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Abstract: In the field of fractional calculus and applications, a current trend is to propose non-singular
kernels for the definition of new fractional integration and differentiation operators. It was recently
claimed that fractional-order derivatives defined by continuous (in the sense of non-singular) kernels
are too restrictive. This note shows that this conclusion is wrong as it arises from considering the
initial conditions incorrectly in (partial or not) fractional differential equations.
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1. Introduction

Fractional order derivative or integral operators are now widely used in the literature to define
various classes of model, often “fractionalisations” of existing classical models [1] (differential equations,
partial differential equations, state-space descriptions, transfer functions, etc.). However, several
drawbacks associated to these operators and models have been revealed in the last ten years [2].

One of these drawbacks is the singularity of the kernel in the definition of fractional order
derivative or integral operators. This singularity has prompted some authors to propose new
definitions involving non-singular kernels [3,4]. The publication of these works has sparked much
debate in the community [5–7]. For instance, it is claimed in [8] that the kernels used are two restrictive
leads to ill-posed initial-value problems, in that they impose a severe restriction on the function φ(x)
that defines the initial condition of the variable u(t, x) (t is the time variable and x is the spatial variable)
to which a fractional partial differential equation relates to. In [9,10] similar arguments are proposed.
However, as explained in the sequel, these claims are not correct.

2. Problem Analysis

Although the mathematical analysis of the work presented in [8] is completely correct, it rests on
the erroneous idea that initial conditions can be defined by the knowledge of the variable to which the
fractional (partial or not) differential equation relates only at the initial time.

In [8] the following general problem is studied:

D̂α
t u(x, t) −

n∑
i, j=1

pi j(x, t)
∂2u(x, t)
∂xi∂x j

+
n∑

i=1

qi(x, t)
∂u(x, t)
∂xi

+ qi(x, t)u(x, t) = f (x, t) (1)

for (x, t) ∈ QΩ x ]0, T].
Boundary conditions are defined by:

u(x, t) = ψ(x, t) for (x, t) ∈ ∂Ω x ]0, T] (2)
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and initial conditions are defined by:

u(x, 0) = φ(x) for x ∈ Ω (3)

In Relation (1), D̂α
t is the fractional derivative in the Caputo or Riemann-Liouville senses with

α ∈ ]0, 1[. The fractional integral of a function f (t) being defined as:

Iαt f (t) =
1

Γ(α)

∫ t

0

f (τ)

(t− τ)1−α
dτ with t > 0, α ∈ ]0, 1[ (4)

Caputo or Riemann-Liouville derivatives, taking into account initial conditions, are defined by:

Dα
t f (t) =

1
Γ(−α)

∫ t

0

d
dτ f (τ)

(t− τ)1+α
dτ−

t−α

Γ(1− α)
[ f (t)]t=0 (5)

and

Dα
t f (t) =

1
Γ(1− α)

d
dt

(∫ t

0

f (τ)
(t− τ)α

dτ
)
−

[
I1−α
t f (t)

]
t=0

(6)

with t > 0, α ∈ ]0, 1[.
From a mathematical point of view, these definitions are perfectly correct. However, things are

different when they are used to define a dynamic model in the form of a (partial or not) differential
equation. The initializations proposed in Relations (5) and (6) are then not consistent with the
model trajectories.

This problem has been analyzed in the literature on several occasions. The first studies were
done by Lorenzo and Hartley [11,12] who proposed to introduce initialization functions to take into
account in a convenient way the past of the model in a finite interval, but also to allow the Caputo
and Riemann-Liouville definitions to have the same behavior in the presence of initial conditions.
The idea that initial functions must be used instead of initial values is reinforced in [13]. Later in [14],
the “prehistories” of the functions before the initial instant are introduced to address initial value
problems of fractional visco-elastic equations, as these functions are crucial for a unique solution.
In [15,16], it was demonstrated on a counter example that initial conditions as defined in Relations (5)
and (6) cannot be well taken into account in a dynamical model whether by Caputo or Riemann-Liouville
definitions. An impulse response-based representation is thus introduced to define initialization
and it is concluded as in [17] that fractional models and fractional derivative initializations are two
distinct matters. A similar analysis was carried out for partial differential equations in [18] using
an initial time shifting method. Note, a similar time shifting was recently used in [19] to demonstrate
that mathematical description of the groundwater flow using time Caputo or Riemann-Liouville
fractional partial derivatives is non-objective. The authors of [19] have not taken their analysis of this
non-objectivity any further, but that demonstrates the necessity to introduce an initialization function
to restore this objectivity.

