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Abstract: The heat conduction equation with a fractional Jeffreys-type constitutive law is studied.
Depending on the value of a characteristic parameter, two fundamentally different types of behavior
are established: diffusion regime and propagation regime. In the first case, the considered
equation is a generalized diffusion equation, while in the second it is a generalized wave equation.
The corresponding memory kernels are expressed in both cases in terms of Mittag–Leffler functions.
Explicit representations for the one-dimensional fundamental solution and the mean squared
displacement are provided and analyzed analytically and numerically. The one-dimensional
fundamental solution is shown to be a spatial probability density function evolving in time, which is
unimodal in the diffusion regime and bimodal in the propagation regime. The multi-dimensional
fundamental solutions are probability densities only in the diffusion case, while in the propagation
case they can have negative values. In addition, two different types of subordination principles are
formulated for the two regimes. The Bernstein functions technique is extensively employed in the
theoretical proofs.

Keywords: Riemann–Liouville fractional derivative; Jeffreys’ constitutive model; generalized
diffusion-wave equation; Mittag–Leffler function; Bernstein function

1. Introduction and Model Formulation

The need to go beyond the Fourier heat conduction equation is experimentally proved under
different conditions since decades. There are various situations where the classical Fourier constitutive
law for heat conduction is not applicable (heat flux is not directly proportional to temperature gradient),
such as heat conduction in heterogeneous materials or at low temperatures [1–3].

Several generalizations of the Fourier heat conduction equation using integer-order derivatives
are reviewed in [4]. Among them is the Jeffreys-type heat conduction equation

τq
∂2

∂t2 T(x, t) +
∂

∂t
T(x, t) = D

(
τT

∂

∂t
∆T(x, t) + ∆T(x, t)

)
, x ∈ Rn, t > 0, (1)

where T is the temperature, τq and τT are relaxation times, D is the thermal diffusivity, x denotes the
position vector, t is the temporal variable, ∆ denotes the spatial Laplace operator. The Jeffreys-type
Equation (1) generalizes both the classical Fourier heat conduction equation, obtained by setting
τq = τT = 0 in (1) and the Cattaneo (or telegrapher’s) equation, obtained by setting τT = 0 in (1).

There are different constitutive relations, from where the Jeffreys-type partial differential
Equation (1) can be derived, with different interpretation of the coefficients. These are the first order
differential Dual-Phase-Lag (DPL) constitutive model, introduced in [5], which has the same form as
the so called Jeffreys-type constitutive equation, introduced in [4] in the context of rheology. Moreover,
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in one spatial dimension Equation (1) can be derived from the Guyer–Krumhansl (GK) constitutive
equation, which is related to the phenomenon of second sound in solids. For a concise overview of the
above models we refer to the recent work [6]. See also [7] for a study of thermodynamical consistency
of the aforementioned constitutive equations in one spatial dimension.

The Jeffreys-type heat transport Equation (1) is studied analytically and numerically in different
settings. One of its applications is as a model for thermal behavior in complex non-homogeneous
media, such as living tissues. For instance, in [8,9] it is used in models of skin biothermomechanics.
In the majority of the works both regimes (τq > τT and τq < τT) are of interest; see e.g., [8–11].
Let us note that the value of τT in Equation (1) represents the intensity of diffuse behavior of heat
conduction process, while the value of τq indicates the intensity of wave-like behavior; see, e.g., [9]
for a discussion. In [8,9] model (1) is compared to other bioheat transfer models. In [10] thermal
damage to laser irradiated tissue is analyzed on the basis of the model (1). An initial-value problem
for the three-dimensional Equation (1) with a positive localized source of short duration is studied
in [12], where unphysical behavior of the solution with negative values is found for τq > τT . In [11] an
analytical solution is derived for the Guyer–Krumhansl equation considering boundary conditions
from laser flash experiment. Analytical studies of GK type equations can be also found in [13,14].
In [15] Equation (1) is recast into a heat diffusion equation with a non-singular memory kernel, where
the relaxation term is expressed through the Caputo-Fabrizio time-fractional derivative.

Various time-fractional generalizations of the integer-order non-Fourier heat conduction models are
studied. Fractional telegrapher’s equation are considered, e.g., in [16–18], while the works [19,20] are
devoted to fractional Cattaneo-type equations of distributed order. In [21] a number of time-fractional
Cattaneo models are shown to produce the crossover of the mean squared displacement from
superdiffusion to subdiffusion.

A time-fractional generalization of the Jeffreys-type heat conduction Equation (1) is proposed
in [22]. According to the fractional Jeffreys-type constitutive law ([22], [23] (Chapter 7)) the heat flux
vector q and the temperature T are related via the equation(

1 + τqDα
t
)

q(x, t) = −k (1 + τT Dα
t )∇T(x, t), (2)

where q is the heat flux vector, τq and τT are generalized relaxation times, k is the thermal conductivity,
Dα

t denotes the Riemann–Liouville fractional time-derivative of order α ∈ (0, 1), and ∇ denotes the
gradient operator, acting with respect to the space variables. Combining Equation (2) with the energy
balance equation

−∇ · q(x, t) = C
∂

∂t
T(x, t) (3)

where C denotes the heat capacity, one finds the following fractional Jeffreys-type heat
conduction equation (

1 + τqDα
t
) ∂

∂t
T(x, t) = D (1 + τT Dα

t )∆T(x, t), (4)

where D = k/C is the thermal diffusivity. For notational simplicity we set in the present work D = 1.
We assume arbitrary initial temperature distribution,

T(x, 0) = T0(x)

and zero initial heat flux
q(x, 0) = 0. (5)

