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Abstract: The first type of boundary value problem for the heat equation on a rectangle is considered.
We propose a two stage implicit method for the approximation of the first order derivatives of the
solution with respect to the spatial variables. To approximate the solution at the first stage, the
unconditionally stable two layer implicit method on hexagonal grids given by Buranay and Arshad
in 2020 is used which converges with O

(
h2 + τ2) of accuracy on the grids. Here, h and

√
3

2 h are the
step sizes in space variables x1 and x2, respectively and τ is the step size in time. At the second stage,
we propose special difference boundary value problems on hexagonal grids for the approximation of
first derivatives with respect to spatial variables of which the boundary conditions are defined by
using the obtained solution from the first stage. It is proved that the given schemes in the difference
problems are unconditionally stable. Further, for r = ωτ

h2 ≤ 3
7 , uniform convergence of the solution of

the constructed special difference boundary value problems to the corresponding exact derivatives
on hexagonal grids with order O

(
h2 + τ2) is shown. Finally, the method is applied on a test problem

and the numerical results are presented through tables and figures.

Keywords: finite difference method; hexagonal grid; stability analysis; two dimensional heat equa-
tion; approximation of derivatives

MSC: 65M06; 65M12; 65M22

1. Introduction

Numerical methods have gained considerable attention in many applications, since
the exact solution of many problems arising in the models of chemistry, physics, biology,
engineering, and many other fields of different sciences is an uphill task. Modeling of
these problems leads us to consider a number of physical quantities, representing physical
phenomena on a modeling domain. These physical quantities then occur in the model
via functions or function derivatives of which for a considerable number of them the
Newtonian concept of a derivative satisfies the complexity of the natural occurrences.
However, “time’s evolution and changes occurring in some systems do not happen in the
same manner after a fixed or constant interval of time and do not follow the same routine as
one would expect. For instance, a huge variation can occur in a fraction of a second, causing
a major change that may affect the whole system’s state forever” as stated in [1]. Indeed, it
has turned out recently that many of phenomena involved in many branches of chemistry,
engineering, biology, ecology, and numerous domains of applied sciences can be described
very successfully by models using fractional order differential equations such as acoustic
dissipation, viscoelastic systems, mathematical epidemiology, continuous time random
walk, and biomedical engineering (see [1] and references therein). Analytical techniques
can not solve most of these models with the conventional integer-order derivative, and
models with fractional derivatives appearing in practice. Hence, various methods for the
solution of these model problems have been developed and proposed in numerous works,
in order to provide an improved description of the phenomenon under investigation.
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Common numerical methods include finite difference method, finite element method, finite
volume method, variational iteration method, adomian or homotopy analysis, wavelet
method, etc.

Most recently, for the model problems of chaotic attractors, exhaustive studies were
given for the solvability of chaotic fractional systems with 3D four-scroll attractors in [2], for
the Proto–Lorenz system in its chaotic fractional and fractal structure in [3], and for a new
auto-replication in systems of attractors with two and three merged basins of attraction
via control in [4]. To model some symbiosis systems describing commmensalism and
predator–prey processes, the Atangana–Baleanu derivative operator was applied in [5] and
a numerical approximation technique was given. Model problems involving a derivative
with fractional parameter β and the application to transport-convection differential equa-
tions were given in [1]. In addition, the use of a control parameter to control on processes
related to stationary state system, and on relaxation and diffusion, was studied in [6].
Further, in [7] a comparative analysis between differential fractional operators includ-
ing the Atangana–Baleanu derivative and the Caputo–Fabrizio derivative applied to the
non-linear Kaup–Kupershmidt equation was given and methods of performing numerical
approximations of the solutions were presented. Furthermore, for the numerical solution
of fractional Volterra type model problems, recent studies include [8] that a class of system
of nonlinear singular fractional Volterra integro-differential equations was solved by a pro-
posed computational method. In addition, [9], in which delay-dependent stability switches
in fractional differential equations were studied and obtained results were illustrated via
a fractional Lotka-Volterra population model. Moreover, [10] as a biological fractional
n-species delayed cooperation model of Lotka–Volterra type was presented. Examples to
recent studies on numerical solutions of model problems in fractional structure with both
stiff and nonstiff components and the leading-edge model problem can be given to [11,12],
respectively. A second-order diagonally-implicit-explicit multi-stage integration method
was given in [11] for the solution of problems with both stiff and nonstiff components.
An implicit method for numerical solution of singular and stiff initial value problem was
developed in [12]. For the epidemic models latest studies include [13] that the Crank
Nicolson difference scheme and iteration method were used for finding the approximate
solution of system of nonlinear observing epidemic model. In addition, [14], in which a
novel and time efficient positivity preserving numerical scheme was designed to find the
solution of epidemic model involving a reaction-diffusion system in three dimension.

Apart from rectangular grids, hexagonal grids have been also used to develop finite
difference methods for the approximate solution of modeled problems in many applied
sciences for more than the half century. These studies include the hexagonal grid methods
given in meteorological and oceanographic applications by [15–25], of which favorable
results were obtained compared with rectangular grids. Hexagonal grids were applied in
reservoir simulation in [26] and it was shown that for seven-point floods, hexagonal grid
method provides good numerical accuracy at substantially less computational work than
rectangular grid method (five or nine point methods). Hexagonal grids were also used in
the simulation of electrical wave phenomena propagated in two dimensional reserved-C
type cardiac tissue in [27]. The exhibited linear and spiral waves were more efficient
than similar computation carried out on rectangular finite volume schemes. Furthermore,
hexagonal grids were applied to approximate the solution of the first type boundary value
problem of the heat equation in [28–30], convection-diffusion equation in [31], and Dirichlet
type boundary value problem of the two dimensional Laplace equation in [32]. In the
recent study [29], the solution of first type boundary value problem of heat equation

∂u
∂t

= ω

(
∂2u
∂x2

1
+

∂2u
∂x2

2

)
+ f (x1, x2, t), (1)

on special polygons with interior angles αjπ, j = 1, 2, ..., M, for αj ∈
{

1
2 , 1

3 , 2
3

}
where, ω > 0

and f is the heat source by using hexagonal grids has been given. Therein, two implicit
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methods named as Difference Problem 1 and Difference Problem 2 both on two layers
with 14-points have been proposed. It was assumed that the heat source and the initial
and boundary functions are given such that the exact solution belongs to the Hölder space

C6+α,3+ α
2

x,t , 0 < α < 1. Under this condition, it was proved that the given Difference Problem
1 and Difference Problem 2 converge to the exact solution on the grids with O

(
h2 + τ2)

and O
(
h4 + τ

)
order of accuracy, respectively.

On the other hand, as well as the solution of the modeled problem, the first order
partial derivatives of the solution are also essential to determine the rate of change in the
solution and the gradients which determines important phenomena in that model. Such as
in the electrostatics the first derivatives of electrostatic potential function define electric
field. As the calculation of ray tracing in electrostatic fields by the interpolation methods
require the specification at each mesh point not only the potential function Φ but also the
gradients

{
∂Φ
∂x1

, ∂Φ
∂x2

}
and the mixed derivative ∂2Φ

∂x1∂x2
. Motivated by this aim, in this study

a second order accurate two stage implicit method for the approximation of the first order
derivatives of the solution u(x1, x2, t) of (1) with respect to the spatial variables x1 and x2
on rectangle D is developed.

The research is organized as follows: In Section 2, we consider the first type boundary
value problem for the heat equation in (1) on a rectangle D under the assumption that the
heat source and the initial and boundary functions are given such that on QT = D× [0, T]

the solution u(x1, x2, t) belongs to the Hölder space C7+α, 7+α
2

x,t
(
QT
)
, 0 < α < 1, where

x = (x1, x2) ∈ D, t ∈ [0, T], and D is the closure of D. In addition, hexagonal grid structure
and basic notations are given. Further, at the first stage, a two layer implicit method on
hexagonal grids given in [29] with O

(
h2 + τ2) order of accuracy, where h and

√
3

2 h are the
step sizes in space variables x1 and x2, respectively, and τ is the step size in time used
to approximate the solution u(x1, x2, t). For the error function when r ≤ 3

7 , we provide
a pointwise prior estimation depending on ρ(x1, x2, t), which is the distance from the
current grid point to the surface of QT . In Sections 3 and 4, the second stages of the two
stage implicit method for the approximation to the first order derivatives of the solution
u(x1, x2, t) with respect to the spatial variables x1 and x2 are proposed, respectively. It is
proved that the constructed implicit schemes at the second stage are unconditionally stable
(see Theorem 1 in [33] which gives the sufficient condition of stability). For r = ωτ

h2 ≤ 3
7 ,

priory error estimations in maximum norm between the exact derivatives ∂u
∂x1

, ∂u
∂x2

and
the obtained corresponding approximate solutions are provided giving O

(
h2 + τ2) order

of accuracy on the hexagonal grids. In Section 5, a numerical example is constructed to
support the theoretical results. We applied incomplete block preconditioning given in [34]
(see also [35,36]) for the conjugate gradient method to solve the obtained algebraic systems
of linear equations for various values of r. In Section 6, conclusions and some remarks
are given.

