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Abstract: In this research, obtaining of approximate solution for fractional-order Burgers’ equation
will be presented in reproducing kernel Hilbert space (RKHS). Some special reproducing kernel spaces
are identified according to inner products and norms. Then an iterative approach is constructed
by using kernel functions. The convergence of this approach and its error estimates are given.
The numerical algorithm of the method is presented. Furthermore, numerical outcomes are shown
with tables and graphics for some examples. These outcomes demonstrate that the proposed method
is convenient and effective.
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1. Introduction

In this article, produced from a part of PhD thesis number 519846 from the Council of Higher
Education, an iterative approach of reproducing kernel method (RKM) is considered for obtaining an
approximate solution of the Burgers’ equation with fractional order as follows:

cDα
ξ u(z, ξ) + c1(z, ξ)uzz(z, ξ) + c2(z, ξ)u(z, ξ) + c3(z, ξ)uz(z, ξ) + c4(z, ξ)u(z, ξ)uz(z, ξ) = f (z, ξ)

0 ≤ z ≤ 1, 0 ≤ ξ ≤ 1, 0 < α ≤ 1,
(1)

Here, cDα
ξ is fractional differential operator in Caputo sense with respect to time variable ξ

and also f (z, ξ), c1(z, ξ), c2(z, ξ), c3(z, ξ), c4(z, ξ) are continuous functions. For this model problem,
initial-Neumann boundary conditions:{

u(z, 0) = 0
uz(0, ξ) = uz(1, ξ) = 0

(2a)

and initial-Dirichlet boundary conditions:{
u(z, 0) = 0
u(0, ξ) = u(1, ξ) = 0

(2b)

will be taken as above.
The Burgers’ equation is a simplified version of the Navier–Stokes equation. It was obtained by

use of removing the pressure term from the Navier–Stokes equation by Burgers [1] in 1939. In other
words, the Burgers’ equation can be expressed as a result of combining nonlinear wave motion
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with linear diffusion. Lately, many scientists have focused on Burgers’ equation by using several
methods and different approaches. For instance, existence and uniqueness of local and global solution
for Burgers’ equation was presented in [2] by Guesmia and Daili. Lombard and Matignon used
a diffusive approximation for fractional-order Burgers’ equation in [3]. The averaging principle
was proposed by Dong et al. for stochastic Burgers’ equation in [4]. Nojavan et al. obtained
a numerical solution of Burgers’ equation by using discretization in reproducing kernel Hilbert
space [5]. The Chebyshev wavelet method was developed by Oruc et al. for the numerical solution of
time-fractional Burgers’ equation [6]. Pei et al. presented the local discontinuous Galerkin method
for modified Burgers’ equation in [7]. The Petrov–Galerkin method was used by Roshan and Bhamra
for modified Burgers’ equation in [8]. The collocation method was presented by Ramadan and
Danaf for modified Burgers’ equation in [9]. Bahadir and Saglam constructed a mixed method
for one dimensional Burgers’ equation [10]. Dag et al. used the cubic B-splines method [11].
Caldwell et al. proposed a finite element approximation for Burgers’ equation [12]. A finite difference
method was used by Kutluay et al. for one-dimensional Burgers’ equation [13]. An approximate
solution obtained by using the reproducing kernel method for Burgers’ equation [14]. A hybrid
technique for the unsteady flow of a Burgers’ fluid is given by Raza et al. [15]. Laplace and finite
Hankel transformations were proposed by Safdar et al. for generalized Burgers’ fluid with fractional
derivative [16]. Time-fractional coupled Burgers’ equations were solved with generalized differential
transform method by Liu and Hou [17]. Zhang et al proposed an analytical and numerical approach
for multi-term time-fractional Burgers’ fluid model [18]. The Adomian decomposition method was
applied to space-and time-fractional Burgers’ equation by Momani [19]. A generalized Taylor series
technique was proposed by Ajou et al. for fractional nonlinear KdV-Burgers’ equation [20]. Mittal
and Arora presented a numerical approach by using cubic B-spline functions for coupled viscous
Burgers’ equation [21]. Jiwari used a hybrid numerical scheme for Burgers’ equation [22]. Kutluay et al.
proposed a B-spline finite element method for Burgers’ equation [23].

Reproducing kernel concept is introduced by Zaremba [24]. In his study, Zaremba focused on the
boundary value problem, which includes the Dirichlet boundary condition. Furthermore, the theoretical
concept of reproducing kernel is developed in [25,26]. Reproducing kernel spaces of polynomial
and trigonometric functions are constructed in [27]. Many studies have been conducted by
using reproducing kernel method. For instance, eighth order boundary value problems [28],
fractional advection-dispersion equation [29], fractional order systems of Dirichlet function types [30],
fractional order Bagley–Torvik equation [31], time fractional telegraph equation [32], a local
reproducing kernel method for Burgers’ equation [33], time-fractional partial integro differential
equations [34], Riccati differential equations [35], nonlinear hyperbolic telegraph equation [36],
time-fractional Tricomi and Keldysh equations [37], one-dimensional sine–Gordon equation [38],
reaction-diffusion equations [39], integro differential equations of Fredholm operator type [40], fredholm
integro-differential equations [41], nonlinear system of PDEs [42], class of fractional partial differential
equation [43], Bagley–Torvik and Painlevé equations [44], nonlinear coupled Burgers equations [45]
and so on [46–59].

This research is organized as: Specific definitions and Hilbert spaces are demonstrated in
Section 2. Reproducing kernel solution is identified by RKM in Section 3. Convergence analysis of the
approximate solution is proved in Section 4. Error estimation of the method is presented in Section 5.
Two examples of fractional order Burgers’ equation are examined by the RKM and the algorithm of
the process is given in Section 6. Finally, a short conclusion is given in Section 7.

The notation table Table 1 is given as follow:
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Table 1. Notation table.

Symbol Explanation
cDα

ξ Caputo derivative operator with arbitrary real order
Θ Region of [0, 1]× [0, 1]
W3

2 [0, 1] Hilbert space with one variable function
W(3,2)

2 (Θ) Hilbert Space with two variable function
K(τ,β)(z, ξ) Reproducing kernel function of W(3,2)

2 (Θ)

u(z, ξ) Exact solution
un(z, ξ) Reproducing kernel solution
L Linear operator
〈., .〉 Inner (scalar) product

2. Some Specific Definitions and Hilbert Spaces

In this section, some basic definitions and significant reproducing kernel spaces will be given.

Definition 1. ([58,59]) Fractional α order Caputo derivative is defined as:

cDα
ξ u(z, ξ) =

1
Γ(n− α)

∫ ξ

0

∂ru(z, r)
(ξ − r)1+α−n dr, n− 1 < α ≤ n, ξ > 0.

Definition 2. Let H be Hilbert space and T 6= ∅ an abstract set. If following conditions are provide, then S :
T × T → C is is called as reproducing kernel function:

i.S(., τ) ∈ H, ∀τ ∈ T,

ii.〈µ(.), S(., τ)〉 = µ(τ), ∀τ ∈ T, ∀µ ∈ H.