The one-dimensional Cauchy problem for Equation (4) is solved analytically in ([23] Chapter 7)
by means of the Laplace and Fourier transforms in the time and space domains, respectively, and some
numerical examples are given. In [24] Equation (4) is studied in the context of unidirectional flows of
viscoelastic fluids. A fractional Jeffreys-type equation of a more general form is proposed and studied
in [6] to address the shortcomings in the DPL model reported in [12] when τq > τT .
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Equation (4) can be represented as a generalized diffusion-wave equation with memory kernel.
The generalized time-fractional diffusion equation with memory kernel is studied, e.g., in [25–28].
Generalized time-fractional wave equations with memory kernel are reviewed in [29,30]. Properties
of multi-dimensional fundamental solutions with the emphasis on their positivity, are studied in the
context of time-fractional and space-time fractional diffusion-wave equations in [31–33]. The Bernsten
functions technique plays a crucial role in the definition of the classes of generalized diffusion-wave
equations, as well as in the proof of positivity of their fundamental solutions.

Motivated by the aforementioned developments, in the present work we revisit the fractional
Jeffreys-type heat Equation (4) with the main emphasis on the differences in behavior in the two cases:
τq < τT and τq > τT . Two fundamentally different types of behavior are established: diffusion regime
for τq < τT and propagation regime for τq > τT . Based on the theory of Bernstein functions, we recast
Equation (4) into a generalized diffusion equation in the first case and a generalized wave equation in
the second. Explicit representation for the one-dimensional fundamental solution is provided and used
for numerical computation and visualization. The one-dimensional fundamental solution is shown to
be a spatial probability density function evolving in time, which is unimodal in the diffusion regime
and bimodal in the propagation regime. The multi-dimensional fundamental solutions are probability
densities only in the diffusion case, while in the propagation case they can have negative values.
In addition, two different types of subordination principles are formulated for the two regimes.

This paper is organized as follows. Section 2 contains preliminaries: definitions and basic
properties of fractional derivatives, Mittag–Leffler functions, Bernstein functions and related classes
of functions. In Section 3, Equation (4) is rewritten as a generalized diffusion-wave equation.
The fundamental solution of the one-dimensional Cauchy problem and the mean squared displacement
are obtained in Section 4. Section 5 contains numerical examples and plots. Subordination principles are
formulated in Section 6 and multi-dimensional fundamental solutions are discussed briefly. Section 7
contains concluding remarks.

2. Preliminaries

The Riemann–Liouville fractional derivative Dα
t of order α ∈ (0, 1) is defined as [34,35]

Dα
t u(t) =

1
Γ(1− α)

d
dt

∫ t

0
(t− t′)−αu(t′)dt′, α ∈ (0, 1). (6)

The Caputo fractional derivative Dα
t is defined by Dα

t u(t) = Dα
t (u(t)− u(0)), α ∈ (0, 1).

The Laplace transform of a function u(t), t ∈ R+, is denoted by

L{u(t)}(s) = û(s) =
∫ ∞

0
e−stu(t)dt.

In this work we consider only functions, which Laplace transform exists for s > 0.
For a function of several variables we denote by û(x, s) or L{u}(x, s) the Laplace transform of

u(x, t) with respect to t.
The Laplace transform pair related to the Riemann–Liouville fractional derivative is

L{Dα
t u}(s) = sαL{u}(s), α ∈ (0, 1), (7)

provided u is continuous function satisfying u(0) < ∞ (see, e.g., [35], Chapter 1, Equation (1.29)).
The Fourier transform of a function v(x), x ∈ Rn, is given by

F{v(x)}(k) = ṽ(k) =
∫
Rn

eik·xv(x)dx, k ∈ Rn.
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The Fourier transform pair corresponding to the Laplace operator ∆ of a function v(x), x ∈ Rn,
such that lim|x|→∞ v(x) = 0, is (see, e.g., [36] Chapter 15)

F{∆v}(k) = −|k|2F{v}(k), k ∈ Rn. (8)

The two-parameter Mittag–Leffler function is defined by the series

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α, β, z ∈ C, <α > 0. (9)

For β = 1 this is the one-parameter Mittag–Leffler function, Eα(z) = Eα,1(z).
The Mittag–Leffler function admits the asymptotic expansion (see, e.g., [35], Equation (E.30))

Eα,β(−t) =
t−1

Γ(β− α)
− t−2

Γ(β− 2α)
+ O(t−3), α ∈ (0, 2), β ∈ R, t→ +∞, (10)

and satisfies the Laplace transform identity (see, e.g., [35], Equation (E.53))

L
{

tβ−1Eα,β(−ωtα)
}
(s) =

sα−β

sα + ω
. (11)

The following relation, which can be easily verified directly from the definition (9), is often useful:

d
dt

Eα

(
−1

a
tα

)
= −1

a
tα−1Eα,α

(
−1

a
tα

)
. (12)

Bernstein functions and related special classes of functions play a crucial role in the present work.
The necessary definitions and basic properties are summarized below. For a detailed study on these
classes of functions we refer to [37], see also ([38] Chapter 4).

A function ϕ : R+ → R is said to be completely monotone function (CMF ) if it is of class C∞ and

(−1)n ϕ(n)(λ) ≥ 0, λ > 0, n = 0, 1, 2, ... (13)

The characterization of the class CMF is given by the Bernstein’s theorem, which states that a
function is completely monotone if and only if it can be represented as the Laplace transform of a
non-negative measure (non-negative function or generalized function).