2. First Type Heat Problem and Second Order Accurate Solution on Hexagonal Grids

Let D = {(x1, x2) : 0 < x1 < a1, 0 < x2 < a2} be a rectangle, where a2 is multiple of√
3 and let γj, j = 1, 2, 3, 4, be the sides of D enumerated in anticlockwise direction starting

from the side x1 = 0. Further, S =
4⋃

j=1
γj is the boundary of D and denote by D = D ∪ S

the closure of D. Let QT = D × (0, T), with lateral surface ST more precisely the set of
points (x, t), x = (x1, x2) ∈ S and t ∈ [0, T] also QT is the closure of QT . We consider the
first type boundary value problem for the two space dimensional heat equation:
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BVP(1):

∂u
∂t

= ω

(
∂2u
∂x2

1
+

∂2u
∂x2

2

)
+ f (x1, x2, t) on QT , (2)

u(x1, x2, 0) = ϕ(x1, x2) on D, (3)

u(x1, x2, t) = φ(x1, x2, t) on ST , (4)

where ω is a positive constant. We assume that the heat source function f (x1, x2, t) and the
initial and boundary functions ϕ(x1, x2) and φ(x1, x2, t), respectively, are given such that

the Problems (2)–(4) has a unique solution u belonging to the Hölder class C7+α, 7+α
2

x,t
(
QT
)
.

For the smoothness of solutions of parabolic equations in regions with edges, see [37] for
the Dirichlet and [38] for the mixed boundary value problems. Let h > 0, with h = a1/N1,
where N1 is positive integer and assign Dh a hexagonal grid on D, with step size h, defined
as the set of nodes

Dh =

{
x = (x1, x2) ∈ D : x1 =

i′ − j′

2
h, x2 =

√
3(i′ + j′)

2
h,

i′ = 1, 2, ...; j′ = 0± 1± 2, ...
}

. (5)

Let γh
j , j = 1, ..., 4 be the set of nodes on the interior of γj and let γ̂h

j = γj−1 ∩ γj be the

jth vertex of D, Sh =
4⋃

j=1
(γh

j ∪ γ̂h
j ), Dh

= Dh ∪ Sh. Further, let D∗lh, D∗rh denote the set of

interior nodes whose distance from the boundary is h
2 and the hexagon has a left ghost

point as shown in Figure 1 or a right ghost point as presented in Figure 2, emerging through
the left or right side of the rectangle, respectively. We also denote by D∗h = D∗lh ∪ D∗rh

and D0h = Dh\D∗h.

Figure 1. The solution uk
P2

and uk+1
P2

on the left ghost points at time moments t = kτ and (k + 1)τ,
respectively.
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Figure 2. The solution uk
P5

and uk+1
P5

on the right ghost points at time moments t = kτ and (k + 1)τ,
respectively.

Next, let

γτ =

{
tk = kτ, τ =

T
M′

, k = 1, ..., M′
}

, (6)

γτ =

{
tk = kτ, τ =

T
M′

, k = 0, ..., M′
}

, (7)

and the set of internal nodes and lateral surface nodes be defined by

Dhγτ = Dh × γτ =
{
(x, t) : x = (x1, x2) ∈ Dh, t ∈ γτ

}
, (8)

Sh
T = Sh × γτ =

{
(x, t) : x = (x1, x2) ∈ Sh, t ∈ γτ

}
, (9)

respectively. Let D∗lhγτ = D∗lh × γτ ⊂ Dhγτ and D∗rhγτ = D∗rh × γτ ⊂ Dhγτ and
D∗hγτ = D∗lhγτ ∪ D∗rhγτ . In addition, D0hγτ = Dhγτ\D∗hγτ and Dhγτ is the closure of
Dhγτ .

Let P0 denote the center of the hexagon and Patt(P0) denote the pattern of the hexagon
consisting the neighboring points Pi, i = 1, ..., 6. In addition, uk+1

Pi
denotes the exact solution

at the point Pi and uk+1
PA

denotes the value at the boundary point for the time moment t + τ
as follows:

uk+1
P1

= u(x1 −
h
2

, x2 +

√
3

2
h, t + τ), uk+1

P3
= u(x1 −

h
2

, x2 −
√

3
2

h, t + τ),

uk+1
P2

= u(x1 − h, x2, t + τ), uk+1
P5

= u(x1 + h, x2, t + τ),

uk+1
P4

= u(x1 +
h
2

, x2 −
√

3
2

h, t + τ), uk+1
P6

= u(x1 +
h
2

, x2 +

√
3

2
h, t + τ),

uk+1
P0

= u(x1, x2, t + τ), uk+1
PA

= u( p̂, x2, t + τ), ( p̂, x2, t + τ) ∈ Sh
T ,

where the value of p̂ = 0 if P0 ∈ D∗lhγτ and p̂ = a1 if P0 ∈ D∗rhγτ as also given in (21).
Analogously, the values uk

Pi
, i = 0, ..., 6 and uk

PA
present the exact solution at the same space

coordinates of Pi, i = 0, ..., 6 and PA, respectively, but at time level t = kτ. Further, uk+1
h,τ,Pi

,
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i = 0, ..., 6, uk+1
h,τ,PA

, and uk
h,τ,Pi

, i = 0, ..., 6, uk
h,τ,PA

present the numerical solution at the same
space coordinates of Pi, i = 0, ..., 6 and PA for time moments t + τ and t = kτ, respectively

and f k+ 1
2

P0
= f (x1, x2, t + τ

2 ), and f k+1
PA

= f ( p̂, x2, t + τ). For the numerical solution of the
BVP(1) the following difference problem (named as Difference Problem 1) was given in [29]
which we will consider as the Stage 1

(
H2nd

)
of the two stage implicit method:

Stage 1
(

H2nd
)

Θh,τuk+1
h,τ = Λh,τuk

h,τ + ψ on D0hγτ , (10)

Θ∗h,τuk+1
h,τ = Λ∗h,τuk

h,τ + Γ∗h,τφ + ψ∗ on D∗hγτ , (11)

uh,τ = ϕ(x1, x2), t = 0 on Dh, (12)

uh,τ = φ(x1, x2, t) on Sh
T , (13)

for k = 0, ..., M′ − 1, where

ψ = f k+ 1
2

P0
, (14)

ψ∗ = f k+ 1
2

P0
− 1

6
f k+ 1

2
PA

, (15)

Θh,τuk+1 =

(
1
τ
+

2ω

h2

)
uk+1

P0
− ω

3h2

6

∑
i=1

uk+1
Pi

, (16)

Λh,τuk =

(
1
τ
− 2ω

h2

)
uk

P0
+

ω

3h2

6

∑
i=1

uk
Pi

, (17)

Θ∗h,τuk+1 =

(
1
τ
+

7ω

3h2

)
uk+1

P0
− ω

3h2 (u(p + η, x2, t + τ)

+u(p, x2 +

√
3

2
h, t + τ) + u(p, x2 −

√
3

2
h, t + τ)

)
, (18)

Λ∗h,τuk =

(
1
τ
− 7ω

3h2

)
uk

P0
+

ω

3h2

(
u(p, x2 +

√
3

2
h, t)

+u(p, x2 −
√

3
2

h, t) + u(p + η, x2, t)

)
, (19)

Γ∗h,τφ =
2ω

9h2

(
φ( p̂, x2 +

√
3

2
h, t + τ) + φ( p̂, x2 −

√
3

2
h, t + τ)

+φ( p̂, x2 +

√
3

2
h, t) + φ( p̂, x2 −

√
3

2
h, t)

)

+

(
1

6τ
+

8ω

9h2

)
φ( p̂, x2, t + τ) +

(
− 1

6τ
+

8ω

9h2

)
φ( p̂, x2, t), (20)

and {
p = h, p̂ = 0, η = h

2 if P0 ∈ D∗lhγτ ,
p = a1 − h, p̂ = a1, η = − h

2 if P0 ∈ D∗rhγτ .
(21)
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By numbering the interior grid points using standard ordering as Lj, j = 1, 2, ..., N, the
obtained algebraic linear system of equations in matrix form given in [29] is as follows:

Aũk+1 = Bũk + τqk
u, (22)

where A, B ∈ RN×N are

A =
(

I +
ωτ

h2 C
)

, B =
(

I − ωτ

h2 C
)

, (23)

and
C = D1 −

1
3

Inc ∈ RN×N , (24)

and ũk, qk
u ∈ RN . The matrix Inc is the incidence matrix of the neighboring topology with

entries unity for the points in the pattern of the hexagon center. In addition, I is the identity
matrix, D1 is a diagonal matrix with entries

d1,jj =

{
2 if Lj ∈ D0hγτ
7
3 if Lj ∈ D∗hγτ

, j = 1, 2, ..., N. (25)

Lemma 1. (a) The matrix A in (22) is a nonsingular M-matrix and is also a symmetric positive
definite matrix.

(b)
∥∥A−1

∥∥
2 < 1 and

∥∥A−1B
∥∥

2 < 1 for r = ωτ
h2 > 0.

Proof. Proof is given in ([29]).

Let
εu

h,τ = uh,τ − u on Dhγτ . (26)

From (10)–(13) and (26), the error function εu
h,τ satisfies the following system as given

in [29]

Θh,τεu,k+1
h,τ = Λh,τεu,k

h,τ + Ψu,k
1 on D0hγτ , (27)

Θ∗h,τεu,k+1
h,τ = Λ∗h,τεu,k

h,τ + Ψu,k
2 on D∗hγτ , (28)

εu
h,τ = 0, t = 0 on Dh, (29)

εu
h,τ = 0 on Sh

T , (30)

where

Ψu,k
1 = Λh,τuk −Θh,τuk+1 + ψ, (31)

Ψu,k
2 = Λ∗h,τuk −Θ∗h,τuk+1 + Γ∗h,τφ + ψ∗, (32)

and ψ, ψ∗, and φ are the given functions in (10), (11), and (13), respectively.