2.1. Reproducing Kernel Spaces with One Variable

In this subsection, reproducing kernel functions will be presented for some special Hilbert spaces.
Definitions and kernel functions of these spaces will be given for z and ξ variables. Wn

2 [a, b] shows the
general reproducing kernel space for one variable. Equations (1) and (2a,b) has second order derivative
for z and first order derivative for ξ. Therefore, the kernel function of W3

2 [0, 1] will be given for uzz

and the kernel function of W2
2 [0, 1] will be given for uξ . Furthermore, W1

2 [0, 1] space will be given for
general function (without derivative). For the obtaining procedure of reproducing kernel functions,
please see [47].

W1
2[0, 1] Hilbert space

W1
2 [0, 1] = {g(z)|g is absolutely continuous function, g′ ∈ L2[0, 1]}.

1. The inner product of W1
2 [0, 1] can be taken as follows:

〈g (z) , f (z)〉W1
2
= g (0) f (0) +

1∫
0

g′ (z) f ′ (z) dz. (3)

2. The norm of W1
2 [0, 1] can be taken as follows:

‖g‖2
W1

2
= 〈g, g〉W1

2
, g, f ∈W1

2 [0, 1] .
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3. The kernel function of W1
2 [0, 1] is as follows:

R{1}τ (z) =

{
1 + z, z ≤ τ,
1 + τ, τ > z.

(4)

W2
2[0, 1] Hilbert Space

W2
2 [0, 1] = {g(ξ)|g, g′ are absolutely continuous functions, g′′ ∈ L2[0, 1], g(0) = 0}.

Here, L2 [0, 1] = { g |
1∫

0
g2 (ξ) dξ < ∞}.

1. The inner product of W2
2 [0, 1] can be taken as follows:

〈g (ξ) , f (ξ)〉W2
2
= g (0) f (0) + g′ (0) f ′ (0) +

1∫
0

g′′ (ξ) f ′′ (ξ) dξ. (5)

2. The norm of W2
2 [0, 1] can be taken as follows:

‖g‖2
W2

2
= 〈g, g〉W2

2
, f , g ∈W2

2 [0, 1] .

3. The kernel function of W2
2 [0, 1] is as follows:

R{2}β (ξ) =

{
ξβ + 1

2 βξ2 − 1
6 ξ3, ξ ≤ β,

− 1
6 β3 + 1

2 ξβ2 + βξ, ξ > β.
(6)

W3
2[0, 1] Hilbert Space

W3
2 [0, 1] space with Dirichlet boundary condition:

W3
2 [0, 1] = {g(z)|g, g′, g′′ are absolutely continuous functions, g(3) ∈ L2[0, 1], g(0) = g(1) = 0}.

1. The inner product of W3
2 [0, 1] can be taken as follows:

〈g (z) , f (z)〉W3
2
= g (0) f (0) + g′ (0) f ′ (0) + g (1) f (1) +

1∫
0

g(3) (z) f (3) (z) dz. (7)

2. The norm of W3
2 [0, 1] can be taken as follows:

‖g‖2
W3

2
= 〈g, g〉W3

2
, f , g ∈W3

2 [0, 1] .

3. The kernel function of W3
2 [0, 1] is as follows:

R{3}τ (z) =


−1
120 (τ − 1)z(zτ4 − 4zτ3 + 6zτ2 + τz4 − 5τz3 − 120τz + 120τ + z4), z ≤ τ,

−1
120 (z− 1)τ(τz4 − 4τz3 + 6τz2 + zτ4 − 5zτ3 − 120zτ + 120z + τ4), z > τ.

(8)

W3
2 [0, 1] space with Neumann boundary condition:
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1. The inner product of W3
2 [0, 1] can be taken as follows:

〈g (z) , f (z)〉W3
2
= g (0) f (0) + g′ (0) f ′ (0) + g′′ (0) f ′′ (0) +

1∫
0

g(3) (z) f (3) (z) dz. (9)

2. The norm of W3
2 [0, 1] can be taken as follows:

‖g‖2
W3

2
= 〈g, g〉W3

2
, f , g ∈W3

2 [0, 1] .

3. The kernel function of W3
2 [0, 1] is as follows:

For z ≤ τ, the kernel function:

R{3}τ (z) = z( 1
56 τ4 − 1

14 τ3 − 3
14 τ2 + 4

7 τ) + z2( 1
7 τ2 − 1

112 τ4 − 1
28 τ3 + 3

14 τ)

+ z3( 1
21 τ2 + 1

336 τ4 − 1
84 τ3 − 1

14 τ) + z4( −1
1344 τ4 + 1

36 τ3 + 1
112 τ2 − 1

42 τ) + 1
120 z,

(10)

and for z > τ the kernel function:

R{3}τ (z) = τ( 1
56 z4 − 1

14 z3 − 3
14 z2 + 4

7 z) + τ2( 1
7 z2 − 1

112 z4 − 1
28 z3 + 3

14 z)
+ τ3( 1

21 z2 + 1
336 z4 − 1

84 z3 − 1
14 z) + τ4( −1

1344 z4 + 1
36 z3 + 1

112 z2 − 1
42 z) + 1

120 τ
(11)

2.2. Reproducing Kernel Spaces for Two Variable

The problem (1) and (2a,b) has two variables z and ξ. For this reason, we should give the
spaces, inner products, and kernel functions according to these variables. Because the highest order
derivatives z and ξ to be considered, reproducing kernel spaces will be given for both z and ξ variables.
The region which we consider is Θ = [0, 1]× [0, 1]. In this part, W(3,2)

2 (Θ) space is given for Dirichlet
boundary conditions. These reproducing kernel spaces are also determined in the same way for
Neumann boundary conditions.

W(3,2)
2 (Θ) Hilbert Space

W(3,2)
2 (Θ) = {u(z, ξ)| ∂3u

∂z2∂ξ
is completely continuous in Θ,

∂5u
∂z3∂ξ2 ∈ L2(Θ), u(z, 0) = u(0, ξ) = u(1, ξ) = 0}.

(12)

1. The inner product of W(3,2)
2 (Θ) can be taken as follows:

〈u(z, ξ), v(z, ξ)〉
W(3,2)

2
=

1
∑

i=0

1∫
0
[ ∂2

∂ξ2
∂i

∂zi u(0, ξ) ∂2

∂ξ2
∂i

∂zi v(0, ξ)]dξ +
∫ 1

0
∂2

∂ξ2 u(1, ξ) ∂2

∂ξ2 v(1, ξ)dξ

+ ∑1
j=0〈 ∂j

∂ξ j u(z, 0), ∂j

∂ξ j v(z, 0)〉W3
2

+
1∫

0

1∫
0
[ ∂3

∂z3
∂2

∂ξ2 u(z, ξ) ∂3

∂z3
∂2

∂ξ2 v(z, ξ)]dzdξ.

(13)

2. The norm of W(3,2)
2 (Θ) can be taken as follows:

‖u‖2
W(3,2)

2
= 〈u, u〉

W(3,2)
2

, u, v ∈W(3,2)
2 (Θ).

Theorem 1. K(τ,β)(z, ξ) is the kernel function of W(3,2)
2 (Θ) and also it is obtained by multiplying kernel

functions of W3
2 [0, 1] and W2

2 [0, 1], respectively. So, it can be written that

K(τ,β)(z, ξ) = R{3}τ (z)R{2}β (ξ).
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For any u(z, ξ) ∈W(3,2)
2 (Θ)

u(τ, β) = 〈u(z, ξ), K(τ,β)(z, ξ)〉
W(3,2)

2

and

K(z,ξ)(τ, β) = K(τ,β)(z, ξ). (14)

Proof. Inner product of W(3,2)
2 space (Equation (13)) will be used to prove the theorem.