The class of Stieltjes functions (SF ) consists of all functions defined on R+ which have the
representation (see [25])

ϕ(λ) =
a
λ
+ b +

∫ ∞

0
e−λτψ(τ)dτ, (14)

where a, b ≥ 0, ψ ∈ CMF and the Laplace transform of ψ exists for any λ > 0.
A non-negative function ϕ ∈ C∞(R+) is said to be a Bernstein function (BF ) if ϕ′(λ) ∈ CMF ;

ϕ(t) is said to be a complete Bernstein functions (CBF ) if and only if ϕ(λ)/λ ∈ SF .
Any of the four sets of functions defined above, CMF ,SF ,BF and CBF is a convex cone, i.e., if

ϕ1 and ϕ2 belong to a specific set, then a1 ϕ1 + a2 ϕ2 belongs to the same set for all a1, a2 ≥ 0.
A selection of basic properties necessary in this work is given next.

(A) The class CMF is closed under point-wise multiplication;
(B) If ϕ ∈ CMF and ψ ∈ BF then the composite function ϕ(ψ) ∈ CMF ;
(C) SF ⊂ CMF and CBF ⊂ BF ;
(D) ϕ ∈ CBF if and only if 1/ϕ ∈ SF ;
(E) If ϕ, ψ ∈ CBF then

√
ϕ.ψ ∈ CBF ;

(F) If α ∈ [0, 1] then λα ∈ CBF and λ−α ∈ SF , λ > 0;
(G) If 0 < α ≤ 1 and a > 0 then Eα(−aλα) ∈ CMF and λα−1Eα,α(−aλα) ∈ CMF as functions of λ.
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For proofs and further details on these special classes of functions we refer to [37].

3. Representations as Generalized Diffusion-Wave Equations

We are concerned with the fractional Jeffreys’ equation

(
1 + τqDα

t
) ∂

∂t
T(x, t) = (1 + τT Dα

t )∆T(x, t), (15)

where τq, τT ≥ 0, 0 < α ≤ 1, as our first goal is to recast it into a generalized diffusion-wave equation
with a memory kernel. For this purpose we apply Laplace transform to (15) and by using (7) obtain

1 + τqsα

1 + τTsα
L
{

∂

∂t
T
}
(x, s) = ∆T̂(x, s). (16)

Here, and in what follows, the commutativity relation L (∆u) = ∆ (Lu) is used. For sufficiently
well behaved functions u this property can be easily justified by the theorem for differentiation under
the integral sign.

The next proposition shows that the two cases τq < τT and τq > τT should be
considered separately.

Proposition 1. Assume 0 < α ≤ 1 and τq, τT ≥ 0. The following assertions hold true for the function

f (s) =
1 + τqsα

1 + τTsα
. (17)

(a) If τq < τT then f (s) is a Stieltjes function;
(b) If τq > τT then f (s) is a complete Bernstein function.

Proof. Let τq < τT and use the representation

f (s) =
τq

τT

(
1
τq
− 1

τT

)
1

sα + 1/τT
+

τq

τT
. (18)

Since sα ∈ CBF by property (F), then sα + 1/τT ∈ CBF and therefore, (D) implies (sα + 1/τT)
−1 ∈

SF . Therefore, f (s) is a Stieltjes function for τq < τT as a linear combination with positive coefficients
of two Stieltjes functions. The case τq > τT follows by interchanging τq and τT and taking into account
property (D).

3.1. Generalized Diffusion Equation (τq < τT)

A generalized diffusion equation has the form [25–27]

∫ t

0
ξ(t− t′)

∂

∂t′
T(x, t′)dt′ = ∆T(x, t), (19)

where ξ(t) ∈ L1
loc(R+) is a non-negative function, such that its Laplace transform ξ̂(s) ∈ SF .

Applying inverse Laplace transform to (16) implies the generalized diffusion Equation (19) with
kernel ξ(t), such that

ξ̂(s) =
1 + τqsα

1 + τTsα
. (20)
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Proposition 1 states that ξ̂(s) is a Stieltjes function for τq < τT . Taking into account (18) and (11)
we get from (20) the explicit form of the kernel ξ(t)

ξ(t) =
τq

τT
δ(t) +

(
1−

τq

τT

)
1

τT
tα−1Eα,α

(
− 1

τT
tα

)
, (21)

where δ(t) is the Dirac delta function. Therefore, in the considered in this subsection case
0 < τq/τT < 1 the function ξ(t) is non-negative. In this way we proved that the required conditions
on the kernel ξ(t) in Equation (19) are satisfied.

Plugging the expression (21) for the kernel into the diffusion Equation (19) gives the following
representation of the fractional Jeffreys’ equation in the diffusion case

τq

τT

∂

∂t
T(x, t) +

(
1−

τq

τT

)
1

τT

∫ t

0
(t− t′)α−1Eα,α

(
− 1

τT
(t− t′)α

)
∂

∂t′
T(x, t′)dt′ = ∆T(x, t). (22)

3.2. Generalized Wave Equation (τq > τT)

In the case τq > τT we are looking for a representation of Equation (15) as a generalized wave
equation of the form [29,30]

∫ t

0
η(t− t′)

∂2

∂t′2
T(x, t′)dt′ = ∆T(x, t), (23)

where η(t) ∈ L1
loc(R+) is a non-negative function, such that η̂(s) ∈ SF .

In view of the balance Equation (3) the assumption (5) yields the following initial condition for
the temperature distribution

lim
t→0+

∂

∂t
T(x, t) = 0, (24)

which implies

L
{

∂2

∂t2 T
}
(x, s) = sL

{
∂

∂t
T
}
(x, s).