Pointwise Priory Estimation For the Error Function (27)–(30)

Consider the following systems

Θh,τ q̂k+1
h,τ = Λh,τ q̂k

h,τ + ĝk
1 on D0hγτ , (33)

Θ∗h,τ q̂k+1
h,τ = Λ∗h,τ q̂k

h,τ + Γ∗h,τ q̂φ,h,τ + ĝk
2 on D∗hγτ , (34)

q̂h,τ = q̂ϕ,h,τ , t = 0 on Dh, (35)

q̂h,τ = q̂φ,h,τ on Sh
T , (36)
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Θh,τqk+1
h,τ = Λh,τqk

h,τ + gk
1 on D0hγτ , (37)

Θ∗h,τqk+1
h,τ = Λ∗h,τqk

h,τ + Γ∗h,τqφ,h,τ + gk
2 on D∗hγτ , (38)

qh,τ = qϕ,h,τ , t = 0 on Dh, (39)

qh,τ = qφ,h,τ on Sh
T , (40)

for k = 0, ..., M′ − 1, where ĝ1, ĝ2 and g1, g2 are given functions. The algebraic sys-
tems (33)–(36) and (37)–(40) can be written in matrix form

Aq̂k+1 = Bq̂k + τĝk, (41)

Aqk+1 = Bqk + τgk, (42)

respectively, for every time level k = 0, ..., M′ − 1 where A and B are the matrices given
in (22) and q̂k, qk, ĝk, gk ∈ RN . We also use the partial order K1 ≤ K2 which means that
K1 − K2 ≤ 0 is nonpositive and K1 ≥ K2 means that K1 − K2 ≥ 0 is nonnegative wherever
they present matrices in RN×N or vectors in RN .

Lemma 2. Let q̂k+1 be the solution of the difference Equation (41) and qk+1 be the solution of the
difference Equation (42). For r = ωτ

h2 ≤ 3
7 , if

q0 ≥ 0 and gk ≥ 0, (43)∣∣∣q̂0
∣∣∣ ≤ q0, (44)∣∣∣ĝk
∣∣∣ ≤ gk, (45)

for k = 0, ..., M′ − 1, then

qk+1 ≥ 0 and
∣∣∣q̂k+1

∣∣∣ ≤ qk+1 for k = 0, ..., M′ − 1. (46)

Proof. On the basis of Lemma 1, A−1 ≥ 0 and if r = ωτ
h2 ≤ 3

7 then B ≥ 0 and from (43) we
have gk ≥ 0, k = 0, ..., M′ − 1 and q0 ≥ 0. Then, assume that qk ≥ 0 by using induction
we have

qk+1 = A−1Bqk + τA−1gk ≥ 0, (47)

which gives qk+1 ≥ 0, k = 0, ..., M′ − 1. In addition,
∣∣q̂0
∣∣ ≤ q0 from (44). Next assume that∣∣∣q̂k

∣∣∣ ≤ qk, by using (45) and induction gives

q̂k+1 = A−1Bq̂k + τA−1 ĝk, (48)∣∣∣q̂k+1
∣∣∣ ≤ A−1B

∣∣∣q̂k
∣∣∣+ τA−1

∣∣∣ĝk
∣∣∣

≤ A−1Bqk + τA−1gk = qk+1. (49)

Thus, we obtain (46).

Let

STγ1 = γ1 × (0, T] = {(0, x2, t) : (0, x2) ∈ γ1, t ∈ (0, T]},
STγ2 = γ2 × (0, T] = {(x1, 0, t) : (x1, 0) ∈ γ2, t ∈ (0, T]},
STγ3 = γ3 × (0, T] = {(a1, x2, t) : (a1, x2) ∈ γ3, t ∈ (0, T]},
STγ4 = γ4 × (0, T] = {(x1, a2, t) : (x1, a2) ∈ γ4, t ∈ (0, T]},
STγ5 =

{
(x1, x2, 0) : (x1, x2) ∈ D , t = 0

}
, (50)
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and Sh
Tγi, i = 1, 2, ..., 5 denote the corresponding sets of grid points. In addition, let

F =
5⋃

i=1
STγi denote the surface of QT .

Theorem 1. For the solution of the problem (27)–(30), the following inequality holds true∣∣∣εu
h,τ

∣∣∣ ≤ dΩ1(h, τ)ρ(x1, x2, t), on Dhγτ , (51)

for r = ωτ
h2 ≤ 3

7 where

Ω1(h, τ) =
1

24
τ2(1 + 6ω)β∗ +

3ω

10
h2α∗, (52)

α∗ = max

{
max

QT

∣∣∣∣∣∂4u
∂x4

1

∣∣∣∣∣, max
QT

∣∣∣∣∣∂4u
∂x4

2

∣∣∣∣∣, max
QT

∣∣∣∣∣ ∂4u
∂x2

1∂x2
2

∣∣∣∣∣
}

, (53)

β∗ = max

{
max

QT

∣∣∣∣∂3u
∂t3

∣∣∣∣, max
QT

∣∣∣∣∣ ∂4u
∂x2

2∂t2

∣∣∣∣∣, max
QT

∣∣∣∣∣ ∂4u
∂x2

1∂t2

∣∣∣∣∣
}

, (54)

d = max
{ a1

2ω
,

a2

2ω
, 1
}

, (55)

and u is the exact solution of BVP(1) and ρ(x1, x2, t) is the distance from the current grid point in
Dhγτ to the surface F of QT .

Proof. We consider the system

Θh,τ ε̂u,k+1
h,τ = Λh,τ ε̂u,k

h,τ + Ω1(h, τ) on D0hγτ , (56)

Θ∗h,τ ε̂u,k+1
h,τ = Λ∗h,τ ε̂u,k

h,τ +
5
6

Ω1(h, τ) on D∗hγτ (57)

ε̂u
h,τ = ε̂u

ϕ,h,τ = 0, t = 0 on Dh, (58)

ε̂u
h,τ = ε̂u

φ,h,τ = 0 on Sh
T , (59)

and the majorant functions

εu
1 (x1, x2, t) =

1
2ω

Ω1(h, τ)
(

a1x1 − x2
1

)
≥ 0 on Dhγτ , (60)

εu
2 (x1, x2, t) =

1
2ω

Ω1(h, τ)
(

a2x2 − x2
2

)
≥ 0 on Dhγτ , (61)

εu
3 (x1, x2, t) = Ω1(h, τ)t ≥ 0 on Dhγτ , (62)

in which εu
i , i = 1, 2, 3 satisfy the difference boundary value problem

Θh,τεu,k+1
i,h,τ = Λh,τεu,k

i,h,τ + Ω1(h, τ) on D0hγτ , (63)

Θ∗h,τεu,k+1
i,h,τ = Λ∗h,τεu,k

i,h,τ + Γ∗h,τεu
i,φ,h,τ +

5
6

Ω1(h, τ) on D∗hγτ , (64)

εu
i,h,τ = εu

i,ϕ,h,τ = εu
i (x1, x2, 0) ≥ 0, t = 0 on Dh, (65)

εu
i,h,τ = εu

i,φ,h,τ ≥ 0 on Sh
T . (66)
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Therefore, we write the difference problems (56)–(59) and (63)–(66) for fixed k ≥ 0 in
matrix form

Aε̂u,k+1 = Bε̂u,k + τêu,k, (67)

Aεu,k+1
i = Bεu,k

i + τeu,k
i , i = 1, 2, 3, (68)

respectively, where A and B are the matrices given in (22) and eu,k
i , εu,k

i , i = 1, 2, 3 and
ε̂u,k, êu,k ∈ RN . Using (52) and (56)–(66) gives εu,0

i ≥ 0 ,
∣∣ε̂u,0

∣∣ ≤ εu,0
i , and eu,k

i ≥ 0, and∣∣∣êu,k
∣∣∣ ≤ eu,k

i , i = 1, 2, 3, for k = 0, ..., M′ − 1. On the basis of Lemma 2, we get
∣∣∣ε̂u,k+1

∣∣∣ ≤
εu,k+1

i , k = 0, ..., M′ − 1 and using that Ω1(h, τ) ≥
∣∣∣Ψu,k

1

∣∣∣ on D0hγτ , and 5
6 Ω1(h, τ) ≥

∣∣∣Ψu,k
2

∣∣∣
on D∗hγτ gives ∣∣∣εu

h,τ

∣∣∣ ≤ min
i=1,2,3

εu
i (x1, x2, t) ≤ dΩ1(h, τ)ρ(x1, x2, t) on Dhγτ , (69)

3. Difference Problem Approximating ∂u
∂x1

on Hexagonal grids with O(h2 + τ2) Order
of Accuracy

We use the notations ∂x1 f k+ 1
2

P0
= ∂ f

∂x1

∣∣∣
(x1,x2,t+ τ

2 )
and ∂x1 f k+ 1

2
PA

= ∂ f
∂x1

∣∣∣
( p̂,x2,t+ τ

2 )
. Given

the boundary value Problems (2)–(4), we denote pi =
∂u
∂x1

on STγi, i = 1, 2, ..., 5 and setup

the next boundary value problem for v = ∂u
∂x1

.
BVP(2):

Lv =
∂ f (x1, x2, t)

∂x1
on QT , (70)

v(x1, x2, t) = pi on STγi, i = 1, 2, ..., 5, (71)

where

L ≡ ∂

∂t
−ω

(
∂2

∂x2
1
+

∂2

∂x2
2

)
, (72)

and f (x1, x2, t) is the given function in (2). On the basis of the assumption that u ∈
C7+α, 7+α

2
x,t

(
QT
)
, we assume that the solution v ∈ C6+α,3+ α

2
x,t

(
QT
)
.

