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Abstract: In the present paper, we discuss a new boundary value problem for the nonlinear Langevin
equation involving two distinct fractional derivative orders with multi-point and multi-nonlocal
integral conditions. The fixed point theorems for Schauder and Krasnoselskii–Zabreiko are applied
to study the existence results. The uniqueness of the solution is given by implementing the Banach
fixed point theorem. Some examples showing our basic results are provided.
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1. Introduction

The Langevin equation was discovered by Langevin a century ago to render an accurate
description of the evolution of physical phenomena in fluctuating environments. This equation
can be considered as a special form of the generalized Langevin equation [1], which has turned into a
modern research project theme.

Fractional calculus has attracted many authors and researchers in many different scientific
disciplines. Many of the recent advances in fractional calculus were motivated by the modern
applications of fractional integro-differential equations in various fields, in particular physics. One of
the main reasons for its popularity in modeling various transport properties in complex heterogeneous
and disordered media is that it provides a natural setting for describing processes with memory
and is fractal or multi-fractal in nature [2]. For systems in complex media, the ordinary Langevin
equation does not provide the correct description of the dynamics. Various generalizations of Langevin
equations have been proposed to describe dynamical processes in a fractal medium. One such
generalization is the Langevin equation with two fractional orders, which incorporates the fractal
and memory properties with a dissipative memory kernel into the Langevin equation. This possible
extension requires the replacement of the ordinary derivative by a fractional derivative in the Langevin
equation to give the fractional Langevin equation [3–5]. Various versions of fractional Langevin-type
equations have been proposed to model anomalous diffusion [6,7], and both deterministic and
stochastic fractional equations are used to describe non-Debye dielectric relaxation phenomena.

Anomalous diffusion has been found in various physical and biological systems. The mean
squared displacement of the particle shows a power law dependence on time 〈x2(t)〉 ∼ tα, becoming
subdiffusion in the case 0 < α < 1, superdiffusion for α > 1, and normal classical diffusion for
α = 1 [8–10]. Several stochastic approaches to anomalous diffusion exist. In most cases, such behavior is
considered to be connected with the self-similar properties of the diffusion medium. As this took place,
the generalized Langevin equation came to fame following Kubos’ work and the related fractional
Brownian motion, originally introduced by Kolmogorov [11] and popularized by Mandelbrot [12].
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It is remarkable to note that Mainardi and Pironi [13] introduced a fractional Langevin equation as
a particular case of a generalized Langevin equation and for the first time represented the velocity and
displacement correlation functions in terms of the Mittag–Leffler functions.

Due to the extremely useful role of the fractional Langevin equation in applied mathematics,
physics, engineering, and several branches of science, it has acquired many scientific contributions
in the field of finding exact solutions [3,14,15], approximate solutions through numerical analysis
methods [16–18], and studying the existence and uniqueness of the solution (see [19–25] and the
references given therein). Studying differential equations with integral boundary conditions designates
an extremely useful and interesting class of boundary value problems. Several of the problems are in
chemical engineering, population dynamics, heat conduction, thermoelasticity, underground water
flow, and plasma physics [26]. Furthermore, there are many published contributions concerned with
the fractional boundary value problem with the integral boundary conditions (see [27–29] and the
references given therein). Multi-point boundary value problems for differential equations become
apparent naturally in scientific applications. For an illustration, given a dynamical system with m
degrees of freedom, there may be available exactly m cases spotted at m distinct times. A mathematical
depiction of such problems is in an m-point boundary value problem. Multi-point problems for
differential equations are a special class of interface problems, and hence solvable with various
techniques. Studying fractional differential equations with multi-pint boundary condition has been
drawn the attention of many contributors (see [30–33] and the references given therein).

Motivated by the significance of the integral boundary conditions and fractional Langevin
equations in different branches of science and engineering, this paper is interested in studying the
nonlinear fractional Langevin equation:

cDp(cDq + µ)x(t) = f (t, x(t), cDrx(t)), t ∈ [0, 1] (1)

with the new auxiliary multi-integral and multi-point boundary conditions:

x(0) = 0, Dqx(0) = 0, x(1) =
n

∑
i=1

αix(ηi) +
n

∑
i=1

βi

∫ ηi

0
x(s)ds (2)

where cDp, cDq, and cDr are the Liouville–Caputo fractional derivative of orders p ∈ (1, 2], q ∈ (0, 1],
and 0 < r ≤ q, µ ∈ R is the dissipative parameter, µ, αi, βi ∈ R, ηi ∈ (0, 1), i = 1, 2, · · · , n such that
n ∈ N with ω = ∑n

i=1 αiηi
q+1 6= 1, and the function f : [0, 1]×R×R→ R is continuous.

It is worth mentioning that x(t) in Equation (1) is the displacement of the particle in the general
interval t ∈ [0, a], a > 0 (for simplicity, we apply the transformation t = t/a to make t in the unit
interval [0, 1]). Instead of the ordinary definition of the velocity and acceleration as the first and second
derivatives of the displacement, respectively, we render fractional forms cDαx(t), 0 < α ≤ 1 for the
velocity and cDβx(t), 1 < β ≤ 2 for the the acceleration. The product of two fractional derivatives
gives the term cDα+β, which represents the acceleration if 1 < α + β ≤ 2 and the aberrancy of the
curve or the Jerk term [34–36] if 2 < α + β ≤ 3 instead of defining it as a third time derivative of the
displacement. We take here the function f in the general form, which is constituted by the position
x(t) and velocity cDrx(t) of the particle at time t. This function may contain an external force field,
a position-dependent phenomenological fluid friction coefficient, the intensity of the stochastic force,
or the zero-mean Gaussian white noise term.

