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Abstract: In this study, we examine adapting and using the Sumudu decomposition method (SDM) as
a way to find approximate solutions to two-dimensional fractional partial differential equations and
propose a numerical algorithm for solving fractional Riccati equation. This method is a combination
of the Sumudu transform method and decomposition method. The fractional derivative is described
in the Caputo sense. The results obtained show that the approach is easy to implement and accurate
when applied to various fractional differential equations.
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1. Introduction

Fractional calculus has been utilized as an excellent instrument to discover the hidden aspects of
various material and physical processes that deal with derivatives and integrals of arbitrary orders [1–4].
The theory of fractional differential equations translates the reality of nature excellently in a useful
and systematic manner [5]. Fractional differential equations are viewed as option models to nonlinear
differential equations. Varieties of them play important roles and tools, not only in mathematics, but also
in physics, dynamical systems, control systems and engineering, to create the mathematical modeling of
many physical phenomena. Furthermore, they are employed in social science such as food supplement,
climate and economics [6]. The mathematical physics governing by nonlinear partial deferential
dynamical equations have applications in physical science. The analytical solutions for these dynamical
equations play an important role in many phenomena in optics; fluid mechanics; plasma physics
and hydrodynamics [7–10]. In recent years, many authors have investigated partial differential
equations of fractional order by various techniques such as homotopy analysis technique [11,12],
variational iteration method [13–15], homotopy perturbation method [16], homotopy perturbation
transform method [17], Laplace variational iteration method [18–20], reduce differential transform
method [21], Laplace decomposition method [22] and other methods [23–27].

There are numerous integral transforms such as the Laplace, Sumudu, Fourier, Mellin and Elzaki
to solve PDEs. Of these, the Laplace transformation and Sumudu transformation are the most widely
used. The Sumudu transformation method is one of the most important transform methods introduced
in the early 1990 [28]. It is a powerful tool for solving many kinds of PDEs in various fields of science
and engineering. In addition, various methods are combined with the Sumudu transformation method
such as the homotopy perturbation transform method [29] which is a combination of the homotopy
perturbation method and the Sumudu transformation method. Another example is the homotopy
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analysis Sumudu transform method [30], which is a combination of the Sumudu transform method
and the homotopy analysis method.

Fractional operators are non-local operators; thus, they are used successfully for describing the
phenomena with memory effect. We stress on the fact than by replacing the classical derivative with
respect with time by a given fractional operator we change the nature of the partial differential equation
from local to a nonlocal one. In this way we can describe better processes with faster of lower velocities,
depending on the value of alpha, which in the classical class we cannot do. The domain of the utilized
fractional operator and the type, namely local or nonlocal, are other key factors in modeling with
high accuracy some real-world phenomena which cannot be described properly by using the classical
calculus models. Successful examples of changing the differential operator into the fractional ones can
be fined in modeling accurately the fluid mechanics models as well as the mathematical biology models,
including the top-level epidemiological models. This article considers the efficiency of fractional
Sumudu decomposition method (FSDM) to solve two-dimensional differential equations. The FSDM
is a graceful coupling of two powerful techniques, namely ADM and Sumudu transform algorithms
and gives more refined convergent series solution.

2. Preliminaries

Some fractional calculus definitions and notation needed [2,16,29] in the course of this work are
discussed in this section.

Definition 1. A real function ϕ(µ), µ > 0, is said to be in the space Cϑ, ϑ ∈ R if there exists a real number
q, (q > ϑ), such that ϕ(µ) = µqϕ1(µ), where ϕ1(µ) ∈ C[0,∞), and it is said to be in the space Cm

ϑ
if

ϕ(m)
∈ Cϑ, m ∈ N.

Definition 2. The Riemann Liouville fractional integral operator of order ε ≥ 0, of a functionϕ(µ) ∈ Cϑ, ϑ ≥ −1
is defined as

Iεϕ(µ) =

 1
Γ(ε)

∫ µ
0 (µ− τ)ε−1ϕ(τ)dτ, ε > 0, µ > 0,

I0ϕ(µ) = ϕ(µ), ε = 0,
(2.1)

where Γ(·) is the well-known Gamma function.
Properties of the operator Iα, which we will use here, are as follows:
For ϕ ∈ Cϑ, ϑ ≥ −1, ε, ε ≥ 0,

1. IεIεϕ(µ) = Iε+εϕ(µ).
2. IεIεϕ(µ) = IεIεϕ(µ)

3. Iεµm =
Γ(m+1)

Γ(ε+m+1)µ
ε+m.