We take

p2nd

1h =



1
2h (−3u(0, x2, t) + 4uh,τ(h, x2, t)
−uh,τ(2h, x2, t)) if P0 ∈ D0hγτ

1
3h

(
−8u(0, x2, t) + 9uh,τ

(
h
2 , x2, t

)
−uh,τ

(
3h
2 , x2, t

))
if P0 ∈ D∗lhγτ

on Sh
Tγ1, (73)

p2nd

3h =



1
2h (3u(a1, x2, t)− 4uh,τ(a1 − h, x2, t)
+uh,τ(a1 − 2h, x2, t)) if P0 ∈ D0hγτ

1
3h

(
8u(a1, x2, t)− 9uh,τ

(
a1 − h

2 , x2, t
)

+uh,τ

(
a1 − 3h

2 , x2, t
))

if P0 ∈ D∗rhγτ

on Sh
Tγ3, (74)

pih =
∂φ(x1, x2, t)

∂x1
on Sh

Tγi, i = 2, 4, (75)

p5h =
∂ϕ(x1, x2)

∂x1
on Sh

Tγ5, (76)

and ϕ(x1, x2) given in (3), φ(x1, x2, t) given in (4) are the initial and boundary functions,
respectively, uh,τ is the solution of the difference problem in Stage 1

(
H2nd

)
.
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Lemma 3. The following inequality∣∣∣p2nd

ih (uh,τ)− p2nd

ih (u)
∣∣∣ ≤ 3dΩ1(h, τ), i = 1, 3. (77)

holds true for r = ωτ
h2 ≤ 3

7 , where u is the solution of the boundary value Problems (2)–(4) and uh,τ

is the solution of the difference problem in Stage 1
(

H2nd
)

and Ω1(h, τ) and d are as given in (52)
and (55), respectively.

Proof. Taking into consideration Theorem 1, and using (51), (73), and (74) when P0 ∈
D0hγτ , we have∣∣∣p2nd

ih (uh,τ)− p2nd

ih (u)
∣∣∣ ≤ 1

2h
(4hdΩ1(h, τ) + 2hdΩ1(h, τ))

≤ 3dΩ1(h, τ), i = 1, 3 if P0 ∈ D0hγτ , (78)

where Ω1 is as given in (52) and d is the constant given in (55). When P0 ∈ D∗hγτ results∣∣∣p2nd

ih (uh,τ)− p2nd

ih (u)
∣∣∣ ≤ 1

3h

(
9

h
2

dΩ1(h, τ) +
3h
2

dΩ1(h, τ)

)
≤ 2dΩ1(h, τ), i = 1, 3 if P0 ∈ D∗hγτ . (79)

Thus, we obtain (77).

Lemma 4. The following inequality

max
Sh

Tγ1∪Sh
Tγ3

∣∣∣p2nd

ih (uh,τ)− pi

∣∣∣ ≤ M1h2 + 3dΩ1(h, τ), i = 1, 3, (80)

holds true for r = ωτ
h2 ≤ 3

7 where uh,τ is the solution of the difference problem in Stage 1
(

H2nd
)

and M1 = 1
3 max

QT

∣∣∣∣ ∂3u
∂x3

1

∣∣∣∣ and Ω1 and d are as given in (52) and (55), respectively.

Proof. From the assumption that the exact solution u ∈ C7+α, 7+α
2

x,t
(
QT
)
, at the end points(

0, η
√

3
2 h, kτ

)
∈ Sh

Tγ1 and
(

a1, η
√

3
2 h, kτ

)
∈ Sh

Tγ3 of each line segment[(
x1, η

√
3

2
h, kτ

)
: 0 ≤ x1 ≤ a1, 0 ≤ x2 = η

√
3

2
h ≤ a2, 0 ≤ t = kτ ≤ T

]
,

difference formulas (73) and (74) give the second order approximation of ∂u
∂x1

, respectively.
From the truncation error formula (see [39]) it follows that

max
Sh

Tγ1∪Sh
Tγ3

∣∣∣p2nd

ih (u)− pi

∣∣∣ ≤ h2

3
max

QT

∣∣∣∣∣∂3u
∂x3

1

∣∣∣∣∣, i = 1, 3 if P0 ∈ D0hγτ . (81)

Analogously,

max
Sh

Tγ1∪Sh
Tγ3

∣∣∣p2nd

ih (u)− pi

∣∣∣ ≤ h2

8
max

QT

∣∣∣∣∣∂3u
∂x3

1

∣∣∣∣∣, i = 1, 3 if P0 ∈ D∗hγτ . (82)

Using Lemma 3 and the estimations (81) and (82) follows (80).

We construct the following difference problem for the numerical solution of BVP(2)
and denote this stage as



Fractal Fract. 2021, 5, 19 12 of 26

Stage 2
(

H2nd
(

∂u
∂x1

))

Θh,τvk+1
h,τ = Λh,τvk

h,τ + Dx1 ψ on D0hγτ , (83)

Θ∗h,τvk+1
h,τ = Λ∗h,τvk

h,τ + Γ∗h,τ p2nd

1h + Dx1 ψ∗ on D∗lhγτ , (84)

Θ∗h,τvk+1
h,τ = Λ∗h,τvk

h,τ + Γ∗h,τ p2nd

3h + Dx1 ψ∗ on D∗rhγτ , (85)

vh,τ = p2nd

ih (uh,τ) on Sh
Tγi, i = 1, 3, (86)

vh,τ = pih on Sh
Tγi, i = 2, 4, 5, (87)

where p2nd

1h , p2nd

3h , and pih , i = 2, 4, 5 are defined by (73)–(76) and the operators Θh,τ ,
Λh,τ , Θ∗h,τ , Λ∗h,τ and Γ∗h,τ are the operators given in (16)–(20), respectively. Additionally,

Dx1 ψ = ∂x1 f k+ 1
2

P0
, (88)

Dx1 ψ∗ = ∂x1 f k+ 1
2

P0
− 1

6
∂x1 f k+ 1

2
PA

, (89)

Let
εv

h,τ = vh,τ − v on Dhγτ , (90)

where v = ∂u
∂x1

. From (83)–(87) and (90), we have

Θh,τεv,k+1
h,τ = Λh,τεv,k

h,τ + Ψv,k
1 on D0hγτ , (91)

Θ∗h,τεv,k+1
h,τ = Λ∗h,τεv,k

h,τ + Γ∗h,τε∗vh,τ + Ψv,k
2 on D∗hγτ , (92)

εv
h,τ = 0 on Sh

Tγi, i = 2, 4, 5, (93)

εv
h,τ = ε∗vh,τ = p2nd

ih (uh,τ)− pi on Sh
Tγi, i = 1, 3, (94)

where

Ψv,k
1 = Λh,τvk −Θh,τvk+1 + Dx1 ψ, (95)

Ψv,k
2 = Λ∗h,τvk −Θ∗h,τvk+1 + Γ∗h,τ pi + Dx1 ψ∗, i = 1, 3. (96)

Let

θ1 = max

{
max

QT

∣∣∣∣∣ ∂4v
∂x4

1

∣∣∣∣∣, max
QT

∣∣∣∣∣ ∂4v
∂x4

2

∣∣∣∣∣, max
QT

∣∣∣∣∣ ∂4v
∂x2

1∂x2
2

∣∣∣∣∣
}

,

σ1 = max

{
max

QT

∣∣∣∣∂3v
∂t3

∣∣∣∣, max
QT

∣∣∣∣∣ ∂4v
∂x2

2∂t2

∣∣∣∣∣, max
QT

∣∣∣∣∣ ∂4v
∂x2

1∂t2

∣∣∣∣∣
}

,

and

θ = max
{

θ1,
40M1

3
+ 12dωα∗

}
, (97)

σ = max{σ1, 3dβ∗}, (98)

where α∗, β∗ are as given in (53), (54), respectively, and M1 is as given in (80).

Theorem 2. The implicit scheme given in Stage 2( ∂u
∂x1

) is unconditionally stable.

Proof. The obtained algebraic linear system of Equations (83)–(87) can be given in ma-
trix form:

Aṽk+1 = Bṽk + τqk
v, (99)
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k = 0, 1, ..., M′ − 1, where A and B are the matrices given in (22) and ṽk, qk
v ∈ RN . On the

basis of the assumption that the exact solution v of the BVP(2) belongs to C6+α,3+ α
2

x,t
(
QT
)

and using Lemma 1 and by induction we get∥∥∥ṽk+1
∥∥∥

2
≤

∥∥∥A−1B
∥∥∥

2

∥∥∥ṽk
∥∥∥

2
+ τ

∥∥∥A−1
∥∥∥

2

∥∥∥qk
v

∥∥∥
2

≤
∥∥∥ṽ0
∥∥∥

2
+ τ

k

∑
k′=0

∥∥∥qk′
v

∥∥∥
2
. (100)

Thus, Lax and Richtmyer sufficient condition for stability given in Theorem 1 of [33]
is satisfied and the scheme is unconditionally stable.

Theorem 3. The solution vh,τ of the finite difference problem given in Stage 2
(

H2nd
(

∂u
∂x1

))
satisfies

max
Dhγτ

∣∣vh,τ − v
∣∣ ≤ σ

12
(1 + 6ω)(T + 1)τ2 +

3θ

40
h2
(

1 + a2
1 + a2

2

)
, (101)

for r = ωτ
h2 ≤ 3

7 where θ, σ are as given in (97), (98), respectively, and v = ∂u
∂x1

is the exact solution
of BVP(2).