With the help of this identity we rewrite Equation (16) as

1 + τqsα

s(1 + τTsα)
L
{

∂2

∂t2 T
}
(x, s) = ∆T̂(x, s). (25)

Therefore, the fractional Jeffreys’ Equation (15) is equivalent to the generalized wave Equation (23)
with kernel η(t), such that

η̂(s) =
1 + τqsα

s(1 + τTsα)
=

1
s
+

(
τq

τT
− 1
)

sα−1

sα + 1/τT
. (26)

Applying inverse Laplace transform in (26) gives by the use of (11)

η(t) = 1 +
(

τq

τT
− 1
)

Eα

(
− 1

τT
tα

)
. (27)

Since τq/τT > 1 the kernel η(t) is a non-negative function. Moreover, η(t) ∈ CMF by property
(G) and therefore η̂(s) ∈ SF . Hence, the requirements on the kernel η(t) are satisfied.

Alternatively, in the case τq > τT we can rewrite Equation (15) as the following integro-differential
equation

∂

∂t
T(x, t) =

∫ t

0
µ(t− t′)∆T(x, t′)dt′, (28)
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where µ̂(s) = 1+τTsα

1+τqsα . This follows by rewriting (16) in the form

L
{

∂

∂t
T
}
(x, s) =

1 + τTsα

1 + τqsα
∆T̂(x, s). (29)

For the kernel µ(t) we get by applying (11)

µ(t) =
τT
τq

δ(t) +
(

1− τT
τq

)
1
τq

tα−1Eα,α

(
− 1

τq
tα

)
, (30)

and Equation (28) admits the form

∂

∂t
T(x, t) =

τT
τq

∆T(x, t) +
(

1− τT
τq

)
1
τq

∫ t

0
(t− t′)α−1Eα,α

(
− 1

τq
(t− t′)α

)
∆T(x, t′)dt′. (31)

Let us note that in this form the fractional Jeffreys’ Equation (15) is studied in [24] in the context
of viscoelastic flows of fractional Jeffreys’ fluids.

We observe that the kernels ξ(t), η(t), µ(t) are expressed in terms of Mittag–Leffler functions
with positive coefficients, and thus, by property (G), they are completely monotone. After separation
of the term containing δ(t), the kernels ξ(t) and µ(t) are singular at t = 0 if α ∈ (0, 1) and regular for
α = 1. The kernel η(t) is a regular function, η(0) = τq/τT .

4. Fundamental Solution

In this section we are concerned with the solution of the Cauchy problem for the fractional Jeffreys’
heat conduction equation

(
1 + τqDα

t
) ∂

∂t
T(x, t) = (1 + τT Dα

t )∆T(x, t), x ∈ Rn, t > 0, (32)

T(x, 0) = T0(x); lim
t→0+

∂

∂t
T(x, t) = 0, x ∈ Rn, (33)

lim
|x|→∞

T(x, t) = 0, t > 0. (34)

Problem (32), (33) and (34) is conveniently treated using Laplace transform with respect to the
temporal variable and Fourier transform with respect to the spatial variables. By applying Laplace
and Fourier transforms to Equation (32) and taking into account initial conditions (33), the boundary
condition (34), and identities (7) and (8) we derive the solution in Fourier–Laplace domain

̂̃T(k, s) =
g(s)/s

g(s) + |k|2 T̃0(k), k ∈ Rn, s > 0, (35)

where g(s) denotes the characteristic function

g(s) =
s(1 + τqsα)

1 + τTsα
, s > 0. (36)

Therefore, the solution of the Cauchy problem (32), (33) and (34) is given by the integral

T(x, t) =
∫
Rn
Gn(x− y, t)T0(y)dy, x ∈ Rn, t > 0.

where Gn(x, t) is the fundamental solution (Green function), defined in Fourier–Laplace domain as

̂̃Gn(k, s) =
g(s)/s

g(s) + |k|2 , k ∈ Rn, s > 0. (37)
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The behavior of the fundamental solution is studied next, with the emphasis on the
one-dimensional case n = 1. The cases n = 2 and n = 3 are briefly discussed.

Let us note that in the special case τq = τT (i.e., g(s) = s) Equation (32) is the classical diffusion
equation. The fundamental solution in this special case is the Gaussian function

G∗n(x, t) =
1

(4πt)n/2 exp
(
−|x|2/4t

)
, x ∈ Rn, t > 0. (38)

For the study of positivity of the fundamental solution in the general case we use Bernstein’s
theorem, stating that positivity of a function is equivalent with complete monotonicity of its Laplace
transform. For this purpose, relevant properties of the characteristic function g(s) are derived next.

Proposition 2. Let 0 < α ≤ 1. For any τq, τT ≥ 0 the function
√

g(s) is a complete Bernstein function. If
moreover 0 ≤ τq < τT then g(s) is a complete Bernstein function.

Proof. We use the relation g(s) = s f (s), where f (s) is defined in (17).
In the case τq < τT Proposition 1 implies f (s) ∈ SF . Therefore, g(s) ∈ CBF , according to the

definition of the class CBF . Since square root of a complete Bernstein function is again a complete
Bernstein function (by property (E) and the fact that 1 ∈ CBF ), this also gives

√
g(s) ∈ CBF .

In the case τq > τT Proposition 1 states that f (s) ∈ CBF . Therefore, g(s) is a product of two
complete Bernstein functions (s and f (s)) and property (E) implies

√
g(s) ∈ CBF .

Let us note that g(s) /∈ CBF for τq > τT . In fact, g(s) is not even a Bernstein function in
this case. Indeed, for small s we have the asymptotic expansion g(s) ≈ s + (τq − τT)sα+1 and thus
g′′(s) ≈ (τq − τT)(α + 1)αsα−1 > 0 for τq > τT , hence g(s) /∈ BF .