Definition 3. The fractional derivative of ϕ(µ) in the Caputo sense is defined as

Dεϕ(µ) = Im−εDmϕ(µ) =
1

Γ(m− ε)

∫ µ

0
(µ− τ)m−ε−1ϕ(m)(τ)dτ, (2.2)

for m− 1< ε ≤ m, m ∈ N, µ >0, ϕ ∈ Cm
−1.

The following are the basic properties of the operator Dε:

1. DεDεϕ(µ) = Dε+εϕ(µ).

2. Dεµm =
Γ(1+m)

Γ(1+m−ε)µ
m−ε.

3. DεIεϕ(µ) = ϕ(µ).

4. IεDεϕ(µ) = ϕ(µ) −
m−1∑
k=0

ϕ(k)(0)µ
k

k! .
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Definition 4. The Mittag–Leffler function Eδ with ε > 0 is defined as

Eε (z) =
∞∑

m=0

zε

Γ(mε+ 1)
(2.3)

Definition 5. The Sumudu transform is defined over the set of function

A =
{
ϕ(τ)/ ∃M, ω1,ω2 > 0,

∣∣∣ϕ(τ)∣∣∣ < Me|τ|/ω j , i f τ ∈ (−1) j
× [0,∞)

}
by the following formula [30,31]:

S[ϕ(τ)] =
∫
∞

0
e−τϕ(ωτ)dτ, ω ∈ (−ω1,ω2). (2.4)

Definition 6. The Sumudu transform of the Caputo fractional derivative is defined as [30,31]:

S[Dmε
τ ϕ(µ,γ, τ)] = ω−mεS[ϕ(µ,γ, τ] −

m−1∑
k=0

ω(−mε+k)ϕ(k)(µ,γ, 0), m− 1 < mε < m. (2.5)

3. Fractional Sumudu Decomposition Method (FSDM)

Let us consider a general fractional nonlinear partial differential equation of the form:

Dε
τϕ(µ,γ, τ) + L[ϕ(µ,γ, τ)] + N[ϕ(µ,γ, τ)] = g(µ,γ, τ), (3.1)

with n− 1 < ε ≤ n and subject to the initial condition

∂s

∂τsϕ(µ,γ, 0) = ϕ(s)(µ,γ, 0) = ϕs(µ,γ), s = 0, 1, . . . , n− 1, (3.2)

whereϕ(µ,γ, τ) is an unknown function, Dε
τϕ(µ,γ, τ) is the Caputo fractional derivative of the function

ϕ(µ,γ, τ), L is the linear differential operator, N represents the general nonlinear differential operator
and g(µ,γ, τ) is the source term.

Taking the ST on both sides of (3.1), we have

S[Dε
τϕ(µ,γ, τ)] + S[L[ϕ(µ,γ, τ)]] + S[N[ϕ(µ,γ, τ)]] = S[g(µ,γ, τ)]. (3.3)

Using the property of the ST, we obtain

S[ϕ(µ,γ, τ)] =
n−1∑
k=0

ωεϕk(µ,γ) +ωεS[g(µ,γ, τ)] −ωεS[L[ϕ(µ,γ, τ)] + N[ϕ(µ,γ, τ)]]. (3.4)

Operating with the ST on both sides of (3.4) gives

ϕ(µ,γ, τ) = S−1
(

n−1∑
k=0

ωεϕk(µ,γ)
)
+ S−1(ωεS[g(µ,γ, τ)])

−S−1( ωεS[L[ϕ(µ,γ, τ)] + N[ϕ(µ,γ, τ)]]).
(3.5)
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Now, we represent solution as an infinite series given below

ϕ(µ,γ, τ) =
∞∑

m=0

ϕm(µ,γ, τ), (3.6)

and the nonlinear term can be decomposed as

N[ϕ(µ,γ, τ)] =
∞∑

m=0

Am(ϕ0,ϕ1, . . . ,ϕm), (3.7)

where

Am(ϕ0,ϕ1, . . . ,ϕm) =
1

m!
∂m

∂λm

N
 ∞∑

i=0

λiϕi



λ=0

.