Proof. Consider the auxiliary system

Θh,τ ε̂v,k+1
h,τ = Λh,τ ε̂v,k

h,τ + Ω2(x1) on D0hγτ , (102)

Θ∗h,τ ε̂v,k+1
h,τ = Λ∗h,τ ε̂v,k

h,τ + Γ∗h,τ ε̂v∗
h,τ + Ω2(x1)−

1
6

Ω2( p̂) on D∗hγτ , (103)

ε̂v
h,τ = 0 on Sh

Tγi, i = 2, 4, 5, (104)

ε̂v
h,τ = ε̂v∗

h,τ = p2nd

ih (uh,τ)− pi on Sh
Tγi, i = 1, 3, (105)

where

Ω2(x1) =
σ

24a1
(1 + 6ω)τ2(2a1 − x1) +

3θω

10
h2,

≥ σ

24
(1 + 6ω)τ2 +

3θω

10
h2 ≥

∣∣∣Ψv,k
1

∣∣∣, (106)

Ω2(x1)−
1
6

Ω2( p̂) =

 (1 + 6ω)τ2
(

5
72 −

h
48a1

)
+ θω

4 h2 if P0 ∈ D∗lhγτ

(1 + 6ω)τ2
(

5
144 + h

48a1

)
+ θω

4 h2 if P0 ∈ D∗rhγτ

≥
∣∣∣Ψv,k

2

∣∣∣, (107)

and x1 = h
2 and p̂ = 0 if P0 ∈ D∗lhγτ and x1 = a1 − h

2 , p̂ = a1 if P0 ∈ D∗rhγτ . We take the
majorant function

εv(x1, x2, t) = εv
1(x1, x2, t) + εv

2(x1, x2, t), (108)

where

εv
1(x1, x2, t) =

στ2

24a1
(1 + 6ω)(t + 1)(2a1 − x1) ≥ 0 on Dhγτ , (109)

εv
2(x1, x2, t) =

3θ

40
h2
(

1 + a2
1 + a2

2 − x2
1 − x2

2

)
≥ 0 on Dhγτ , (110)
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The function in (108) satisfies the difference problem

Θh,τεv,k+1
h,τ = Λh,τεv,k

h,τ + Ω2(x1) on D0hγτ , (111)

Θ∗h,τεv,k+1
h,τ = Λ∗h,τεv,k

h,τ + Γ∗h,τεv∗
h,τ + Ω2(x1)−

1
6

Ω2( p̂) on D∗hγτ , (112)

εv
h,τ = εv∗

h,τ = εv
1(0, x2, t) + εv

2(0, x2, t) on Sh
Tγ1, (113)

εv
h,τ = εv

1(x1, 0, t) + εv
2(x1, 0, t) on Sh

Tγ2, (114)

εv
h,τ = εv∗

h,τ = εv
1(a1, x2, t) + εv

2(a1, x2, t) on Sh
Tγ3, (115)

εv
h,τ = εv

1(x1, a2, t) + εv
2(x1, a2, t) on Sh

Tγ4, (116)

εv
h,τ = εv

1(x1, x2, 0) + εv
2(x1, x2, 0) on Sh

Tγ5. (117)

The algebraic system of Equations (102)–(105) and (111)–(117) can be written in matrix
form as

Aε̂v,k+1 = Bε̂v,k + τêv,k, (118)

Aεv,k+1 = Bεv,k + τev,k, (119)

respectively, for k = 0, ..., M′ − 1, where A, B are matrices as given in (22) and ε̂v,k, εv,k,
êv,k, ev,k ∈ RN . Using (106)–(117), we have εv,0 ≥ 0 , and ev,k ≥ 0 , and

∣∣∣êv,k
∣∣∣ ≤ ev,k for

k = 0, ..., M′ − 1, and
∣∣ε̂v,0

∣∣ ≤ εv,0. Then, on the basis of Lemma 2, we get
∣∣∣ε̂v,k+1

∣∣∣ ≤ εv,k+1

for k = 0, ..., M′ − 1. From

εv(x1, x2, t) ≤ εv(0, 0, T)

=
σ

12
(1 + 6ω)(T + 1)τ2 +

3θ

40
h2
(

1 + a2
1 + a2

2

)
,

and using (106) and (107) follows (101).

4. Second Order Approximation of ∂u
∂x2

on Hexagonal grids

Let the BVP(1) be given, then we use the notations ∂x2 f k+ 1
2

P0
= ∂ f

∂x2

∣∣∣
(x1,x2,t+ τ

2 )
and

∂x2 f k+ 1
2

PA
= ∂ f

∂x2

∣∣∣
( p̂,x2,t+ τ

2 )
and denote qi = ∂u

∂x2
on STγi, i = 1, 2, ..., 5 and setup the next

boundary value problem for z = ∂u
∂x2

,
BVP(3):

Lz =
∂ f (x1, x2, t)

∂x2
on QT , (120)

z(x1, x2, t) = qi on STγi, i = 1, 2, ..., 5, (121)

where L is the operator in (72) and f (x1, x2, t) is the given function in (2). We assume that

the solution z ∈ C6+α,3+ α
2

x,t
(
QT
)

and take
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q2nd

2h =
1

2
√

3h

(
−3u(x1, 0, t) + 4uh,τ

(
x1,
√

3h, t
)

−uh,τ

(
x1, 2
√

3h, t
))

on Sh
Tγ2, (122)

q2nd

4h =
1

2
√

3h

(
3u(x1, a2, t)− 4uh,τ

(
x1, a2 −

√
3h, t

)
+uh,τ

(
x1, a2 − 2

√
3h, t

))
on Sh

Tγ4, (123)

qih =
∂φ(x1, x2, t)

∂x2
on Sh

Tγi, i = 1, 3, (124)

q5h =
∂ϕ(x1, x2)

∂x2
on Sh

Tγ5, (125)

and ϕ(x1, x2) given in (3), φ(x1, x2, t) given in (4) are the initial and boundary functions,
respectively, uh,τ is the solution of the difference problem in Stage 1

(
H2nd

)
.

Lemma 5. The following inequality holds∣∣∣q2nd

ih (uh,τ)− q2nd

ih (u)
∣∣∣ ≤ 3dΩ1(h, τ), i = 2, 4, (126)

for r = ωτ
h2 ≤ 3

7 , where u is the solution of the boundary value Problems (2)–(4) and uh,τ is the

solution of the difference Problems (10)–(13) in Stage 1
(

H2nd
)

and Ω1(h, τ) and d are as given
in (52) and (55), respectively.

Proof. Taking into consideration Theorem 1, and using (51), (122), and (123), we have∣∣∣q2nd

ih (uh,τ)− q2nd

ih (u)
∣∣∣ ≤ 1

2
√

3h

(
4
√

3hdΩ1(h, τ) + 2
√

3hdΩ1(h, τ)
)

≤ 3dΩ1(h, τ), i = 2, 4, (127)

thus, we obtain (126).

Lemma 6. The following inequality is true

max
Sh

Tγ2∪Sh
Tγ4

∣∣∣q2nd

ih (uh,τ)− qi

∣∣∣ ≤ M2h2 + 3dΩ1(h, τ), i = 2, 4, (128)

for r = ωτ
h2 ≤ 3

7 , where M2 = max
QT

∣∣∣∣ ∂3u
∂x3

2

∣∣∣∣ and uh,τ is the solution of the difference problem in Stage

1
(

H2nd
)

and Ω1(h, τ) and d are as given in (52) and (55), respectively.

Proof. From the assumption that the exact solution u ∈ C7+α, 7+α
2

x,t
(
QT
)
, at the end points

(ϑh, 0, kτ) ∈ Sh
Tγ2 and (ϑh, a2, kτ) ∈ Sh

Tγ4 of each line segment

[(ϑh, x2, kτ) : 0 ≤ x1 = ϑh ≤ a1, 0 ≤ x2 ≤ a2, 0 ≤ t = kτ ≤ T],

difference formulas (122) and (123) give the second order approximation of ∂u
∂x2

, respectively.
From the truncation error formula (see [39]), it follows that

max
Sh

Tγ2∪Sh
Tγ4

∣∣∣q2nd

ih (u)− qi

∣∣∣ ≤ h2max
QT

∣∣∣∣∣∂3u
∂x3

2

∣∣∣∣∣, i = 2, 4 . (129)
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Taking M2 = max
QT

∣∣∣∣ ∂3u
∂x3

2

∣∣∣∣ and using Lemma 5 and the estimation (127) and (129) fol-

lows (128).

We construct the following difference problem for the numerical solution of BVP(3)
and denote this stage as

Stage 2
(

H2nd
(

∂u
∂x2

))

Θh,τzk+1
h,τ = Λh,τzk

h,τ + Dx2 ψ on D0hγτ , (130)

Θ∗h,τzk+1
h,τ = Λ∗h,τzk

h,τ + Γ∗h,τq1h + Dx2 ψ∗ on D∗lhγτ , (131)

Θ∗h,τzk+1
h,τ = Λ∗h,τzk

h,τ + Γ∗h,τq3h + Dx2 ψ∗ on D∗rhγτ , (132)

zh,τ = q2nd

ih (uh,τ) on Sh
Tγi, i = 2, 4, (133)

zh,τ = qih on Sh
Tγi, i = 1, 3, 5, (134)

where q2nd

2h , q2nd

4h , and qih, i = 1, 3, 5 are defined by (122)–(125) and the operators Θh,τ ,
Λh,τ , Θ∗h,τ , Λ∗h,τ , and Γ∗h,τ are the operators given in (16)–(20), respectively. In addition,

Dx2 ψ = ∂x2 f k+ 1
2

P0
, (135)

Dx2 ψ∗ = ∂x2 f k+ 1
2

P0
− 1

6
∂x2 f k+ 1

2
PA

. (136)

Let
εz

h,τ = zh,τ − z on Dhγτ . (137)

From (130)–(134) and (137), we have

Θh,τεz,k+1
h,τ = Λh,τεz,k

h,τ + Ψz,k
1 on D0hγτ , (138)

Θ∗h,τεz,k+1
h,τ = Λ∗h,τεz,k

h,τ + Ψz,k
2 on D∗hγτ , (139)

εz
h,τ = 0 on Sh

Tγi, i = 1, 3, 5, (140)

εz
h,τ = q2nd

ih (uh,τ)− qi on Sh
Tγi, i = 2, 4, (141)

where qih are defined by (122)–(125) and

Ψz,k
1 = Λh,τzk −Θh,τzk+1 + Dx2

ψ, (142)

Ψz,k
2 = Λ∗h,τzk −Θ∗h,τzk+1 + Γ∗h,τqi + Dx2 ψ∗, i = 1, 3. (143)

Let

κ1 = max

{
max

QT

∣∣∣∣∣ ∂4z
∂x4

1

∣∣∣∣∣, max
QT

∣∣∣∣∣ ∂4z
∂x4

2

∣∣∣∣∣, max
QT

∣∣∣∣∣ ∂4z
∂x2

1∂x2
2

∣∣∣∣∣
}

, (144)

δ1 = max

{
max

QT

∣∣∣∣∂3z
∂t3

∣∣∣∣, max
QT

∣∣∣∣∣ ∂4z
∂x2

2∂t2

∣∣∣∣∣, max
QT

∣∣∣∣∣ ∂4z
∂x2

1∂t2

∣∣∣∣∣
}

, (145)

and

κ = max
{

κ1,
40M2

3
+ 12dωα∗

}
, (146)

δ = max{δ1, 3dβ∗}, (147)

α∗, β∗ are as given in (53), (54), respectively, and M2 is the constant given in Lemma 6 and
z is the solution of BVP(3).
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Theorem 4. The implicit scheme given in Stage 2
(

H2nd
(

∂u
∂x2

))
is unconditionally stable.