We also point out some general relations to the kernels ξ and η. First, in the diffusion regime,
g(s) = sξ̂(s) ∈ CBF if and only if ξ̂(s) ∈ SF . For the propagation regime we note that g(s) = s2η̂(s).
Then the property η̂(s) ∈ SF implies that g(s) is a product of two complete Bernstein functions (s and
sη̂(s)), therefore

√
g(s) ∈ CBF .

4.1. One-Dimensional Solution

Consider the Cauchy problem (32), (33) and (34) in the one-dimensional case. The one-dimensional
fundamental solution G1(x, t) is given in Fourier–Laplace domain by (37) with n = 1. By the Fourier
inversion and using the well-known formula

F {exp(−a|x|)} = 2a
a2 + k2 , a > 0; x, k ∈ R,

we get the Laplace transform of the fundamental solution of the one-dimensional problem

Ĝ1(x, s) =
√

g(s)
2s

exp
(
−|x|

√
g(s)

)
, x ∈ R. (39)

Theorem 1. The fundamental solution G1(x, t) is a spatial probability density function evolving in time.

Proof. For the proof we use representation (39). First, cccording to Proposition 2
√

g(s) ∈ CBF ⊂ BF .

Then property (B) yields exp
(
−|x|

√
g(s)

)
∈ CMF with respect to s > 0 for any x ∈ R considered as

a parameter. On the other hand,
√

g(s) ∈ CBF implies
√

g(s)/s ∈ SF ⊂ CMF . The desired result,
Ĝ1(x, s) ∈ CMF , follows by noting that the class CMF is closed under point-wise multiplication
(property (A)). Therefore, by Bernstein’s theorem, G1(x, t) ≥ 0. Further, (39) yields

L
{∫ ∞

−∞
G1(x, t)dx

}
=
∫ ∞

−∞
Ĝ1(x, s)dx =

√
g(s)
s

∫ ∞

0
exp

(
−x
√

g(s)
)

dx =
1
s
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and, applying inverse Laplace transform we obtain∫ ∞

−∞
G1(x, t)dx = 1.

The theorem is proved.

In the presented plots in the next section we see that G1(x, t) is a unimodal probability density
function (p.d.f.) in the diffusion regime (τq < τT), while in the propagation regime (τq > τT) it is a
bimodal p.d.f. The numerical results in the next section are based on an explicit integral representation
of the fundamental solution, which we derive next.

To find explicit integral expression for the solution G1(x, t) we apply Bromwich integral inversion
formula to (39), which yields

G1(x, t) =
1

4πi

∫ γ+i∞

γ−i∞

√
g(s)
s

exp
(

st− |x|
√

g(s)
)

ds, γ > 0. (40)

By the Cauchy’s theorem, the integration on the Bromwich path (γ− i∞, γ + i∞) can be replaced by
integration on the contour D ∪ D0, where

D = {s = ir, r ∈ (−∞,−ε) ∪ (ε, ∞)}, D0 = {s = εeiθ , θ ∈ [−π/2, π/2]}.

Indeed, the integrals on the contours {s = σ± iR, σ ∈ (0, γ)} vanish for R→ ∞ due to the following
asymptotic expression ∣∣∣∣√g(s)

∣∣∣∣ ≈ √ τq

τT
|s| =

(
τq

τT
(σ2 + R2)1/2

)1/2
, R→ ∞,

and

<
√

g(s) ≈
√

τq

τT
|s| cos

arg s
2
≈
(

τq

τT
(σ2 + R2)1/2

)1/2
cos(±π/4), R→ ∞.

Moreover, since

lim
s→0

s

(√
g(s)
s

exp
(

st− |x|
√

g(s)
))

= 0,

it follows that the integral on the semi-circular contour D0 also vanishes. Therefore, integration on the
contour D yields after letting ε→ 0

1
4πi

∫
D

√
g(s)
s

exp
(

st− |x|
√

g(s)
)

ds =
1

2π

∫ ∞

0

1
r
=
{√

g(ir) exp
(

irt− |x|
√

g(ir)
)}

dr.

To express the imaginary part under the integral sign in terms of elementary real functions we apply
the formula for real and imaginary parts of the square root of a complex number and obtain after some
standard manipulations the following result.

Theorem 2. The fundamental solution G1(x, t) of the one-dimensional Cauchy problem admits the following
integral representation for x ∈ R\{0}, t > 0:

G1(x, t) =
1

2π

∫ ∞

0
exp

(
−|x|K−(r)

) (
K−(r) sin

(
rt− |x|K+(r)

)
+ K+(r) cos

(
rt− |x|K+(r)

)) dr
r

, (41)
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where the functions K±(r) are defined by

K±(r) =
( r

2

)1/2
((

A2(r) + B2(r)
)1/2

± A(r)
)1/2

with

A(r) =
(τq − τT)rα sin(απ/2)

1 + 2τTrα cos(απ/2) + τ2
Tr2α

, B(r) =
1 + (τq + τT)rα cos(απ/2) + τqτTr2α

1 + 2τTrα cos(απ/2) + τ2
Tr2α

.

We note that the convergence of the integral in (41) is guaranteed by the following properties of
the functions K±(r): K±(r) > 0, K±(r) ∼ r(1−α)/2 as r → +∞ and K±(r) ∼ r(1+α)/2as r → 0.

The explicit integral representation (41) is used in the next section for numerical computation
and visualization of the fundamental solution G1(x, t) for different values of the parameters. Let us
note that another integral representation for the fundamental solution G1(x, t) can be found in ([23]
Section 7.2.1). A comparison of some numerical examples confirms that the two representations are
equivalent, see Figure 1a in the next section and Figure 7.14 in [23].

