′′|α + |y′ − y′′|α) + θsn|z′ − z′′|

≤ max
{(

2
3

)α
+ θk, sn

}
dθ((x′, y′, z′), (x′′, y′′, z′′)).

(3)

Since for all n = 1, 2, 3, 4, |sn| < 1 and θ =
1−( 2

3 )
α

2k , we obtain that max{( 2
3 )

α + θk, sn} <
1. Hence wn are Banach contractions in (KC×R, dθ). So, for (KC×R, d0), there is a unique
nonempty compact set G ⊂ KC×R such that

G =
4⋃

n=1

wn(G).

The graph of a fractal interpolation function on the Koch Curve (see Figure 6) is given
below. Compare and contrast it with Figure 3 of page 3232 in [6], where the graph of
a fractal interpolation function on KC is illustrated.
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Figure 6. A fractal interpolation function on the Koch curve (KC).

Please let us, apart from the above theorem, make some concluding remarks.

(1) In the case of affine FIFs, functions Fn(x, y) are Lipschitz continuous with respect to
the first variable x and are Banach contractions with respect to the second variable
y because

|Fn(x′, y)− Fn(x′′, y)| = |hn(x′)− hn(x′′)| =
∣∣∣∣yn − yn−1

xN − x0
− sn

yN − y0

xN − x0

∣∣∣∣|x′ − x′′|

and

|Fn(x, y′)− Fn(x, y′′)| = |sny′ + hn(x)− sny′′ + hn(x)| ≤ |sn| |y′ − y′′|.

(2) In the formulation and proof of Theorem 2, it is enough to assume that functions
Fn(x, y) are continuous with respect to the first variable x and are Banach contractions
with respect to the second variable y (see Theorem 2 in p. 218 of [7]), and in the for-
mulation and proof of Theorem 5, it is enough to assume that functions Fn(x, y, z) are
continuous with respect to the first variable x and second variable y and are Banach
contractions with respect to the third variable z.

(3) Theorems 2 and 5 do not ensure that the IFSs {[x0, xN ]×R; wn, n = 1, 2, . . . , N} and
{KC×R; wn, n = 1, 2, 3, 4} have unique invariant sets. The uniqueness of invariant
sets is determined explicitly in Theorems 3 and 6 (cf. the Theorem 1 in p. 217 of [7]).

(4) In the formulation and proof of Theorem 6, it is needed to consider functions Fn(x, y, z)
that are Hölder continuous with respect to the first variable x and second variable y
and are Banach contractions with respect to the third variable z.

(5) Theorem 3 is dedicated to show a sufficient condition for functions Fn(x, y) such that
the IFS{[x0, xN ]×R; wn, n = 1, 2, . . . , N} has a unique invariant set, and Theorem 6 is
dedicated to show an essential sufficient condition for functions Fn(x, y, z) such that
the IFS {KC×R; wn, n = 1, 2, 3, 4} has a unique invariant set.



Fractal Fract. 2021, 5, 28 12 of 13

4. Discussion

One of the objectives would be to investigate how to optimise such a process in order
to enhance mechanical properties of materials produced using the afore-mentioned method.
The article [17] reports on the results of three studies investigating visual interest, visual
preference, and mood responses elicited by varying complexities of fractal light patterns
projected on walls and floors of an interior space. The article [18] presents a study on the de-
sign, and microstructural and mechanical characterization of additively manufactured
reinforcing elements for composite materials exhibiting fractal geometry, with a focus
on the flexural reinforcement of cement-matrix composites.

5. Conclusions

In this article, we used Hölder continuity of nonconstant harmonic functions on KC
and a suitable metric, equivalent to the Euclidean metric, to prove Theorem 6. Moreover,
we showed that it is possible to ensure that the graph of an FIF on KC by nonconstant
harmonic functions of fractal analysis is the attractor of some IFS. An important fact is
that the proof of the existence of fractal interpolation functions on the Koch curve is
closely related to the same suitable iterated function system that generates the Koch curve,
whereas a key result is that the proof of the uniqueness of FIFs depends not only on
Hölder continuity of harmonic functions on the Koch curve but also on the topologically
equivalent metric.
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