〈u(z, ξ), R{3}τ (z)R{2}β (ξ))〉
W(3,2)

2

=
1

∑
j=0
〈 ∂j

∂ξ j u(z, 0), R{3}τ (z)
∂j

∂ξ j R{2}β (0)〉W3
2
+

1

∑
i=0

1∫
0

[ ∂2

∂ξ2
∂i

∂zi u(0, ξ)
∂2

∂ξ2 R{2}β ( xi)
∂i

∂zi R{3}τ (0)
]
dξ

+
∫ 1

0

∂2

∂ξ2 u(1, ξ)R{3}τ (1)
∂2

∂ξ2 R{2}β (ξ)dξ +

1∫
0

1∫
0

[ ∂3

∂z3
∂2

∂ξ2 u(z, ξ)
∂3

∂z3 R{3}τ (z)
∂2

∂ξ2 R{2}β (ξ)
]
dzdξ

=

1∫
0

∂2

∂ξ2 R{2}β (ξ)
∂2

∂ξ2

[ 1∫
0

∂3

∂z3 u(z, ξ)
∂3

∂z3 R{3}τ (z)dz +
1

∑
i=0

∂i

∂zi u(0, ξ)
∂i

∂zi R{3}τ (0) + u(1, ξ)R{3}τ (1)
]
dξ

+
1

∑
j=0

∂j

∂ξ j u(τ, 0)
∂j

∂ξ j R{2}β (0)

=
1

∑
j=0

∂j

∂ξ j u(τ, 0)
∂j

∂ξ j R{2}β (0) +
1∫

0

∂2

∂ξ2 R{2}β (ξ)
∂2

∂ξ2 〈u(z, ξ), R{3}τ (z)〉W3
2
dξ

=
1

∑
j=0

∂j

∂ξ j u(τ, 0)
∂j

∂ξ j R{2}β (0) +
1∫

0

∂2

∂ξ2 R{2}β (ξ)
∂2

∂ξ2 u(τ, ξ)dξ

= 〈u(τ, ξ), R{2}β (ξ)〉W2
2
= u(τ, β).

So, 〈u(τ, ξ), R{2}β (ξ)〉 = u(τ, β), and

K(τ,β)(z, ξ) = 〈K(τ,β)(x, y), K(z,ξ)(x, y)〉
W(3,2)

2
= 〈K(z,ξ)(x, y), K(τ,β)(x, y)〉

W(3,2)
2

= K(z,ξ)(τ, β).

Therefore, the proof is completed.

W(1,1)
2 (Θ) Hilbert Space

W(1,1)
2 (Θ) = {u(z, ξ)| u is completely continuous in Θ,

∂2u
∂z∂ξ

∈ L2(Θ)}.

1. The inner product of W(1,1)
2 (Θ) can be taken as follows:

〈u(z, ξ), v(z, ξ)〉
W(1,1)

2
=

1∫
0

[
∂

∂ξ
u(0, ξ)

∂

∂ξ
v(0, ξ)]dξ + 〈u(z, 0), v(z, 0)〉W1

2

+

1∫
0

1∫
0

[
∂

∂z
∂

∂ξ
u(z, ξ)

∂

∂z
∂

∂ξ
v(z, ξ)]dzdξ
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2. The norm of W(1,1)
2 (Θ) can be taken as follows:

‖u‖2
W(1,1)

2
= 〈u, u〉

W(1,1)
2

, u, v ∈W(1,1)
2 (Θ).

3. The kernel function of W(1,1)
2 (Θ) is as follows:

K̃(τ,β)(z, ξ) = R{1}τ (z)R{1}β (ξ).

Remark 1. In the next sections all analysis will be given for the Dirichlet boundary conditions. A similar
analysis can be made for Neumann boundary conditions.

3. Obtaining of Reproducing Kernel Solution for Equations (1) and (2a,b) in W(3,2)
2 (Θ)

In the reproducing kernel method, an approximate solution will be obtained with the help of
kernel function and linear operator L. The choosing of L is arbitrary. One can choose the whole linear
part of the model problem or any linear part of it. Here, the whole linear part of the model problem is
chosen as follow:

L : W(3,2)
2 (Θ)→W(1,1)

2 (Θ)

Lu(z, ξ) = cDα
ξ u + c1(z, ξ)uzz + c2(z, ξ)u + c3(z, ξ)uz. (15)

The new statement of Equations (1)-(2a-2b) can be expressed as:

Lu(z, ξ) = F(z, ξ, u(z, ξ), uz(z, ξ)), ξ, z ∈ [0, 1] (16)

and F(z, ξ, u(z, ξ), uz(z, ξ)) = f (z, ξ)− c4(z, ξ)u(z, ξ)uz(z, ξ).
Let {(zi, ξi)}∞

i=1 be a countable dense subset in Θ. Now, ψi(z, ξ) basis function will be defined by
applying the kernel function to the operator L.

ψi(z, ξ) = L(τ,β)K(τ,β)(z, ξ)|(τ,β)=(zi ,ξi)

= { cDα
t K(τ,β)(z, ξ) + c1(τ, β) ∂2

∂x2 K(τ,β)(z, ξ) + c2(τ, β)K(τ,β)(z, ξ)

+ c3(τ, β) ∂
∂x K(τ,β)(z, ξ)}|(τ,β)=(zi ,ξi)

= 1
Γ(1−α)

∫ ξi
0

∂rK(z,r)(z,ξ)
(ξi−r)α dr + c1(zi, ξi)

∂2

∂x2 K(zi ,ξi)
(z, ξ) + c2(zi, ξi)K(zi ,ξi)

(z, ξ)

+ c3(zi, ξi)
∂

∂x K(zi ,ξi)
(z, ξ), i = 1, 2, ...

(17)

Now, it will be shown that ψi(z, ξ) basis function belong to W(3,2)
2 (Θ) space and ψi(z, ξ) satisfies

the initial-boundary condition of W(3,2)
2 (Θ) space. For this purpose, the following theorem will

be given.

Theorem 2. The basis function ψi(z, ξ) is belong to W(3,2)
2 (Θ) reproducing space for i = 1, 2, ....

Proof. To prove the theorem, we must show that the following conditions are provided.

1. It should be shown that ∂5ψi(z,ξ)
∂z3∂ξ2 ∈ L2(Θ).

2. ∂3ψi(z,ξ)
∂z2∂ξ

is completely continuous function.
3. ψi(z, ξ) basis function satisfies the initial and boundary conditions.
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One can see that any elements of W(3,2)
2 (Θ) satisfy the above conditions. Now, the following

equation can be written using the property of the kernel function K(τ,β)(z, ξ)

∂7
τ2z3ξ2 K(τ,β)(z, ξ) = ∂5

τ2z3 R{3}τ (z)∂2
ξ2 R{2}β (ξ).

Here, both ∂5
τ2z3 R{3}τ (z) and ∂2

ξ2 R{2}β (ξ) are continuous in [0, 1]. These functions are bounded
because they are continuous in [0, 1]. So, it can be written

|∂7
τ2z3ξ2 K(τ,β)(z, ξ)| ≤ M1.