Proof. The obtained algebraic linear system of Equations (130)–(134) can be given in
matrix form:

Az̃k+1 = Bz̃k + τqk
z, (148)

for k = 0, 1, ..., M′ − 1, where, A, B are as given in (22) and z̃k, qk
z ∈ RN . On the basis of the

assumption that the exact solution z of the BVP(3) belongs to C6+α,3+ α
2

x,t
(
QT
)

and using
Lemma 1 and induction we get∥∥∥z̃k+1

∥∥∥
2
≤

∥∥∥A−1B
∥∥∥

2

∥∥∥z̃k
∥∥∥

2
+ τ

∥∥∥A−1
∥∥∥

2

∥∥∥qk
z

∥∥∥
2

≤
∥∥∥z̃0
∥∥∥

2
+ τ

k

∑
k′=0

∥∥∥qk′
z

∥∥∥
2
. (149)

Therefore, the scheme is unconditionally stable.

Theorem 5. The solution zh,τ of the finite difference problem given in Stage 2
(

H2nd
(

∂u
∂x2

))
satisfies

max
Dhγτ

∣∣zh,τ − z
∣∣ ≤ δ

12
(1 + 6ω)(T + 1)τ2 +

3κ

40

(
1 + a2

1 + a2
2

)
h2, (150)

for r = ωτ
h2 ≤ 3

7 , where κ, δ are as given in (146), (147) respectively and z = ∂u
∂x2

is the exact
solution of BVP(3) .

Proof. Consider the auxiliary system

Θh,τ ε̂z,k+1
h,τ = Λh,τ ε̂z,k

h,τ + Ω3(x2) on D0hγτ , (151)

Θ∗h,τ ε̂z,k+1
h,τ = Λ∗h,τ ε̂z,k

h,τ +
5
6

Ω3(x2) on D∗hγτ (152)

ε̂z
h,τ = 0 on Sh

Tγi, i = 1, 3, 5, (153)

ε̂z
h,τ = q2nd

ih (uh,τ)− qi on Sh
Tγi, i = 2, 4, (154)

where q2nd

2h , q2nd

4h , qih , i = 1, 3, 5, are defined by (122)–(125) and

Ω3(x2) =
δ

24a2
(1 + 6ω)τ2(2a2 − x2) +

3κω

10
h2

≥ δ

24
(1 + 6ω)τ2 +

3κω

10
h2 ≥

∣∣∣Ψz,k
1

∣∣∣, (155)

5
6

Ω3(x2) =
5δ

144a2
(1 + 6ω)τ2(2a2 − x2) +

κω

4
h2

≥ 5δ

144
(1 + 6ω)τ2 +

κω

4
h2 ≥

∣∣∣Ψz,k
2

∣∣∣. (156)

We take the majorant function

εz(x1, x2, t) = εz
1(x1, x2, t) + εz

2(x1, x2, t), (157)

where

εz
1(x1, x2, t) =

δ

24a2
τ2(1 + 6ω)(t + 1)(2a2 − x2) ≥ 0 on Dhγτ , (158)

εz
2(x1, x2, t) =

3κ

40
h2
(

1 + a2
1 + a2

2 − x2
1 − x2

2

)
≥ 0 on Dhγτ . (159)
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The majorant function in (157) satisfies the difference problem

Θh,τεz,k+1
h,τ = Λh,τεz,k

h,τ + Ω3(x2) on D0hγτ , (160)

Θ∗h,τεz,k+1
h,τ = Λ∗h,τεz,k

h,τ + Γ∗h,τεz∗
h,τ +

5
6

Ω3(x2) on D∗hγτ , (161)

εz
h,τ = εz∗

h,τ = εz
1(0, x2, t) + εz

2(0, x2, t) on Sh
Tγ1, (162)

εz
h,τ = εz

1(x1, 0, t) + εz
2(x1, 0, t) on Sh

Tγ2, (163)

εz
h,τ = εz∗

h,τ = εz
1(a1, x2, t) + εz

2(a1, x2, t) on Sh
Tγ3, (164)

εz
h,τ = εz

1(x1, a2, t) + εz
2(x1, a2, t) on Sh

Tγ4, (165)

εz
h,τ = εz

1(x1, x2, 0) + εz
2(x1, x2, 0) on Sh

Tγ5. (166)

We write the algebraic system of Equations (151)–(154) and (160)–(166) for fixed k ≥ 0
in matrix form

Aε̂z,k+1 = Bε̂z,k + τêz,k, (167)

Aεz,k+1 = Bεz,k + τez,k, (168)

respectively, where A, B are as given in (22) and ε̂z,k, εz,k, êz,k, ez,k ∈ RN . Using (155)–(166),
we get ez,k ≥ 0 and

∣∣∣êz,k
∣∣∣ ≤ ez,k for k = 0, 1, ..., M′ − 1 and εz,0 ≥ 0,

∣∣ε̂z,0
∣∣ ≤ εz,0. Then, on

the basis of Lemma 2 follows
∣∣∣ε̂z,k+1

∣∣∣ ≤ εz,k+1, k = 0, 1, ..., M′ − 1. From

εz(x1, x2, t) ≤ εz(0, 0, T)

=
δ

12
(1 + 6ω)(T + 1)τ2 +

3κ

40

(
1 + a2

1 + a2
2

)
h2, (169)

and using (155), (156) follows (150).

5. Numerical Results

A test problem is constructed of which the exact solution is known to show the
efficiency of the proposed two stage implicit method. The rectangle D is taken as D ={
(x1, x2) : 0 < x1 < 1, 0 < x2 <

√
3

2

}
, and t ∈ [0, 1]. All the computations are performed

using Mathematica in double precision on a personal computer with properties AMD
Ryzen 7 1800X Eight Core Processor 3.60GHz. To solve the obtained linear algebraic system
of equations, we applied incomplete block-matrix factorization of the block tridiagonal
stiffness matrices which are symmetric M—matrices for the all considered pairs of (h, τ)
using two-step iterative method for matrix inversion. Then these incomplete block-matrix
factorizations are used as preconditioners for the conjugate gradient method as given
in [34] (see also [35,36] ). We use the following notations in tables and figures:

H2nd
(

∂u
∂x1

)
denotes the proposed two stage implicit method on hexagonal grids for the

approximation of the derivative ∂u
∂x1

.

H2nd
(

∂u
∂x2

)
denotes the proposed two stage implicit method on hexagonal grids for the

approximation of the derivative ∂u
∂x2

.

CTH2nd
(

∂u
∂x1

)
presents the Central Processing Unit time in seconds (CPUs) per time level

for the method H2nd
(

∂u
∂x1

)
.

CTH2nd
(

∂u
∂x2

)
presents the Central Processing Unit time in seconds (CPUs) per time level

for the method H2nd
(

∂u
∂x2

)
.
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TCTH2nd
(

∂u
∂x1

)
shows the total Central Processing Unit time in seconds required for the

solution at t = 1, by the method H2nd
(

∂u
∂x1

)
.

TCTH2nd
(

∂u
∂x2

)
shows the total Central Processing Unit time in seconds required for the

solution at t = 1, by the method H2nd
(

∂u
∂x2

)
.

The proposed two stage implicit method for the approximation of the derivatives
∂u
∂x1

, ∂u
∂x2

are denoted as the methods H2nd
(

∂u
∂x1

)
, and H2nd

(
∂u
∂x2

)
. Additionally, the corre-

sponding solutions are denoted by v2−µ ,2−λ , and z2−µ ,2−λ , respectively, for h = 2−µ and

τ = 2−λ where µ, λ are positive integers. On the grid points Dhγτ , which is the clo-
sure of Dhγτ we present the error function εh,τ obtained by H2nd

(
∂u
∂x1

)
, and H2nd

(
∂u
∂x2

)
by ε

H2nd
(

∂u
∂x1

)
and by ε

H2nd
(

∂u
∂x2

)
, respectively. In addition, maximum norm of the errors

max
Dhγτ

∣∣∣∣εH2nd
(

∂u
∂x1

)∣∣∣∣ and max
Dhγτ

∣∣∣∣εH2nd
(

∂u
∂x2

)∣∣∣∣ are presented by
∥∥∥∥ε

H2nd
(

∂u
∂x1

)∥∥∥∥
∞

and
∥∥∥∥ε

H2nd
(

∂u
∂x2

)∥∥∥∥
∞

,

accordingly. Further, we denote the order of convergence of the approximate solution
v2−µ ,2−λ to the exact solution v = ∂u

∂x1
obtained by using the two stage implicit method

H2nd
(

∂u
∂x1

)
by

<H2nd
(

∂u
∂x1

)
=

∥∥∥∥ε
H2nd

(
∂u

∂x1

)
(2−µ ,2−λ)

∥∥∥∥
∞∥∥∥∥ε

H2nd
(

∂u
∂x1

)
(2−(µ+1),2−(λ+1))

∥∥∥∥
∞

. (170)

Analogously, the order of convergence of the approximate solution z2−µ ,2−λ to the

exact solution z = ∂u
∂x2

obtained by using the two stage implicit method H2nd
(

∂u
∂x2

)
is

given by

<H2nd
(

∂u
∂x2

)
=

∥∥∥∥ε
H2nd

(
∂u

∂x2

)
(2−µ ,2−λ)

∥∥∥∥
∞∥∥∥∥ε

H2nd
(

∂u
∂x2

)
(2−(µ+1),2−(λ+1))

∥∥∥∥
∞

. (171)

We remark that the values of (170), (171) are ≈ 22 showing that the order of conver-
gence of the approximate solution v2−µ ,2−λ to the exact solution v = ∂u

∂x1
and the order of

convergence of the approximate solution z2−µ ,2−λ to the exact solution z = ∂u
∂x2

are second
order both in the spatial variables x1, x2 and in time t, accordingly.