Substituting (3.6) and (3.7) in (3.5), we get

∞∑
m=0

ϕm(µ,γ, τ) = S−1
(

n−1∑
k=0

ωεϕk(µ,γ)
)
+ S−1(ωεS[g(µ,γ, τ)])

−S−1
(
ωεS

[
L
[
∞∑

m=0
ϕm(µ,γ, τ)

]
+
∞∑

m=0
Am

]) (3.8)

On comparing both sides of the Equation (3.8), we get

ϕ0(µ,γ, τ) = S−1
(

n−1∑
k=0

ωεϕk(µ,γ)
)
+ S−1(ωεS[g(µ,γ, τ)]),

ϕ1(µ,γ, τ) = −S−1( ωεS[L[ϕ0(µ,γ, τ)] + A0]),
ϕ2(µ,γ, τ) = −S−1( ωεS[L[ϕ1(µ,γ, τ)] + A1]),

...
ϕm(µ,γ, τ) = −S−1( ωεS[L[ϕm−1(µ,γ, τ)] + Am−1]), m ≥ 1.

(3.9)

Finally, we approximate the analytical solution ϕ(µ,γ, τ) by truncated series:

ϕ(µ,γ, τ) =
∞∑

m=0

ϕn(µ,γ, τ). (3.10)

4. Applications

In this section, we will implement the fractional Sumudu decomposition method for solving two
dimensional fractional partial differential equations.

Example 1. First, we consider the two-dimensional fractional partial differential equations of the form:

Dε
τϕ(µ,γ, τ) = 2

(
∂2ϕ(µ,γ, τ)

∂µ2 +
∂2ϕ(µ,γ, τ)

∂γ2

)
, (4.1)

with 1 < ε ≤ 2, subject to initial condition

ϕ(µ,γ, 0) = sin(µ) sin(γ). (4.2)

From (3.9) and (4.1), the successive approximations are

ϕ0(µ,γ, τ) = ϕ(µ,γ, 0),

ϕm(µ,γ, τ) = S−1
(
ωδS

[
2
(
∂2ϕm−1(µ,γ,τ)

∂µ2 +
∂2ϕm−1(µ,γ,τ)

∂γ2

)])
.

(4.3)
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Then, we have
ϕ0(µ,γ, τ) = sin(µ) sin(γ),

ϕ1(µ,γ, τ) = S−1
(
ωδS

[
2
(
∂2ϕ0(µ,γ,τ)

∂µ2 +
∂2ϕ0(µ,γ,τ)

∂γ2

)])
= S−1

(
ωδS[−4 sin(µ) sin(γ)]

)
= −4 sin(µ) sin(γ)S−1( ωε)

= −4τε
Γ(ε+1) sin(µ) sin(γ).

ϕ2(µ,γ, τ) = S−1
(
ωδS

[
2
(
∂2ϕ1(µ,γ,τ)

∂µ2 +
∂2ϕ1(µ,γ,τ)

∂γ2

)])
= S−1

(
ωδS

[
16τε

Γ(ε+1) sin(µ) sin(γ)
])

= 16 sin(µ) sin(γ)S−1
(
ω2ε

)
= 16τ2ε

Γ(2ε+1) sin(µ) sin(γ).

ϕ3(µ,γ, τ) = S−1
(
ωδS

[
2
(
∂2ϕ2(µ,γ,τ)

∂µ2 +
∂2ϕ2(µ,γ,τ)

∂γ2

)])
= S−1

(
ωδS

[
−

64τ2ε

Γ(2ε+1) sin(µ) sin(γ)
])

= −64 sin(µ) sin(γ)S−1
(
ω3ε

)
= −64τ3ε

Γ(3ε+1) sin(µ) sin(γ).
...