In the same way, one can write that

|∂6
βz3ξ2 K(τ,β)(z, ξ)| ≤ M2

|∂5
z3ξ2 K(τ,β)(z, ξ)| ≤ M3

|∂6
τz3ξ2 K(τ,β)(z, ξ)| ≤ M4.

Here, M1, M2, M3 and M4 are positive constants. From (17),

|∂
5ψi(z, ξ)

∂z3∂ξ2 | ≤ | 1
Γ(1− α)

∫ ξi

0

M2

(ξi − r)α
dr + c1(zi, ξi)M1

+ c2(zi, ξi)M3 + c3(zi, ξi)M4|

≤ M2

Γ(2− α)
ξ1−α

i + |c1(zi, ξi)|M1 + |c2(zi, ξi)|M3 + |c3(zi, ξi)|M4.

Therefore, ∂5ψi(z,ξ)
∂z3∂ξ2 ∈ L2(Θ). Furthermore, ∂3ψi(z,ξ)

∂z2∂ξ
is completely continuous in Θ since Θ is closed

region. Finally, basis function ψi(z, ξ) satisfies initial-boundary conditions such that K(τ,β)(z, 0) = 0

and K(τ,β)(0, ξ) = K(τ,β)(1, ξ) = 0. Therefore, ψi(z, ξ) ∈W(3,2)
2 (Θ).

Theorem 3. {ψi(z, ξ)}∞
i=1 is a complete system in W(3,2)

2 (Θ).

Proof. It is known that

ψi(z, ξ) = (L∗ϕi)(z, ξ) = 〈(L∗ϕi)(τ, β), K(z,ξ)(τ, β)〉
W(3,2)

2

= 〈ϕi(τ, β), L(τ,β)K(z,ξ)(τ, β)〉
W(1,1)

2
= L(τ,β)K(z,ξ)(τ, β)|(τ,β)=(zi ,ξi)

= L(τ,β)K(τ,β)(z, ξ)|(τ,β)=(zi ,ξi)
.

(18)

Clearly, for each fixed u(z, ξ) ∈W(3,2)
2 (Θ), if 〈u(z, ξ), ψi(z, ξ)〉

W(3,2)
2

= 0 then ψi(z, ξ) ∈W(3,2)
2 (Θ),

i = 1, 2, .... Therefore,

〈u(z, ξ), (L∗ϕi)(z, ξ)〉
W(3,2)

2
= 〈Lu(z, ξ), ϕi(z, ξ)〉

W(1,1)
2

= (Lu)(zi, ξi) = 0, i = 1, 2, ... (19)

{(zi, ξi)}∞
i=1 is dense in Θ. Hence, (Lu)(z, ξ) = 0. By using of inverse operator L−1, it can be seen that

u = 0. So, theorem is proven.

The orthonormal basis system {ψi(z, ξ)}∞
i=1 of W(3,2)

2 (Θ) can be obtained by the way of
Gram–Schmidt orthogonalization process of {ψi(z, ξ)}∞

i=1 as follow:

ψi(z, ξ) =
i

∑
k=1

ηikψk(z, ξ), i = 1, 2, ... (20)
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In Equation (20), ηii > 0 and ηik are orthogonalization coefficients.

Theorem 4. If {(zi, ξi)}∞
i=1 is dense in Θ, then the solution (16) is

u(z, ξ) =
∞

∑
i=1

i

∑
k=1

ηikF(zk, ξk, u(zk, ξk), ∂zu(zk, ξk))ψi(z, ξ). (21)

Proof. It is known that {ψi(z, ξ)}∞
i=1 system is complete in W(3,2)

2 (Θ) from the previous theorem.
So, it can be written

u(z, ξ) =
∞
∑

i=1
〈u(z, ξ), ψi(z, ξ〉

W(3,2)
2

ψi(z, ξ) =
∞
∑

i=1

i
∑

k=1
ηik〈u(z, ξ), ψk(z, ξ)〉

W(3,2)
2

ψi(z, ξ)

=
∞
∑

i=1

i
∑

k=1
ηik〈u(z, ξ), L∗ϕk(z, ξ)〉

W(3,2)
2

ψi(z, ξ) =
∞
∑

i=1

i
∑

k=1
ηik〈Lu(z, ξ), ϕk(z, ξ)〉

W(1,1)
2

ψi(z, ξ)

=
∞
∑

i=1

i
∑

k=1
ηik〈Lu(z, ξ), K̃(zk ,ξk)

(z, ξ)〉
W(1,1)

2
ψi(z, ξ) =

∞
∑

i=1

i
∑

k=1
ηikLu(zk, ξk)ψi(z, ξ)

=
∞
∑

i=1

i
∑

k=1
ηikF(zk, ξk, u(zk, ξk), ∂zu(zk, ξk))ψi(z, ξ).

(22)

So, theorem is proven.

In Equation (21), u(z, ξ) is described as infinite term sum. In the next equation, finitely n-terms
solution will be given as un(z, ξ):

un(z, ξ) =
n

∑
i=1

i

∑
k=1

ηikF(zk, ξk, u(zk, ξk), ∂zu(zk, ξk))ψi(z, ξ). (23)

4. Convergence of Reproducing Kernel Solution

In this section, it will be shown that

‖u(z, ξ)− un(z, ξ)‖ → 0 as n→ ∞. (24)

If we take

Ai =
i

∑
k=1

ηikF(zk, ξk, u(zk, ξk), ∂zu(zk, ξk)), (25)

then (21) can be described as

u(z, ξ) =
∞

∑
i=1

Aiψi(z, ξ). (26)

Now, u(z1, ξ1) is found by taking (z1, ξ1) = 0 from the initial conditions of problem. Furthermore,
by choosing u0(z1, ξ1) = u(z1, ξ1), the n-term approximation to u(z, ξ) is expressed as follows:

un(z, ξ) =
n

∑
i=1

Biψi(z, ξ), (27)

here

Bi =
i

∑
k=1

ηikF(zk, ξk, uk−1(zk, ξk), ∂zuk−1(zk, ξk)). (28)
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Now, some theoretical results will be given for convergence of F(zn, ξn, un−1(zn, ξn), ∂zun−1(zn, ξn))

and un(z, ξ), respectively.

Lemma 1. If F(z, ξ, u(z, ξ), uz(z, ξ)) is continuous and un → û for (zn, ξn)→ (τ, β), then

F(zn, ξn, un−1(zn, ξn), ∂zun−1(zn, ξn))→ F(τ, β, û(τ, β), ∂zû(τ, β)). (29)

Proof. Since

|un−1(zn, ξn)− û(τ, β)| = |un−1(zn, ξn)− un−1(τ, β) + un−1(τ, β)− û(τ, β)|
≤ |un−1(zn, ξn)− un−1(τ, β)|+ |un−1(τ, β)− û(τ, β)|. (30)

Using reproducing kernel feature, it can be written that

un−1(zn, ξn) = 〈un−1(z, ξ), K(zn ,ξn)(z, ξ)〉
W(3,2)

2
, un−1(τ, β) = 〈un−1(z, ξ), K(τ,β)(z, ξ)〉

W(3,2)
2

. (31)

It follows that

|un−1(zn, ξn)− un−1(τ, β)| = |〈un−1(z, ξ), K(zn ,ξn)(z, ξ)− K(τ,β)(z, ξ)〉|. (32)

It can be said that there exists M > 0 from the convergence of un−1(z, ξ) such that

‖un−1(z, ξ)‖
W(3,2)

2
≤ M‖û(τ, β)‖

W(3,2)
2

, as n ≥ M. (33)

In a similar way, it can be proven

‖K(zn ,ξn)(z, ξ)− K(τ,β)(z, ξ)‖
W(3,2)

2
→ 0, for n→ ∞ (34)

by using Equation (14). So,

un−1(zn, ξn)→ û(τ, β), as (zn, ξn)→ (τ, β). (35)

In a similar way it can be shown that

∂zun−1(zn, ξn)→ ∂zû(τ, β), as (zn, ξn)→ (τ, β). (36)

Therefore,

F(zn, ξn, un−1(zn, ξn), ∂zun−1(zn, ξn))→ F(τ, β, û(τ, β), ∂zû(τ, β)). (37)

So, lemma is proven.