Test Problem:

∂u
∂t

= 0.5

(
∂2u
∂x2

1
+

∂2u
∂x2

2

)
+ f (x1, x2, t) on QT ,

u(x1, x2, 0) = 0.0001

(
x

57
8

1 (1− x1) + cos
(

x
57
8

2

)(√
3

2
− x2

))
on D,

u(x1, x2, t) = û(x1, x2, t) on ST ,

where
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f (x1, x2, t) = 0.00035625
(

t
41
16 − 6.125x

41
8

1 + 8.125x
49
8

1

+

(√
3

3249
912
− 7.125x2

)
x

49
4

2 cos
(

x
57
8

2

)
+

(√
3

2793
912
− 8.125x2

)
x

41
8

2 sin
(

x
57
8

2

))
û(x1, x2, t) = 0.0001

(
t

57
16 + x

57
8

1 (1− x1) + cos
(

x
57
8

2

)(√
3

2
− x2

))
,

are the heat source and exact solution. Table 1 demonstrates CTH2nd
(

∂u
∂x1

)
, TCTH2nd

(
∂u

∂x1

)
,

maximum norm of the errors for h = 2−µ, µ = 4, 5, 6, 7 when τ = 2−λ, λ = 13, 14, 15, 16,
that is r = 0.5τ

h2 ≤ 3
7 and the order of convergence of vh,τ to the exact derivatives v = ∂u

∂x1
with respect to h and τ obtained by using the constructed two stage implicit method

H2nd
(

∂u
∂x1

)
. Table 2 shows CTH2nd

(
∂u

∂x2

)
, TCTH2nd

(
∂u

∂x2

)
, maximum norm of the errors for

the same pairs of (h, τ) as in Table 1 and the order of convergence of zh,τ to the exact
derivative z = ∂u

∂x2
with respect to h and τ obtained by using the constructed two stage

implicit method H2nd
(

∂u
∂x2

)
. Tables 1 and 2 justify the theoretical results given such that the

approximate solutions vh,τ and zh,τ of the proposed method converge to the corresponding
exact derivatives v = ∂u

∂x1
and z = ∂u

∂x2
with second order both in the spatial variables x1, x2

and the time variable t for r ≤ 3
7 .

Table 1. Computational time, maximum norm of the errors, and the order of convergence of vh,τ to
the exact derivative v = ∂u

∂x1
when r = 0.5τ

h2 ≤ 3
7 .

r = 0.5τ
h2 (h, τ) CT H2nd

(
∂u

∂x1

)
TCT H2nd

(
∂u

∂x1

) ∥∥∥∥ε
H2nd

(
∂u

∂x1

)∥∥∥∥
∞

<H2nd
(

∂u
∂x1

)

2−6 (
2−4, 2−13) 0.03 197.34 9.3475 × 10−6 3.1457

2−5 (
2−5, 2−14) 0.09 1187.55 2.97147 × 10−6 3.5508

2−4 (
2−6, 2−15) 0.59 18, 501.80 8.36840 × 10−7 3.7737

2−3 (
2−7, 2−16) 3.69 144, 505.21 2.21757 × 10−7

Table 2. Computational time, maximum norm of the errors, and the order of convergence of zh,τ to
the exact derivative z = ∂u

∂x2
when r = 0.5τ

h2 ≤ 3
7 .

r = 0.5τ
h2 (h, τ) CT H2nd

(
∂u

∂x2

)
TCT H2nd

(
∂u

∂x2

) ∥∥∥∥ε
H2nd

(
∂u

∂x2

)∥∥∥∥
∞

<H2nd
(

∂u
∂x2

)

2−6 (
2−4, 2−13) 0.02 181.88 3.72134 × 10−6 1.7362

2−5 (
2−5, 2−14) 0.13 1187.55 2.14336 × 10−6 2.6720

2−4 (
2−6, 2−15) 0.70 21, 557.80 8.02154 × 10−7 3.2757

2−3 (
2−7, 2−16) 4.09 169, 305.04 2.44880 × 10−7

Table 3 presents the CTH2nd
(

∂u
∂x1

)
, TCTH2nd

(
∂u

∂x1

)
, maximum norm of the errors for

h = 2−µ, µ = 4, 5, 6, 7, 8 when τ = 2−λ, λ = 8, 9, 10, 11, 12, that is r = 0.5τ
h2 > 3

7 and the order
of convergence of vh,τ to the exact derivative v = ∂u

∂x1
with respect to h and τ obtained by

using the constructed two stage implicit method H2nd
(

∂u
∂x1

)
. Table 4 shows the CTH2nd

(
∂u

∂x2

)
,

TCTH2nd
(

∂u
∂x2

)
, maximum norm of the errors for the same pairs of (h, τ) as in Table 3 and

the order of convergence of zh,τ to the exact derivative z = ∂u
∂x2

with respect to h and τ
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obtained by using the constructed two stage implicit method H2nd
(

∂u
∂x2

)
. Numerical results

given in Tables 3 and 4 demonstrate that when r > 3
7 , the approximate solutions vh,τ and

zh,τ of the proposed method also converge with second order both in the spatial variables
x1, x2 and the time variable t to their corresponding exact derivatives v = ∂u

∂x1
and z = ∂u

∂x2
.

Table 3. Computational time, maximum norm of the errors, and the order of convergence of vh,τ to
the exact derivative v = ∂u

∂x1
when r = 0.5τ

h2 > 3
7 .

r = 0.5τ
h2 (h, τ) CT H2nd

(
∂u

∂x1

)
TCT H2nd

(
∂u

∂x1

) ∥∥∥∥ε
H2nd

(
∂u

∂x1

)∥∥∥∥
∞

<H2nd
(

∂u
∂x1

)

2−1 (
2−4, 2−8) 0.02 4.75 9.34796 × 10−6 3.1458

1
(
2−5, 2−9) 0.08 37.30 2.97159 × 10−6 3.5508

2
(
2−6, 2−10) 0.42 347.70 8.36871 × 10−7 3.7737

22 (
2−7, 2−11) 3.47 3988.83 2.21765 × 10−7 3.8889

23 (
2−8, 2−12) 41.25 68, 313.10 5.70258 × 10−8

Table 4. Computational time, maximum norm of the errors, and the order of convergence of zh,τ to
the exact derivative z = ∂u

∂x2
when r = 0.5τ

h2 > 3
7 .

r = 0.5τ
h2 (h, τ) CT H2nd

(
∂u

∂x2

)
TCT H2nd

(
∂u

∂x2

) ∥∥∥∥ε
H2nd

(
∂u

∂x2

)∥∥∥∥
∞

<H2nd
(

∂u
∂x2

)

2−1 (
2−4, 2−8) 0.03 7.52 3.72102 × 10−6 1.7361

1
(
2−5, 2−9) 0.13 64.38 2.14327 × 10−6 2.6720

2
(
2−6, 2−10) 0.59 533.53 8.02135 × 10−7 3.2757

22 (
2−7, 2−11) 3.83 5122.09 2.44877 × 10−7 3.6202

23 (
2−8, 2−12) 42.91 73, 957.51 6.76426 × 10−8

Figure 3 illustrates the absolute error functions
∣∣∣∣εH2nd

(
∂u

∂x1

)
(2−4,2−13)

∣∣∣∣, ∣∣∣∣εH2nd
(

∂u
∂x1

)
(2−5,2−14)

∣∣∣∣,∣∣∣∣εH2nd
(

∂u
∂x1

)
(2−6,2−15)

∣∣∣∣, and
∣∣∣∣εH2nd

(
∂u

∂x1

)
(2−7,2−16)

∣∣∣∣ at time moment t = 0.2 obtained by us-

ing H2nd
(

∂u
∂x1

)
. Figure 4 demonstrates the absolute error functions

∣∣∣∣εH2nd
(

∂u
∂x2

)
(2−4,2−13)

∣∣∣∣,∣∣∣∣εH2nd
(

∂u
∂x2

)
(2−5,2−14)

∣∣∣∣, ∣∣∣∣εH2nd
(

∂u
∂x2

)
(2−6,2−15)

∣∣∣∣, and
∣∣∣∣εH2nd

(
∂u

∂x2

)
(2−7,2−16)

∣∣∣∣ at time moment t = 0.2

obtained by using H2nd
(

∂u
∂x2

)
. The exact derivative v = ∂u

∂x1
and the grid function v2−6,2−15

for h = 2−6, τ = 2−15 at time moment t = 0.2 obtained by using H2nd
(

∂u
∂x1

)
are presented

in Figure 5. Further, Figure 6 shows the exact derivative z = ∂u
∂x2

and grid function z2−6,2−15

at time moment t = 0.2 obtained by using H2nd
(

∂u
∂x2

)
.
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Figure 3. The absolute error functions at time moment t = 0.2 obtained by using H2nd
(

∂u
∂x1

)
.