ϕm(µ,γ, τ) = (−4)mτmε

Γ(mε+1) sin(µ) sin(γ).

Hence, the solution of (4.1) is given by:

ϕ(µ,γ, τ) =
∞∑

m=0
ϕn(µ,γ, τ).

=
∞∑

m=0

(−4)mτmε

Γ(mε+1) sin(µ) sin(γ) = sin(µ) sin(γ)
(
1− 4τε

Γ(ε+1) +
42τ2ε

Γ(2ε+1) −
43τ3ε

Γ(3ε+1) + · · ·
)

= sin(µ) sin(γ)Eε(−4τε).

(4.4)

If we put ε→ 2 in Equation (4.4), we get the exact solution:

ϕ(µ,γ, τ) =
∞∑

m=0

(−1)m(2τ)2m

Γ(2m+1) sin(µ) sin(γ)

= sin(µ) sin(γ) cos(2τ).

Example 2. we consider the fractional generalized biologic population model of the form:

Dε
τϕ(µ,γ, τ) =

(
∂2ϕ2(µ,γ, τ)

∂µ2 +
∂2ϕ2(µ,γ, τ)

∂γ2

)
+ ϕ(µ,γ, τ) − rϕ2(µ,γ, τ), (4.5)

with 0 < ε ≤ 1, subject to initial condition

ϕ(µ,γ, 0) = e
1
2

√
r
2 (µ+γ). (4.6)

From (3.9) and (4.6), the successive approximations are

ϕ0(µ,γ, τ) = ϕ(µ,γ, 0),

ϕm(µ,γ, τ) = S−1
(
ωδS

[(
∂2Am−1
∂µ2 + ∂2Am−1

∂γ2

)
+ ϕm−1(µ,γ, τ) − rAm−1

])
,

(4.7)
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where
A0 = ϕ2

0
A1 = 2ϕ0ϕ1

A2 = 2ϕ0ϕ2 + ϕ2
1

A3 = 2ϕ0ϕ3 + 2ϕ1ϕ2
...

Then, we have

ϕ0(µ,γ, τ) = e
1
2

√
r
2 (µ+γ),

ϕ1(µ,γ, τ) = S−1
(
ωδS

[(
∂2A0
∂µ2 + ∂2A0

∂γ2

)
+ ϕ0(µ,γ, τ) − rA0

])
= S−1

(
ωδS

[
e

1
2

√
r
2 (µ+γ)

])
= e

1
2

√
r
2 (µ+γ)S−1( ωε)

= τε

Γ(ε+1) e
1
2

√
r
2 (µ+γ).

ϕ2(µ,γ, τ) = S−1
(
ωδS

[(
∂2A1
∂µ2 + ∂2A1

∂γ2

)
+ ϕ1(µ,γ, τ) − rA1

])
= S−1

(
ωδS

[
τε

Γ(ε+1) e
1
2

√
r
2 (µ+γ)

])
= e

1
2

√
r
2 (µ+γ)S−1

(
ω2ε

)
= τ2ε

Γ(2ε+1) e
1
2

√
r
2 (µ+γ).

ϕ3(µ,γ, τ) = S−1
(
ωδS

[(
∂2A2
∂µ2 + ∂2A2

∂γ2

)
+ ϕ2(µ,γ, τ) − rA2

])
= S−1

(
ωδS

[
τ2ε

Γ(2ε+1) e
1
2

√
r
2 (µ+γ)

])
= e

1
2

√
r
2 (µ+γ)S−1

(
ω3ε

)
= τ3ε

Γ(3ε+1) e
1
2

√
r
2 (µ+γ).

...

ϕm(µ,γ, τ) = τmε

Γ(mε+1) e
1
2

√
r
2 (µ+γ).

Hence, the fractional series form of (4.5) is given by

ϕ(µ,γ, τ) =
∞∑

m=0

τmε

Γ(mε+1) e
1
2

√
r
2 (µ+γ)

= e
1
2

√
r
2 (µ+γ)

(
1 + τε

Γ(ε+1) +
τ2ε

Γ(2ε+1) +
τ3ε

Γ(3ε+1) + · · ·
)

= e
1
2

√
r
2 (µ+γ)Eε(τε).