Theorem 5. Assume that (16) has a unique solution, ‖un‖ is a bounded and {(zi, ξi)}∞
i=1 is dense in Θ. Then,

un(z, ξ) converges to u(z, ξ) and

u(z, ξ) =
∞

∑
i=1

Biψi(z, ξ). (38)

Proof. Firstly, we aim to show that un(z, ξ) is convergence. Following equality can be written

un+1(z, ξ) = un(z, ξ) + Bn+1ψn+1(z, ξ). (39)



Fractal Fract. 2020, 4, 27 11 of 20

from the Equation (27). Using the orthonormality of {ψi}∞
i=1, we have

‖un+1‖2 = ‖un‖2 + B2
n+1 =

n+1

∑
i=1

B2
i . (40)

Therefore, ‖un+1‖ > ‖un‖ satisfies from (40). Here, it seems that ‖un‖ is bounded. So, one can
know that ‖un‖ is convergent. Therefore, there exists a constant b so that

∞

∑
i=1

B2
i = b. (41)

So, above equation shows that {Bi}∞
i=1 ∈ l2. If m > n, then

‖um − un‖2 = ‖um − um−1 + um−1 − um−2 + · · ·+ un+1 − un‖2

= ‖um − um−1‖2 + ‖um−1 − um−2‖2 + · · ·+ ‖un+1 − un‖2.
(42)

The following equation is obtained

‖um − um−1‖2 = B2
m, (43)

and consequently

‖um − un‖2 =
m

∑
l=n+1

B2
l → 0, as n→ ∞. (44)

The completeness of W(3,2)
2 (Θ) shows that un → û for n→ ∞. Next, it will be shown that û is the

representation solution of (16). If the limit is taken both sides of Equation (27), the following equation
can be written:

û(z, ξ) =
∞

∑
i=1

Biψi(z, ξ). (45)

Note that

(Lû)(z, ξ) =
∞

∑
i=1

BiLψi(z, ξ), (46)

(Lû)(zl , ξl) =
∞
∑

i=1
BiLψi(zl , ξl) =

∞
∑

i=1
Bi〈Lψi(z, ξ), ϕl(z, ξ)〉

W(1,1)
2

=
∞
∑

i=1
Bi〈ψi(z, ξ), L∗ϕl(z, ξ)〉

W(3,2)
2

=
∞
∑

i=1
Bi〈ψi(z, ξ), ψl(z, ξ)〉

W(3,2)
2

.
(47)

Therefore,

i

∑
l=1

ηil(Lû)(zl , ξl) =
∞

∑
i=1

Bi〈ψi(z, ξ),
i

∑
l=1

ηilψl(z, ξ)〉
W(3,2)

2
(48)

=
∞

∑
i=1

Bi〈ψi(z, ξ), ψl(z, ξ)〉
W(3,2)

2
= Bl . (49)

From (28), the following equation can be expressed

Lû(zl , ξl) = F(zl , ξl , ul−1(zl , ξl), ∂zul−1(zl , ξl)). (50)
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For each (τ, β) ∈ Θ, {(zi, ξi)}∞
i=1 is dense in Θ. Therefore, there exists a subsequence

{(znj , ξnj)}∞
j=1 such that (znj , ξnj)→ (τ, β), j→ ∞. It is known that

Lû(znj , ξnj) = F(znj , ξnj , unj−1(znj , ξnj), ∂zunj−1(znj , ξnj)). (51)

By using Lemma 1 and continuity of F, it can be seen that

(Lû)(τ, β) = F(τ, β, û(τ, β), ∂zû(τ, β)), for j→ ∞. (52)

Equation (52) implies that û(z, ξ) satisfies Equation (16). So, proof is completed.

Theorem 6. ∂i
zi ∂

j
ξ j un(z, ξ) uniformly converges to ∂i

zi ∂
j
ξ j u(z, ξ) for j = 0, 1 and i = 0, 1, 2.

Proof. The convergence of un is given in the previous theorem. Now,

|∂i
zi ∂

j
ξ j u(z, ξ)− ∂i

zi ∂
j
ξ j un(z, ξ)| = |〈u(y, s)− un(y, s), ∂i

zi ∂
j
ξ j LK(z,ξ)(y, s)〉|

≤ ‖u− un‖‖∂i
zi ∂

j
ξ j LK(z,ξ)(y, s)‖

≤ Ci,j‖u− un‖.

So,

|∂i
zi ∂

j
ξ j un(z, ξ)− ∂i

zi ∂
j
ξ j u(z, ξ)| → 0 as n→ ∞.

5. Error Estimation of Method

In this section, error analysis for the presented method will be given . In this analysis, one can
understand that the error estimation varies depending on the selected step size. Now, the step size,
chosen of points, and norm will be taken as follow:

zi = ihz, hz = 1/n, ξ j = jhξ , hξ = 1/n, i, j = 1, ..., n.

‖u(z, ξ)‖∞ = max |u(z, ξ)| for (z, ξ) ∈ Θ

Furthermore, u(z, ξ)− un(z, ξ) can be written in two ways for each variable as follow:

u(z, ξ)− un(z, ξ) = u(zi, ξ)− un(zi, ξ) +
∫ z

zi

(∂τu(τ, ξ)− ∂τun(τ, ξ))dτ

and

u(z, ξ)− un(z, ξ) = u(z, ξi)− un(z, ξi) +
∫ ξ

ξi

(∂βu(z, β)− ∂βun(z, β))dβ.

The following two theorems will be given for error estimation considering the two
equations above.

Theorem 7. Let u(z, ξ)− un(z, ξ) be error in W(6,2)
2 (Θ). Therefore, there exist a C > 0 so that

‖u(z, ξ)− un(z, ξ)‖∞ ≤ C(h2
z + hzhξ).
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Proof. For [zi, zi+1]× [ξ j, ξ j+1] ⊂ Θ, the following equality can be written:

∂zu(z, ξ)− ∂zun(z, ξ) = ∂zu(z, ξ)− ∂zu(zi, ξ j) + ∂zun(zi, ξ j)− ∂zun(z, ξ) + ∂zu(zi, ξ j)− ∂zun(zi, ξ j)

Here, Taylor expansion will be used to show error estimate for the function ∂zu(z, ξ) around the
point (zi, ξ j). This equality will be analyzed in three cases. It is known that

∂zu(z, ξ) = ∂zu(zi, ξ j) + (hz∂z + hξ ∂ξ)∂zu(zi + εhz, ξ j + εhξ), ε ∈ [0, 1].