4.2. Mean Squared Displacement

Next, we study the temporal behavior of the mean squared displacement (MSD) in the
one-dimensional case. Representation (39) implies for the MSD in Laplace domain

〈
|x|2(s)

〉
=
∫
R

x2Ĝ1(x, s) dx =

√
g(s)
s

∫ ∞

0
x2 exp

(
−x
√

g(s)
)

dx.

Calculation of the integral yields 〈
|x|2(s)

〉
=

2
sg(s)

=
2(1 + τTsα)

s2(1 + τqsα)
, (42)

where g(s) is the characteristic function (36). By the use of Laplace transform pair (11) we invert (42)
and get two equivalent expressions in terms of Mittag–Leffler functions〈

|x|2(t)
〉

= 2t + 2
(

τT
τq
− 1
)

tEα,2

(
− tα

τq

)
(43)

= 2
τT
τq

t +
2
τq

(
1− τT

τq

)
tα+1Eα,α+2

(
− tα

τq

)
. (44)

Both expressions are valid for all τq, τT ≥ 0. However we give the two different forms, since (43)
seems more natural for the diffusion regime (τq < τT) and (44) for the propagation regime (τq > τT).
Let us mote that the Mittag–Leffler functions in the MSD representations are positive functions, due to
property (G) and the relation

tβEα,β+1(−atα) =
∫ t

0
σβ−1Eα,β(−aσα)dσ.

From the definition (9) of the Mittag–Leffler functions and their asymptotics (10) we derive the
following asymptotic behavior for the MSD for short and long times

〈
|x|2(t)

〉
∼

 2 τT
τq

t
(

1 + τq−τT
τqτT

tα

Γ(α+2)

)
, t→ 0,

2t
(

1 +
(
τT − τq

) t−α

Γ(2−α)

)
, t→ ∞.

The established asymptotic expansions show linear asymptotic behavior for short and long times.
We also observe that the dominating term in the gradient of the MSD is 2τT/τq for t→ 0 versus 2 for



Fractal Fract. 2020, 4, 32 11 of 18

t→ ∞. Therefore, in the diffusion regime (τq < τT) the MSD increases faster near the origin than for
large times. The opposite behavior is observed in the propagation regime (τq > τT): the MSD increases
slower near the origin than for large times. Let us note that qualitatively comparable asymptotic
behavior of the MSD is observed in the fractional diffusion-wave equation, where MSD∼ tβ with
β ∈ (0, 1) in the diffusion regime and β ∈ (1, 2) in the propagation regime.

5. Numerical Examples

The integral representation (41) is used for numerical computation and visualization of the
fundamental solution G1(x, t). The results for different values of the parameters covering the two
regimes: diffusion and propagation, are given in this section. For the numerical computation of the
improper integral in (41) the MATLAB subroutine “integral” is used. In all figures the fundamental
solution G1(x, t) is plotted versus x, for x > 0. The part for x < 0 is symmetric, G1(−x, t) = G1(x, t).

Figure 1 shows the evolution in time of the p.d.f. G1(x, t), starting from a delta function δ(x) at
t = 0. The solution is plotted for five different time instances. In the diffusion regime (a) the maximum
remains at t = 0, i.e., the p.d.f. is unimodal. In the propagation regime (b) the maximum moves away
from the origin, the p.d.f. is bimodal.

In Figure 2 the solution is plotted for different values of the fractional parameter α ∈ (0, 1].
For α → 1 the solution approaches that of the Jeffreys’ heat conduction Equation (1). For α → 0 the
fractional derivatives become identity operators and (32) approaches the classical diffusion equation
with the one-dimensional Gaussian as fundamental solution (see the plots for α = 0.05, which are
qualitatively close to a Gaussian function).

In Figure 3 several plots are given with one and the same ratio of the relaxation times, in (a)
τq/τT = 0.1—diffusion regime; in (b) τT/τq = 0.1—propagation regime. It is seen that different plots
correspond to one and the same ratio, that is the fundamental solution depends not only on the ratio
of the relaxation times, but on their specific values.

In all figures we observe behavior, typical for a diffusion process for τq < τT : the fundamental
solution is monotonically decreasing in x for x > 0, representing a unimodal p.d.f. For τq > τT
the behavior is typical for a propagation process, with a maximum moving away from the origin.
In this respect there is a strong analogy with the fractional diffusion-wave equation with Caputo
time-derivative of order β ∈ (1, 2) with the two corresponding regimes: diffusion (0 < β < 1) and
propagation (1 < β < 2), c.f. ([35] Figure 6.1), [31].

(a) (b)

Figure 1. Plots of the the fundamental solution G1(x, t) versus x (x > 0) for different values of t;
(a) diffusion regime (τq < τT); (b) propagation regime (τq > τT).
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(a) (b)

Figure 2. Plots of the the fundamental solution G1(x, t) versus x (x > 0) for fixed t and different values
of α, α = 0.05, 0.25, 0.5, 0.75, 0.95, compared to α = 1 (dashed line); (a) diffusion regime (τq < τT);
(b) propagation regime (τq > τT).

(a) (b)

Figure 3. Plots of the fundamental solution G1(x, t) versus x (x > 0) for different values of the relaxation
times τq and τT : (a) τq/τT = 0.1—diffusion regime; (b) τT/τq = 0.1—propagation regime.