(4.8)

If we put ε→ 1 in Equation (4.8), we get the exact solution

ϕ(µ,γ, τ) =
∞∑

m=0

τm

Γ(m+1) e
1
2

√
r
2 (µ+γ)

= e
1
2

√
r
2 (µ+γ)+t.

Example 3. Consider the nonlinear time-fractional differential equation of the form:

Dε
τϕ(µ,γ, τ) =

(
∂2ϕ2(µ,γ, τ)

∂µ2 +
∂2ϕ2(µ,γ, τ)

∂γ2

)
+ ϕ(µ,γ, τ), (4.9)
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with 0 < ε ≤ 1, subject to initial condition

ϕ(µ,γ, 0) =
√

sin(µ)sin h(γ). (4.10)

From (3.9) and (4.10), the successive approximations are:

ϕ0(µ,γ, τ) = ϕ(µ,γ, 0),

ϕm(µ,γ, τ) = S−1
(
ωδS

[(
∂2Am−1
∂µ2 + ∂2Am−1

∂γ2

)
+ ϕm−1(µ,γ, τ)

])
,

(4.11)

Then, we have
ϕ0(µ,γ, τ) =

√
sin(µ)sin h(γ),

ϕ1(µ,γ, τ) = S−1
(
ωδS

[(
∂2A0
∂µ2 + ∂2A0

∂γ2

)
+ ϕ0(µ,γ, τ)

])
= S−1

(
ωδS

[√
sin(µ)sin h(γ)

])
=

√
sin(µ)sin h(γ)S−1( ωε)

= τε

Γ(ε+1)

√
sin(µ)sin h(γ).

ϕ2(µ,γ, τ) = S−1
(
ωδS

[(
∂2A1
∂µ2 + ∂2A1

∂γ2

)
+ ϕ1(µ,γ, τ)

])
= S−1

(
ωδS

[
τε

Γ(ε+1)

√
sin(µ)sin h(γ)

])
=

√
sin(µ)sin h(γ)S−1

(
ω2ε

)
= τ2ε

Γ(2ε+1)

√
sin(µ)sin h(γ).

ϕ3(µ,γ, τ) = S−1
(
ωδS

[(
∂2A2
∂µ2 + ∂2A2

∂γ2

)
+ ϕ2(µ,γ, τ)

])
= S−1

(
ωδS

[
τ2ε

Γ(2ε+1)

√
sin(µ)sin h(γ)

])
=

√
sin(µ)sin h(γ)S−1

(
ω3ε

)
= τ3ε

Γ(3ε+1)

√
sin(µ)sin h(γ).

...
ϕm(µ,γ, τ) = τmε

Γ(mε+1)

√
sin(µ)sin h(γ).

Hence, the fractional series form of (4.5) is given by

ϕ(µ,γ, τ) =
∞∑

m=0

τmε

Γ(mε+1)

√
sin(µ)sin h(γ)

=
√

sin(µ)sin h(γ)
(
1 + τε

Γ(ε+1) +
τ2ε

Γ(2ε+1) +
τ3ε

Γ(3ε+1) + · · ·
)

=
√

sin(µ)sin h(γ)Eε(τε).

(4.12)

If we put ε→ 1 in Equation (4.12), we get the exact solution

ϕ(µ,γ, τ) =
∞∑

m=0

τm

Γ(m+1)

√
sin(µ)sin h(γ)

=
√

sin(µ)sin h(γ) et.

5. Conclusions

The coupling of the Adomian decomposition method (ADM) and the Sumudu transform method
in the sense of Caputo fractional derivatives proved very effective for solving two-dimensional
fractional partial differential equations. The proposed algorithm provides a solution in a series form
that converges rapidly to an exact solution if it exists. From the obtained results, it is clear that the
FSDM yields very accurate solutions using only a few iterates. As a result, the conclusion that comes
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through this work is that FSDM can be applied to other fractional partial differential equations of higher
order, due to the efficiency and flexibility in the application as can be seen in the proposed examples.
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