Firstly, the continuity of ∂2
z2 u(z, ξ) and ∂2

zξ u(z, ξ) on Θ is considered. So, one can write that

‖∂zu(z, ξ)− ∂zu(zi, ξ j)‖∞ = O(hz + hξ).

Secondly, one know that

|∂zun(zi, ξ j)− ∂zun(z, ξ)| ≤
∫ z

zi

|∂2
y2 un(y, ξ j)|dy +

∫ ξ

ξ j

|∂2
zsun(z, s)|ds. (53)

The next equation can be stated by using of maximum norm

‖∂zun(zi, ξ j)− ∂zun(z, ξ)‖∞ = O(hz + hξ).

Finally, for sufficiently large n, any ε > 0 and using Theorem 6 such that

‖∂zu(zi, ξ j)− ∂zun(zi, ξ j)‖∞ < ε. (54)

From Equation (54), it is known that ε is arbitrary constant and the chosen of n, the following
equality can be expressed

‖∂zu(zi, ξ j)− ∂zun(zi, ξ j)‖∞ = O(hz + hξ).

In light of the information given above, error estimation will be given as follows:

u(z, ξ)− un(z, ξ) = u(zi, ξ)− un(zi, ξ) +
∫ z

zi

(∂yu(y, ξ)− ∂yun(y, ξ))dy

‖u(z, ξ)− un(z, ξ)‖∞ ≤ ‖u(zi, ξ)− un(zi, ξ)‖∞ +
∫ z

zi

‖∂yu(y, ξ)− ∂yun(y, ξ)‖∞dy

≤ C(h2
z + hξ hz).

So far, error estimation analysis is done for z variable. The error estimation analysis for variable ξ

will be given by the next theorem.

Theorem 8. Assume that ∂3
z3 ∂ξ u(z, ξ) and ∂2

z2 ∂2
ξ2 u(z, ξ) are continuous and also, ‖∂3

z3 ∂ξ u(z, ξ)‖∞ and

‖∂2
z2 ∂2

ξ2 u(z, ξ)‖∞ are bounded. So, there exist a C > 0 such that the error estimate can be expressed as:

‖un(z, ξ)− u(z, ξ)‖∞ ≤ C(hξ h3
z + h2

ξ h2
z).
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Proof. For [zi, zi+1]× [ξi, ξi+1] ∈ Θ, it can be written

∂2
z2 ∂ξu(z, ξ)− ∂2

z2 ∂ξun(z, ξ) = ∂2
z2 ∂ξ u(z, ξ)− ∂2

z2 ∂ξ u(zi, ξ j) + ∂2
z2 ∂ξ un(zi, ξ j)

− ∂2
z2 ∂ξ un(z, ξ) + ∂2

z2 ∂ξ u(zi, ξ j)− ∂2
z2 ∂ξ un(zi, ξ j).

Taylor series expansion for ∂2
z2 ∂ξ u(z, ξ) function around the point (zi, ξ j) as follow:

∂2
z2 ∂ξ u(z, ξ) = ∂2

z2 ∂ξ u(zi, ξ j) + (hz∂z + hξ ∂ξ)∂
2
z2 ∂ξ u(zi + hzε, ξ j + hξε) + ..., ε ∈ [0, 1].

Firstly, the following expression can be written by considering the continuation of ∂3
z3 ∂ξu(z, ξ)

and ∂2
z2 ∂2

ξ2 u(z, ξ) on Θ,

‖∂2
z2 ∂ξu(z, ξ)− ∂2

z2 ∂ξu(zi, ξ j)‖∞ = O(hz + hξ).

Secondly, one knows that

|∂2
z2 ∂ξun(zi, ξ j)− ∂2

z2 ∂ξ un(z, ξ)| ≤
∫ z

zi

|∂3
y3 ∂ξ un(y, ξ j)|dy +

∫ ξ

ξi

|∂2
z2 ∂2

s2 un(z, s)|ds.

The follow equality can be written by using of maximum norm:

‖∂2
z2 ∂ξ un(zi, ξ j)− ∂2

z2 ∂ξ un(z, ξ)‖∞ = O(hz + hξ).

The following statement can be written using Theorem 6 and for any arbitrary ε > 0,
and sufficiently large n:

‖∂2
z2 ∂ξ u(zi, ξ j)− ∂2

z2 ∂ξ un(zi, ξ j)‖∞ < ε. (55)

The following equation can be written from Equation (55) by choosing of n and using arbitrary
constant ε. So, we have

‖∂2
z2 ∂ξ u(z, ξ)− ∂2

z2 ∂ξ un(z, ξ)‖∞ = O(hz + hξ). (56)

One can know that the following equations can be written from the integral property for
differentiable functions:

∂z∂ξ u(z, ξ)− ∂z∂ξ un(z, ξ) = ∂z∂ξ u(zi, ξ)− ∂z∂ξ un(z, ξ) +
∫ z

zi

(∂2
y2 ∂ξ u(y, ξ)− ∂2

y2 ∂ξ un(y, ξ))dy (57)

∂ξ u(z, ξ)− ∂ξ un(z, ξ) = ∂ξu(zi, ξ)− ∂ξun(zi, ξ) +
∫ z

zi

(∂y∂ξ u(y, ξ)− ∂y∂ξ un(y, ξ))dy (58)

u(z, ξ)− un(z, ξ) = u(z, ξi)− un(z, ξi) +
∫ ξ

ξi

(∂su(z, s)− ∂sun(z, s))ds (59)

The following inequality can be written from Equations (56)–(59) and Theorem 6:

‖u(z, ξ)− un(z, ξ)‖∞ ≤ C(hξ h3
z + h2

ξ h2
z).
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6. Numerical Applications and Algorithm of Method

In this section, two fractional Burgers’ problems with variable and constant coefficient are
considered. Exact solutions of problems include the fractional parameter α. Reproducing kernel
method will be applied for these problems and outcomes will be presented with tables and graphics.

6.1. Algorithm Process of RKM

The algorithm process of RKM is given as follow:
Case 1. Choosing of iteration number as n = a× b.
Case 2. Start ψi(z, ξ) = L(τ,β)K(τ,β)(z, ξ)|(τ,β)=(zi ,ξi)

.
Case 3. Obtaining of ηik coefficients.

Case 4. Set ψi(z, ξ) =
i

∑
k=1

ηikψk(z, ξ) for i = 1, 2, ..., n.

Case 5. Start initial approximation u0(zi, ξi).

Case 6. Calculate Bi =
i

∑
k=1

ηikF(zk, ξk, uk−1(zk, ξk), ∂zuk−1(zk, ξk)) for i = 1, 2, ..., n.

Case 7. Calculate ui(z, ξ) =
i

∑
k=1

Bkψk(zk, ξk) for i = 1, 2, ..., n.