Figure 4. The absolute error functions at time moment t = 0.2 obtained by using H2nd
(

∂u
∂x2

)
.

Figure 5. The exact solution v = ∂u
∂x1

and the approximate solution v2−6,2−15 at t = 0.2.
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Figure 6. The exact solution z = ∂u
∂x2

and the approximate solution z2−6,2−15 at t = 0.2.

Table 5 shows the CTH2nd
(

∂u
∂x1

)
, TCTH2nd

(
∂u

∂x1

)
, maximum norm of the errors for r ≤ 3

7 ,
and the order of convergence of vh,τ to the exact derivative v = ∂u

∂x1
with respect to h and τ

obtained when third order approximations for v = ∂u
∂x1

p3rd

1h =



1
6h (−11u(0, x2, t) + 18uh,τ(h, x2, t)

−9uh,τ(2h, x2, t) + 2uh,τ(3h, x2, t)) if P0 ∈ D0hγτ

1
60h

(
−184u(0, x2, t) + 225uh,τ

(
h
2 , x2, t

)
−50uh,τ

(
3h
2 , x2, t

)
+ 9uh,τ

(
5h
2 , x2, t

))
if P0 ∈ D∗lhγτ

on Sh
Tγ1, (172)

p3rd

3h =



1
6h (11u(a1, x2, t)− 18uh,τ(a1 − h, x2, t)

+9uh,τ(a1 − 2h, x2, t)− 2uh,τ(a1 − 3h, x2, t)) if P0 ∈ D0hγτ

1
60h

(
184u(a1, x2, t)− 225uh,τ

(
a1 − h

2 , x2, t
)

+50uh,τ

(
a1 − 3h

2 , x2, t
)
− 9uh,τ

(
a1 − 5h

2 , x2, t
))

if P0 ∈ D∗rhγτ

on Sh
Tγ3, (173)

are used on Sh
Tγi, i = 1, 3 for the Stage 2

(
H2nd

(
∂u
∂x1

))
. Table 6 shows CTH2nd

(
∂u

∂x2

)
,

TCTH2nd
(

∂u
∂x2

)
, maximum norm of the errors for r ≤ 3

7 and the order of convergence
of zh,τ to the exact derivative z = ∂u

∂x2
with respect to h and τ obtained when third order

approximations for z = ∂u
∂x2

.

q3rd
2h =

1
6
√

3h

(
−11u(x1, 0, t) + 18uh,τ

(
x1,
√

3h, t
)

−9uh,τ

(
x1, 2
√

3h, t
)
+ 2uh,τ

(
x1, 3
√

3h, t
))

on Sh
Tγ2, (174)

q3rd

4h =
1

6
√

3h

(
11u(x1, a2, t)− 18uh,τ

(
x1, a2 −

√
3h, t

)
+9uh,τ

(
x1, a2 − 2

√
3h, t

)
− 2uh,τ

(
x1, a2 − 3

√
3h, t

))
on Sh

Tγ4, (175)

are used on Sh
Tγi, i = 2, 4 for the Stage 2

(
H2nd

(
∂u
∂x2

))
. Table 7 presents CTH2nd

(
∂u

∂x1

)
,

TCTH2nd
(

∂u
∂x1

)
, maximum norm of the errors for r > 3

7 , and the order of convergence
of vh,τ to the exact derivatives v = ∂u

∂x1
with respect to h and τ obtained by using the

difference formulae (172), (173) on Sh
Tγi, i = 1, 3 for the Stage 2

(
H2nd

(
∂u
∂x1

))
. Table 8

gives CTH2nd
(

∂u
∂x2

)
, TCTH2nd

(
∂u

∂x2

)
, maximum norm of the errors for r > 3

7 , and the order
of convergence of zh,τ to the exact derivative z = ∂u

∂x2
with respect to h and τ obtained by

using the difference formulae (174), (175) on Sh
Tγi, i = 2, 4 for the Stage 2

(
H2nd

(
∂u
∂x2

))
.

Numerical results given in Tables 5–8 demonstrate that the approximate solution vh,τ and
zh,τ of the proposed method converges to the corresponding exact derivatives v = ∂u

∂x1
and
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z = ∂u
∂x2

with second order both in the spatial variables x1, x2 and the time variable t with
better error ratios.

Table 5. Computational time, maximum norm of the errors, and the order of convergence of vh,τ to
the exact derivative v = ∂u

∂x1
when (172) and (173) are used and r = 0.5τ

h2 ≤ 3
7 .

r = 0.5τ
h2 (h, τ) CT H2nd

(
∂u

∂x1

)
TCT H2nd

(
∂u

∂x1

) ∥∥∥∥ε
H2nd

(
∂u

∂x1

)∥∥∥∥
∞

<H2nd
(

∂u
∂x1

)

2−6 (
2−4, 2−13) 0.03 216.25 3.93819 × 10−6 4.5863

2−5 (
2−5, 2−14) 0.09 1695.39 8.58690 × 10−7 4.6031

2−4 (
2−6, 2−15) 0.63 18945.40 1.86547 × 10−7 4.6131

2−3 (
2−7, 2−16) 3.67 218517.01 4.04385 × 10−8

Table 6. Computational time, maximum norm of the errors, and the order of convergence of zh,τ to
the exact derivative z = ∂u

∂x2
when (174) and (175) are used and r = 0.5τ

h2 ≤ 3
7 .

r = 0.5τ
h2 (h, τ) CT H2nd

(
∂u

∂x2

)
TCT H2nd

(
∂u

∂x2

) ∥∥∥∥ε
H2nd

(
∂u

∂x2

)∥∥∥∥
∞

<H2nd
(

∂u
∂x2

)

2−6 (
2−4, 2−13) 0.03 251.27 3.37221 × 10−6 2.5722

2−5 (
2−5, 2−14) 0.13 2088.16 1.31103 × 10−6 4.3277

2−4 (
2−6, 2−15) 0.63 18945.40 3.02939 × 10−7 4.4163

2−3 (
2−7, 2−16) 3.85 234313.60 6.85956 × 10−8

Table 7. Computational time, maximum norm of the errors, and the order of convergence of vh,τ to
the exact derivative v = ∂u

∂x1
when (172) and (173) are used and r = 0.5τ

h2 > 3
7 .

r = 0.5τ
h2 (h, τ) CT H2nd

(
∂u

∂x1

)
TCT H2nd

(
∂u

∂x1

) ∥∥∥∥ε
H2nd

(
∂u

∂x1

)∥∥∥∥
∞

<H2nd
(

∂u
∂x1

)

2−1 (
2−4, 2−8) 0.02 5.08 3.93866 × 10−6 4.5862

1
(
2−5, 2−9) 0.08 38.19 8.58815 × 10−7 4.6030

2
(
2−6, 2−10) 0.44 352.03 1.86579 × 10−7 4.4176

22 (
2−7, 2−11) 3.52 3994.16 4.22355 × 10−8

Table 8. Computational time, maximum norm of the errors, and the order of convergence of zh,τ to
the exact derivative z = ∂u

∂x2
when (174) and (175) are used and r = 0.5τ

h2 > 3
7 .

r = 0.5τ
h2 (h, τ) CT H2nd

(
∂u

∂x2

)
TCT H2nd

(
∂u

∂x2

) ∥∥∥∥ε
H2nd

(
∂u

∂x2

)∥∥∥∥
∞

<H2nd
(

∂u
∂x2

)

2−1 (
2−4, 2−8) 0.02 5.89 3.67669 × 10−6 2.8278

1
(
2−5, 2−9) 0.11 45.67 1.30019 × 10−6 4.4268

2
(
2−6, 2−10) 0.50 414.27 2.93712 × 10−7 4.5165

22 (
2−7, 2−11) 3.72 4475.91 6.50300 × 10−8

6. Discussions and Conclusion

A second order accurate two stage implicit method on hexagonal grids is proposed for
the approximation of the first order derivatives of the solution to first type boundary value
problem of the heat equation with respect to spatial variables on rectangle. At the first stage,
for the error function, we provided a pointwise prior estimation depending on ρ(x1, x2, t),
which is the distance from the current grid point in the domain to the surface of QT . At
the second stage, we constructed special difference problems for the approximation of ∂u

∂x1

and ∂u
∂x2

. Uniform convergence with order O
(
h2 + τ2) of the solution of the constructed

difference problems to the corresponding exact derivatives ∂u
∂x1

and ∂u
∂x2

on the hexagonal

grids when r = ωτ
h2 ≤ 3

7 is proved. Furthermore, the given two stage implicit method
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is applied on a test problem and the obtained theoretical order of convergence is shown
numerically using tables and figures.

Remark 1. The methodology given in this research may be used to construct highly accurate
implicit splitting schemes (fractional step methods) and alternating direction methods (ADI)
(see [40–43]) for the approximation of the first order partial derivatives of solution of first type
boundary value problem of heat equation in three space dimension. Additionally, this approach
may be extended to find the spatial derivatives of the solution of the time-fractional structure of the
heat equation. Since as well as its solution, the computation of the derivatives of the solution of
the fractional model problem are essential. Such as the time-space fractional convection-diffusion
equation, see [44], in which for the solution a fast iterative method with a second-order implicit
difference scheme was studied.
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24. Ničkovič, S. On the use of hexagonal grids for simulation of atmospheric processes. Contrib. Atmos. Phys. 1994, 67, 103–107.
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