It is, therefore, possible to claim that the initializations used in the problem studied in [8] and
also in [9,10] are not correct and produces the incorrect conclusion on the restriction imposed by
non-singular kernels. As discussed in [18,20], to appropriately solve this initialization, fractional
integration can be used to replace fractional differentiation (to avoid the choice among plethora of
definitions for fractional derivatives [21]) and to take into account all the model past. Instead of relation
(1), it is thus better to consider the following model (close to a Volterra equation [22]):

u(x, t) = Îαt


f (x, t) +

n∑
i, j=1

pi j(x, t) ∂
2u(x,t)
∂xi∂x j

−

n∑
i=1

qi(x, t) ∂u(x,t)
∂xi
− qi(x, t)u(x, t)

+ w(x, 0) (7)
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where

Îαt [g(x, t)] =
1

Γ(α)

∫ t

0

f (τ)

(t− τ)1−α
dτ (8)

with

w(x, 0) =
1

Γ(α)

∫ 0

−∞

1

(t− τ)1−α


f (x, τ) +

n∑
i, j=1

pi j(x, τ) ∂
2u(x,τ)
∂xi∂x j

−

n∑
i=1

qi(x, t) ∂u(x,t)
∂xi
− qi(x, τ)u(x, τ)

dτ (9)

Another solution (similar) is to introduce an initialization function in (1) that thus becomes:

D̂α
t u(x, t) + w(x, t) −

n∑
i, j=1

pi j(x, t) ∂
2u(x,t)
∂xi∂x j

+
n∑

i=1
qi(x, t) ∂u(x,t)

∂xi
+ qi(x, t)u(x, t)

= f (x, t)
(10)

such as:
ˆ
−

Dα
t u(x, t) = D̂α

t u(x, t) + w(x, t) (11)

whereD̂α
t u(x, t) denotes the fractional derivative of u(x, t) without taking into account the model past,

and where ˆ
−

Dα
t u(x, t) denotes the fractional derivative of u(x, t) computed with the model past.

These initializations respect a fundamental property of fractional models: their long (and even
infinite) memory. This is not the case with Relation (1) at the initial time which ignores the system past
before initial time with Relation (3).

3. Conclusions

The conclusion reached in [8] on the restrictivity property of non-singular kernels in the new
definitions of fractional operators is dictated by an incorrect way of considering initial conditions.
The same remark can be made about [9,10] (a paper which only focus on two recently studied kernels
among the infinity that can be proposed [22,23]). Fractional operators are known for their memory
property. With the initialization considered in [8,9] and [10], this property would exist everywhere on
the time axis, except at the initial time (which can also be different from t = 0). It may be mathematically
conceivable and correct, but it does not make sense for a dynamical system. Memory is an intrinsic
property that is present at all times (as it is also well explained in the introduction of [6]). It is well
known that models involving memory kernels in their definition require an initialization with the
knowledge of the past on an interval (not only for one instant) linked to the bounds of the integral
on the kernel, as is done for distributed time delay models for instance [24,25]. This remark applies
here to [8,9] and [10], but there are hundreds of other articles in the literature that use the same type of
initialization and that deserve to be revisited.

Contrary to the criticisms made on the attempts to reformulate fractional operators, the author
believes that the solutions to the drawbacks recently highlighted in the literature and related to the
use of fractional operators in the definition of dynamical models can be solved by using new kernels
in Volterra type operators as done in [3,4,22,23,26–28] and before in [29–37] (but other solutions also
exist, as shown in [2,24]).

We cannot ignore that, for a continuous time random walk process with the power-law waiting
time, probability density function and jump lengths with finite variance, the corresponding probability
density function to find the particle at position x at time t in the Fourier-Laplace domain is the
same as the solution of the time fractional diffusion equation with Riemann-Liouville fractional
derivative [38,39]. We cannot ignore similar approaches followed with other continuous time random
walk processes with different waiting time and jump length probability density functions. However,
one has to observe that these results were obtained under spaces of infinite dimension and asymptotic
time analysis (time tends towards infinity). This link with a fractional Riemann-Liouville operator
(and others) with an infinite space domain can also be found in [15,16] and this is what induces
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the distribution of time constants on ]−∞, 0] inherent in fractional Riemann-Liouville and others.
This constitutes one of the drawbacks of fractional operators (see [2]) (infinitely slow and infinitely
fast time constant, the first inducing an infinite memory) that can be solved by changing kernels used
in the Riemann-Liouville operator (and similar operators). Introducing new kernels would also permit
one to take into account power law behaviors that take place in a limited frequency or time domain.

Perhaps the kernels used in these papers should be reworked to improve their properties and
better reflect real world data [7], but many other kernels are possible as shown in [22] and in [23]. It is
thus a path that deserves to be explored, especially since [22] also demonstrates that pseudo-state
space descriptions, a fractional model very frequently used in the field of modelling and automatic
control, are a particular case of a Volterra equation of the first kind. Note that all the kernels presented
in [22,23] met the requirements explained in [6] and exhibit a power law behavior in a given frequency.

Can the resulting operators still claim to belong to the class of derivation and fractional integration
and differentiation operators? The important thing is to have models capable of capturing power law
type behaviors whose ubiquity is now proven, as fractional models allow, but without the drawbacks
associated with them.
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