6.2. Numerical Applications

Example 1. It will be examined that the following fractional-order Burgers’ problem with Dirichlet
boundary condition:

cDα
ξ u + (1 + zξ)uzz + z2u + (z + 1)uz − ξ sin(z)uuz = f (z, ξ) (60)

0 ≤ ξ ≤ 1, 0 ≤ z ≤ 1, 0 < α ≤ 1,

u(z, 0) = 0 = u(0, ξ) = u(1, ξ) = 0. (61)

The exact solution of problem:

u(z, ξ) = (z2 − z)ξ1+α, (62)

and f (z, ξ) is the function that provides the Equation (62). Taking zi = i
a , i = 1, 2, ..., a,

ξi =
i
b , i = 1, 2, ..., b and n-th term of approximate solution is selected as n = a× b. Absolute error

values for Example 1 is computed for α = 0.9, α = 0.8, α = 0.7 and n = 25 (a = b = 5). Error values
are given in Tables 2–4 in order to observe of applicability and influence of method. The graphics of
absolute errors are given for α = 0.7, α = 0.8, and α = 0.9 in Figure 1.

Figure 1. The surfaces show the absolute error of Example 1 with n = 16 (a = b = 4) and for α = 0.7,
α = 0.8, α = 0.9 respectively on region Θ.
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Table 2. Absolute error values of Example 1 for Burgers’ equation with α = 0.9.

z/ξ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.31× 10−4 3.13× 10−5 3.36× 10−5 3.90× 10−5 5.67× 10−5 5.06× 10−5 6.67× 10−5 2.92× 10−5 1.31× 10−4

0.2 2.34× 10−4 5.74× 10−5 6.39× 10−5 7.70× 10−5 1.13× 10−4 1.08× 10−4 1.44× 10−4 1.55× 10−5 1.83× 10−4

0.3 3.07× 10−4 7.60× 10−5 8.59× 10−5 1.05× 10−4 1.55× 10−4 1.53× 10−4 2.07× 10−4 7.90× 10−6 1.96× 10−4

0.4 3.49× 10−4 8.65× 10−5 9.88× 10−5 1.22× 10−4 1.82× 10−4 1.81× 10−4 2.51× 10−4 3.54× 10−5 1.75× 10−4

0.5 3.62× 10−4 8.76× 10−5 1.00× 10−4 1.24× 10−4 1.87× 10−4 1.88× 10−4 2.66× 10−4 5.70× 10−5 1.33× 10−4

0.6 3.45× 10−4 8.13× 10−5 9.31× 10−5 1.16× 10−4 1.75× 10−4 1.76× 10−4 2.57× 10−4 7.18× 10−5 7.86× 10−5

0.7 2.99× 10−4 6.69× 10−5 7.60× 10−5 9.49× 10−5 1.45× 10−4 1.44× 10−4 2.19× 10−4 7.05× 10−5 3.03× 10−5

0.8 2.25× 10−4 4.73× 10−5 5.30× 10−5 6.56× 10−5 1.01× 10−4 9.98× 10−5 1.58× 10−4 5.56× 10−5 3.62× 10−6

0.9 1.25× 10−4 2.41× 10−5 2.63× 10−5 3.22× 10−5 5.09× 10−5 4.82× 10−5 8.20× 10−5 2.96× 10−5 1.49× 10−5

Table 3. Absolute error values of Example 1 for Burgers’ equation with α = 0.8.

z/ξ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.26× 10−4 1.29× 10−5 2.37× 10−5 1.99× 10−5 4.07× 10−5 3.53× 10−5 6.82× 10−5 1.27× 10−5 8.96× 10−6

0.2 2.25× 10−4 2.58× 10−5 4.78× 10−5 4.48× 10−5 8.67× 10−5 8.28× 10−5 1.48× 10−4 5.90× 10−5 3.22× 10−5

0.3 2.96× 10−4 3.61× 10−5 6.66× 10−5 6.49× 10−5 1.23× 10−4 1.21× 10−4 2.13× 10−4 1.03× 10−4 8.09× 10−5

0.4 3.39× 10−4 4.36× 10−5 7.94× 10−5 7.88× 10−5 1.47× 10−4 1.48× 10−4 2.57× 10−4 1.40× 10−4 1.30× 10−4

0.5 3.53× 10−4 4.62× 10−5 8.30× 10−5 8.22× 10−5 1.54× 10−4 1.55× 10−4 2.72× 10−4 1.58× 10−4 1.67× 10−4

0.6 3.39× 10−4 4.54× 10−5 7.99× 10−5 7.82× 10−5 1.46× 10−4 1.47× 10−4 2.61× 10−4 1.60× 10−4 1.89× 10−4

0.7 2.96× 10−4 3.94× 10−5 6.77× 10−5 6.43× 10−5 1.22× 10−4 1.20× 10−4 2.21× 10−4 1.39× 10−4 1.85× 10−4

0.8 2.25× 10−4 2.95× 10−5 4.93× 10−5 4.46× 10−5 8.69× 10−5 8.34× 10−5 1.59× 10−4 1.01× 10−4 1.52× 10−4

0.9 1.26× 10−4 1.60× 10−5 2.59× 10−5 2.17× 10−5 4.40× 10−5 4.03× 10−5 8.22× 10−5 5.19× 10−5 8.97× 10−5

Table 4. Absolute error values of Example 1 for Burgers’ equation with α = 0.7.

z/ξ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.29× 10−4 7.61× 10−6 2.09× 10−5 9.72× 10−6 3.07× 10−5 2.01× 10−5 4.75× 10−5 1.57× 10−5 4.67× 10−5

0.2 2.30× 10−4 9.60× 10−6 4.42× 10−5 2.82× 10−5 7.08× 10−5 5.80× 10−5 1.13× 10−4 6.51× 10−5 1.30× 10−4

0.3 3.03× 10−4 8.97× 10−6 6.33× 10−5 4.46× 10−5 1.04× 10−4 9.12× 10−5 1.69× 10−4 1.11× 10−4 2.07× 10−4

0.4 3.48× 10−4 5.73× 10−6 7.73× 10−5 5.69× 10−5 1.27× 10−4 1.15× 10−4 2.08× 10−4 1.48× 10−4 2.68× 10−4

0.5 3.64× 10−4 2.22× 10−6 8.27× 10−5 6.07× 10−5 1.35× 10−4 1.24× 10−4 2.23× 10−4 1.64× 10−4 3.03× 10−4

0.6 3.53× 10−4 2.36× 10−6 8.15× 10−5 5.87× 10−5 1.30× 10−4 1.20× 10−4 2.16× 10−4 1.64× 10−4 3.09× 10−4

0.7 3.11× 10−4 5.08× 10−6 7.10× 10−5 4.82× 10−5 1.10× 10−4 1.00× 10−4 1.84× 10−4 1.40× 10−4 2.80× 10−4

0.8 2.39× 10−4 6.20× 10−6 5.32× 10−5 3.31× 10−5 7.91× 10−5 7.04× 10−5 1.33× 10−4 1.01× 10−4 2.17× 10−4

0.9 1.35× 10−4 4.68× 10−6 2.90× 10−5 1.57× 10−5 4.05× 10−5 3.47× 10−5 6.90× 10−5 5.18× 10−5 1.22× 10−4

Example 2. It will be examined that the fractional-order Burgers’ equation with Neumann boundary condition
as follow:

cDα
ξ u− uzz − uuz = f (z, ξ) (63)

0 ≤ z ≤ 1, 0 ≤ ξ ≤ 1,
1
2
< α ≤ 1,

u(z, 0) = 0, uz(0, ξ) = uz(1, ξ) = 0. (64)

The exact solution of problem is :

u(z, ξ) = (
z3

3
− z2

2
)ξ2α, (65)

and f (z, ξ) is the function that provides the Equations (65). Taking zi = i
a , i = 1, 2, ..., a, ξi = i

b ,
i = 1, 2, ..., b and n = a× b. Absolute error of Example 2 is computed for α = 0.9, α = 0.8, α = 0.7
and n = 64 (a = b = 8). Error values are given in Tables 5–7 in order to observe of applicability and
influence of method. The graphics of absolute errors are given for α = 0.7, α = 0.8, and α = 0.9 in
Figure 2.
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Figure 2. The surfaces show the absolute error of Example 2 with n = 36 (a = b = 6) and for α = 0.7,
α = 0.8, α = 0.9 respectively on region Θ.