6. Subordination Principles and Multi-Dimensional Fundamental Solutions

In this section, we give one more standard representation of the fractional Jeffreys-type heat
conduction Equation (15)—as a Volterra integral equation—and use some facts from the theory in the
monograph [38]. As in the beginning of this work we consider again Equation (15) in general form
without specifying the domain of the Laplace operator (finite or infinite spatial domain and type of
boundary conditions). By the use of (7) Equation (15) reads in Laplace domain

T̂(x, s) = T0(x)
1
s
+

1 + τTsα

s(1 + τqsα)
∆T̂(x, s), (45)

where T0(x) = T(x, 0). Taking the inverse Laplace transform in (45) yields the Volterra integral equation

T(x, t) = T0(x) +
∫ t

0
κ(t− τ)∆T(x, τ)dτ, (46)
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with kernel κ(t) satisfying κ̂(s) = 1/g(s), where the function g(s) is defined in (36). The explicit
representation for the kernel is deduced by the use of the Laplace transform pair (11) as

κ(t) = 1−
(

1− τT
τq

)
Eα

(
− 1

τq
tα

)
. (47)

Let us note that κ(t) > 0. Indeed, according to (12), the first derivative of κ(t) is

κ′(t) =
1
τq

(
1− τT

τq

)
tα−1Eα,α

(
− 1

τq
tα

)
.

Therefore, for τq < τT the function κ(t) is decreasing from κ(0) = τT/τq > 1 to κ(+∞) = 1 and
for τq > τT the function κ(t) is increasing from κ(0) = τT/τq < 1 to κ(+∞) = 1.

Let us look briefly at propagation speed of a disturbance in model (46). From general theory,
see ([38] Chapter 5), the velocity of propagation of the head of a disturbance is

c = lim
s→∞

s√
g(s)

= lim
s→∞

√
s(1 + τTsα)

1 + τqsα
.

Therefore, c = ∞, except in the special case τT = 0, τq 6= 0, α = 1, in which we recognize
the classical Cattaneo’s equation. Therefore, with the exception of this specific case, a disturbance
propagates with infinite speed, and therefore the Equation (15) is parabolic.

Let us point out that the symbol ∆ in (46) can represent different realizations of the Laplace
operator, such that it is a closed and densely defined operator in the chosen space of functions and
the wave equation Wtt = ∆W is well posed. For details on abstract Volterra integral equations we
refer [38]. Thanks to the properties of the function g(s) given in Proposition 2 above, we can apply
Theorems 4.2 and 4.3 in [38] and formulate the following subordination principles. For completeness
we briefly present the main idea and steps of the proof.

Theorem 3. The solution of Equation (46) satisfies the following subordination relation

T(x, t) =
∫ ∞

0
ϕ1(t, τ)W(x, τ) dτ, t > 0, (48)

where the function W(x, t) is the solution of the classical wave equation

Wtt = ∆W, W(x, 0) = T0(x), Wt(x, 0) = 0,

and the kernel ϕ1(t, τ) is defined via the Laplace transform

ϕ̂1(s, τ) =

√
g(s)
s

exp
(
−τ
√

g(s)
)

, s, τ > 0. (49)

In the diffusion case τq < τT the following stronger subordination relation holds true

T(x, t) =
∫ ∞

0
ϕ2(t, τ)U(x, τ) dτ, t > 0, (50)

where U(x, τ) is the solution of the classical diffusion equation

Ut = ∆U, U(x, 0) = T0(x),

and the kernel ϕ2(t, τ) is defined via the Laplace transform

ϕ̂2(s, τ) =
g(s)

s
exp (−τg(s)) , s, τ > 0. (51)
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The functions ϕj(t, τ), j = 1, 2, are probability densities in τ, that is

ϕj(t, τ) ≥ 0,
∫ ∞

0
ϕj(t, τ) dτ = 1, j = 1, 2. (52)

Proof. By applying Laplace transform in (46) it follows

∫ ∞

0
e−stT(x, t)dt =

g(s)
s

(g(s)− ∆)−1T0(x), (53)

where the function g(s) is defined in (36) and (λ− ∆)−1, λ > 0, denotes the resolvent operator of
the operator ∆. It follows by the uniqueness of the Laplace transform that T(x, t) is the solution of
Equation (46) if and only if identity (53) is satisfied. So, our first aim is to prove that the functions
defined by (48) and (50) satisfy (53).

Consider first the function T(x, t) defined by (48). It is known (and easy to check) that the solution
W(x, t) of the wave equation obeys in Laplace domain∫ ∞

0
e−λtW(x, t)dt = λ(λ2 − ∆)−1T0(x). (54)

Then application of the Laplace transform in (48) yields by the use of (49) and (54) with λ =
√

g(s)∫ ∞

0
e−stT(x, t)dt =

∫ ∞

0
ϕ̂1(s, τ)W(x, τ)dτ

=

√
g(s)
s

∫ ∞

0
exp

(
−τ
√

g(s)
)

W(x, τ)dτ

=
g(s)

s
(g(s)− ∆)−1T0(x). (55)

Consider now the function T(x, t) defined by (50). The solution U(x, t) of the diffusion equation
obeys in Laplace domain ∫ ∞

0
e−λtU(x, t)dt = (λ− ∆)−1T0(x). (56)

Therefore, application of the Laplace transform in (50) yields by the use of (51) and (56) with
λ = g(s) ∫ ∞

0
e−stT(x, t)dt =

∫ ∞

0
ϕ̂2(s, τ)U(x, τ)dτ

=
g(s)

s

∫ ∞

0
exp (−τg(s))U(x, τ)dτ

=
g(s)

s
(g(s)− ∆)−1T0(x). (57)

It remains to check properties (52). The proof is analogous to that of Theorem 1. To prove
non-negativity, it suffices to establish that ϕ̂j(s, τ) ∈ CMF , s > 0. The nonnegativity of ϕ1(t, τ)

is already proved in Theorem 1, ϕ2(t, τ) is treated in an analogous way, taking into account that
g(s) ∈ CBF for τq < τT .