Table 5. Absolute error values of Example 2 for Burgers’ equation with α = 0.9.

z/ξ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 4.76× 10−4 3.40× 10−4 2.88× 10−4 2.92× 10−4 3.24× 10−4 3.84× 10−4 4.64× 10−4 5.77× 10−4 6.89× 10−4

0.2 9.30× 10−4 6.16× 10−4 4.62× 10−4 4.00× 10−4 3.81× 10−4 4.03× 10−4 4.50× 10−4 5.49× 10−4 6.38× 10−4

0.3 1.36× 10−3 8.71× 10−4 6.16× 10−4 4.88× 10−4 4.16× 10−4 3.97× 10−4 4.09× 10−4 4.88× 10−4 5.54× 10−4

0.4 1.77× 10−3 1.10× 10−3 7.50× 10−4 5.58× 10−4 4.33× 10−4 3.72× 10−4 3.48× 10−4 4.06× 10−4 4.49× 10−4

0.5 2.15× 10−3 1.30× 10−3 8.62× 10−4 6.09× 10−4 4.34× 10−4 3.33× 10−3 2.74× 10−4 3.09× 10−4 3.30× 10−4

0.6 2.47× 10−3 1.46× 10−3 9.49× 10−4 6.42× 10−4 4.20× 10−4 2.82× 10−4 1.91× 10−4 2.02× 10−4 2.01× 10−4

0.7 2.74× 10−3 1.59× 10−3 1.01× 10−3 6.56× 10−4 3.94× 10−4 2.23× 10−4 1.01× 10−4 9.05× 10−5 6.96× 10−4

0.8 2.93× 10−3 1.68× 10−3 1.04× 10−3 6.56× 10−4 3.62× 10−4 1.63× 10−4 1.72× 10−5 1.43× 10−5 5.21× 10−5

0.9 3.05× 10−3 1.73× 10−3 1.06× 10−3 6.49× 10−4 3.32× 10−4 1.15× 10−4 4.78× 10−5 9.40× 10−5 1.43× 10−4

Table 6. Absolute error values of Example 2 for Burgers’ equation with α = 0.8.

z/ξ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 3.88× 10−4 2.19× 10−4 2.12× 10−4 2.49× 10−4 3.02× 10−4 3.77× 10−4 4.63× 10−4 5.77× 10−4 6.84× 10−4

0.2 7.52× 10−4 3.60× 10−4 2.88× 10−4 2.86× 10−4 3.07× 10−4 3.59× 10−4 4.23× 10−4 5.31× 10−4 6.22× 10−4

0.3 1.10× 10−3 4.88× 10−4 3.52× 10−4 3.10× 10−4 2.96× 10−4 3.21× 10−4 3.61× 10−4 4.60× 10−4 5.34× 10−4

0.4 1.44× 10−3 6.01× 10−4 4.05× 10−4 3.23× 10−4 2.74× 10−4 2.73× 10−4 2.88× 10−4 3.74× 10−4 4.32× 10−4

0.5 1.75× 10−3 6.97× 10−4 4.45× 10−4 3.26× 10−4 2.43× 10−4 2.16× 10−4 2.07× 10−4 2.79× 10−4 3.21× 10−4

0.6 2.01× 10−3 7.75× 10−4 4.74× 10−4 3.19× 10−4 2.05× 10−4 1.53× 10−4 1.22× 10−4 1.79× 10−4 2.06× 10−4

0.7 2.23× 10−3 8.31× 10−4 4.90× 10−4 3.04× 10−4 1.62× 10−4 8.89× 10−5 3.63× 10−5 7.85× 10−5 9.18× 10−5

0.8 2.40× 10−3 8.68× 10−4 4.95× 10−4 2.85× 10−4 1.20× 10−4 2.81× 10−5 4.19× 10−5 1.33× 10−5 1.18× 10−5

0.9 2.50× 10−3 8.87× 10−4 4.94× 10−4 2.67× 10−4 8.76× 10−5 1.80× 10−5 1.00× 10−4 8.19× 10−5 8.88× 10−4

Table 7. Absolute error values of Example 2 for Burgers’ equation with α = 0.7.

z/ξ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 2.86× 10−4 1.42× 10−4 1.89× 10−4 2.48× 10−4 3.17× 10−4 4.00× 10−4 4.88× 10−4 5.96× 10−4 6.96× 10−4

0.2 5.41× 10−4 1.88× 10−4 2.15× 10−4 2.53× 10−4 3.01× 10−4 3.73× 10−4 4.48× 10−4 5.53× 10−4 6.41× 10−4

0.3 7.93× 10−4 2.26× 10−4 2.34× 10−4 2.50× 10−4 2.77× 10−4 3.35× 10−4 3.95× 10−4 4.95× 10−4 5.71× 10−4

0.4 1.03× 10−3 2.57× 10−4 2.49× 10−4 2.42× 10−4 2.48× 10−4 2.91× 10−4 3.36× 10−4 4.30× 10−4 4.95× 10−4

0.5 1.26× 10−3 2.81× 10−4 2.58× 10−4 2.30× 10−4 2.16× 10−4 2.45× 10−4 2.75× 10−4 3.61× 10−4 4.16× 10−4

0.6 1.45× 10−3 2.98× 10−4 2.62× 10−4 2.14× 10−4 1.81× 10−4 1.96× 10−4 2.12× 10−4 2.91× 10−4 3.36× 10−4

0.7 1.62× 10−3 3.06× 10−4 2.60× 10−4 1.95× 10−4 1.45× 10−4 1.48× 10−4 1.52× 10−4 2.22× 10−4 2.58× 10−4

0.8 1.74× 10−3 3.09× 10−4 2.55× 10−4 1.76× 10−4 1.12× 10−4 1.04× 10−4 9.79× 10−5 1.59× 10−4 1.89× 10−4

0.9 1.82× 10−3 3.08× 10−4 2.50× 10−4 1.60× 10−4 8.69× 10−5 7.20× 10−5 5.79× 10−5 1.14× 10−4 1.38× 10−4

7. Conclusions

In this research, some special Hilbert spaces with inner products and the kernel function of
these spaces are introduced. Then the iterative solution is obtained by reproducing kernel theory.
Error estimation of the approximate solution and convergence analysis are verified with lemma and
theorems. Numerical outcomes demonstrate that the iterative approximation is applicable, convenient,
and powerful for fractional-order Burgers’ equation with Dirichlet and Neumann conditions. Therefore,
iterative RKM is successfully implemented for fractional-order Burgers’ equation and so this study
will contribute to the science.
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