Further, from the definitions (49) and (51) of the kernels ϕj(t, τ), j = 1, 2 we obtain by the use and
the Bromwich inversion formula

ϕj(t, τ) =
1

2πi

∫ γ+i∞

γ−i∞

g(s)j/2

s
exp

(
st− τg(s)j/2

)
ds, γ, t, τ > 0, j = 1, 2.

This implies
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∫ ∞

0
ϕj(t, τ)dτ =

1
2πi

∫ γ+i∞

γ−i∞
est g(s)j/2

s

∫ ∞

0
exp

(
−τg(s)j/2

)
dτds =

1
2πi

∫ γ+i∞

γ−i∞

est

s
ds = 1.

Therefore, the kernels are normalized and properties (52) are established.

Theorem 3 provides a useful tool for the study of multi-dimensional problems for Equation (15)
or problems on finite spatial domain by deriving the solution and relevant properties from known
results concerning the corresponding diffusion and wave equations. An example of application of
Theorem 3 is given next.

Theorem 4. For τq < τT , 0 < α ≤ 1, the fundamental solutions Gn(x, t), n ≥ 1, are spatial probability
density functions evolving in time.

Proof. According to Theorem 3 subordination identity (50) holds true. Therefore

Gn(x, t) =
∫ ∞

0
ϕ2(t, τ)G∗n(x, τ)dτ, t > 0,

where G∗n is the Gaussian function given in (38), for which it is well known that it is a spatial p.d.f.
Therefore, the non-negativity of G∗n imply directly the non-negativity of Gn and

∫
Rn
Gn(x, t)dx =

∫ ∞

0
ϕ2(t, τ)

(∫
Rn
G∗n(x, t)dx

)
dτ =

∫ ∞

0
ϕ2(t, τ)dτ = 1,

where for the last identity we have used (52). This proves the theorem.

In contrast to Theorem 4, in the propagation case τq > τT the multi-dimensional fundamental
solutions can have negative values. Next we give an example. Let us invert the Fourier transform
in (37) by the use of the inversion formula for the radial function φ(|k|) = (a2 + |k|2)−1 (see, e.g., [34])
and formula 11.4.44 in [39]

1
(2π)n

∫
Rn

e−ik.xφ(|k|) dk =
|x|1−n/2

(2π)n/2

∫ ∞

0
φ(σ)σn/2 Jn/2−1(σ|x|)dσ =

|x|1−n/2

(2π)n/2 an/2−1Kn/2−1(a|x|),

where x ∈ Rn, Jν(·) and Kν(·) denote the Bessel function of the first kind and the modified Bessel
function of the second kind, respectively, see [39]. In the simplest multi-dimensional case, n = 3,

in which the inverse Fourier transform is expressed in terms of K1/2(z) =
√

π
2z exp(−z), we deduce

from (37) the following expression for the Laplace transform of the fundamental solution

Ĝ3(x, s) =
g(s)

4π|x|s exp
(
−|x|

√
g(s)

)
, x ∈ R3. (58)

Comparing this result to (39) we easily derive the following relation between G3(x, t) and G1(x, t):

G3(x, t) = − 1
2πr

∂

∂r
G1(r, t), (59)

where r = |x|. Note that such a relation is already known for the case of fractional diffusion-wave
equation with Caputo time-derivative, g(s) = sβ, β ∈ (0, 2), see, e.g., [31]. Identity (59) implies that
G3(x, t) ≥ 0 if and only if G1(x, t) is non-increasing for all x > 0. However, Figures 1b–3b show that in
the propagation case (τq > τT) the solution increases near the origin. This means that when (τq > τT)
the three-dimenstional solution admits negative values.
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To prove strictly that G3(x, t) can have negative values it suffices to show that Ĝ3(x, s) /∈ CMF
with respect to s (Bernstein’s theorem). From (58) we deduce the asymptotic expansion

Ĝ3(x, s) ∼ 1
4π|x|

(
1 + (τq − τT)sα

)
, x ∈ R3, s→ 0, (60)

which is not a completely monotone function with respect to s provided τq > τT . Indeed, in this case
its first derivative ∂

∂s{Ĝ3(x, s)} → +∞ as s → 0 and, thus, Ĝ3(x, s) as a function of s does not satisfy
inequalities (13).

7. Concluding Remarks

The heat conduction equation with a fractional Jeffreys-type constitutive law is studied.
By employing the Bernstein functions technique, two fundamentally different types of behavior
are established, depending on the value of the characteristic parameter τq/τT : diffusion regime for
τq/τT < 1 and propagation regime for τq/τT > 1. The one-dimensional fundamental solution is shown
to be a spatial probability density function evolving in time, which is unimodal in the diffusion regime
and bimodal in the propagation regime. The multidimensional fundamental solutions are probability
densities only in the diffusion case, while in the propagation case they may have negative values.

The fractional Jeffreys-type heat conduction equation in the two different regimes is represented
as a generalized diffusion, respectively wave, equation. The memory kernel in both cases is expressed
in terms of Mittag–Leffler functions. The kernel is singular in the diffusion regime if α 6= 1 and regular
in the propagation regime. This shows that one and the same model may support different types
of kernels.

Subordination principles are formulated, which are useful for the study of multi-dimensional
problems on finite or infinite spatial region.

All results hold true also for the case of classical Jeffreys-type heat conduction equation (α = 1).
The established properties indicate a strong analogy between the fractional Jeffreys-type equation

and the fractional diffusion-wave equation with the Caputo fractional time-derivative

Dβ
t u(x, t) = ∆u(x, t), 0 < β < 2, (61)

with its two different regimes: diffusion (0 < β < 1) and propagation (1 < β < 2).
The technique developed in this work can be extended to the case of generalized diffusion-wave

equation with a general memory kernel.
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