The first and second boundary conditions in Equation (2) indicate that the particle begins
its motion from stillness at the origin. The last condition in Equation (2), which seems to be a
linear combination of the values of the unknown function at the multi-point and multi-strip, can be
interpreted as “the value of of the unknown function at the terminal point proportionate to the
summation of values of it at midst nonlocal m-points and the areas under its curve from the initial
point to the midst points”.
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In mathematical analysis, the existence and uniqueness of the solution for differential and integral
equations have become major topics. There are many fixed point theorems used to discuss the
existence results [37]. One of these theorems due to Krasnoselskii–Zabreiko lacks usage, although
it gives more precise sufficient conditions of the existence results. This inspired us to discuss the
existence of the solution for our problem by implementing the Krasnoselskii–Zabreiko fixed point
theorem. Furthermore, we apply the Schauder fixed point under different assumptions and show its
applicability by means of studying a numerical example. In addition, the uniqueness of the solution is
investigated by applying the Banach fixed point theorem.

The strategy of the paper is as follows: In the section below, we render some definitions and
results that are needed in this paper. The existence and uniqueness are discussed in Section 3. In the
last section, we establish some examples to show these results.

Introducing the fractional element provides many possibilities for the generalizations of models
described in the previous subsection.

2. Preliminaries

Throughout this section, the definitions needed and the notations are given. Let C[0, 1] be
the class continuous functions on [a, b]. Furthermore, let AC[a, b] be the space of functions f that
are absolutely continuous on [a, b]. For n ∈ N, we denote by ACn[a, b] the space of real functions
f (t), which have continuous derivatives up to order n − 1 on [a, b] such that f (n−1)(t) ∈ AC[a, b].
In particular, AC1[a, b] = AC[a, b] [38].

Definition 1 ([38]). If x(t) ∈ C[a, b], then, the R-Lfractional integral with order p > 0 exists almost
everywhere on [a, b] and can be represented in the form:

Ipx(t) =
1

Γ(p)

∫ t

a
(t− s)p−1x(s)ds.

Definition 2 ([38]). If x(t) ∈ ACn[a, b] and n ∈ N, the Liouville–Caputo fractional derivative of order
n− 1 < p ≤ n exists almost everywhere on [a, b] and can be represented in the form:

cDpx(t) =
1

Γ(n− p)

∫ t

a
(t− s)n−p−1x(n)(s)ds.

Lemma 1 ([38,39]). Let n ∈ N, n− 1 < q ≤ n, and x(t) ∈ Cn[0, 1], then we have:

Iq cDqx(t) = x(t) + a0 + a1t + · · ·+ an−1tn−1

Lemma 2 ([38,39]). Let p > 0, n ∈ N such that n− 1 < q ≤ n, then:

1 cDq Ipx(t) = Dq−px(t) if q > p,
2 cDq Ipx(t) = Ip−qx(t) if p > q.

Lemma 3. Suppose the function g : C[0, 1]→ R; hence, the unique solution of the linear equation:

cDp(cDq + µ)x(t) = g(t), t ∈ [0, 1] (3)
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with the conditions mentioned in Equation (2), can be taken the form:

x(t) =
1

Γ(q + p)

∫ t

0
(t− s)q+p−1g(s)ds− µ

Γ(q)

∫ t

0
(t− s)q−1x(s)ds

+
tq+1

(1−ω)

[
µ

Γ(q)

∫ 1

0
(1− s)q−1x(s)ds− 1

Γ(p + q)

∫ 1

0
(1− s)q+p−1g(s)ds

+
n

∑
i=1

αi
Γ(p + q)

∫ ηi

0
(ηi − s)q+p−1g(s)ds− µ

n

∑
i=1

αi
Γ(q)

∫ ηi

0
(ηi − s)q−1x(s)ds

+
n

∑
i=1

βi

∫ ηi

0
x(s)ds

]
(4)

Proof. Applying Lemma 1, we get:

cDqx(t) = Ipg(t)− µx(t) + a0 + a1t (5)

Furthermore, we apply Lemma 1 and use the relation Iqtp = Γ(p+1)
Γ(p+q+1) tp+q, and Equation (5) becomes:

x(t) =
1

Γ(q + p)

∫ t

0
(t− s)q+p−1g(s)ds− µ

Γ(q)

∫ t

0
(t− s)q−1x(s)ds

+
tq

Γ(q + 1)
a0 +

tq+1

Γ(q + 2)
a1 + a2 (6)

By using the boundary conditions x(0) = 0 and Dqx(0) = 0 in Equations (5) and (6), respectively,
we find that a0 = 0 and a2 = 0. The boundary equation x(1) = ∑n

i=1 αix(ηi) + ∑n
i=1 βi

∫ ηi
0 x(s)ds in

Equation (6) gives the value of the constant a1 as:

a1 =
Γ(q + 2)
(1−ω)

[
µIqx(1)− Ip+qg(1) +

n

∑
i=1

αi Ip+qg(ηi)− µ
n

∑
i=1

αi Iqx(ηi)

+
n

∑
i=1

βi

∫ ηi

0
x(s)ds

]

Substitute the values a0, a1 and a2 in Equation (6) to obtain Equation (4). Conversely, inserting
Equation (4) in the left side of Equation (3) using Lemma 2 implies the right side. Furthermore, it
is not difficult to see that Equation (4) verifies the boundary condition Equation (2). This completes
the proof.

3. Main Results

Define the space:
X = {x : x ∈ C[0, 1], cDrx ∈ C[0, 1], 0 < r ≤ 1}

equipped with the norm:

‖x‖X = ‖x‖+ ‖ cDrx(t)‖ = max
t∈[0,1]

|x(t)|+ max
t∈[0,1]

| cDrx(t)|.

It is worth pointing out that Su [40] proved that X is a Banach space equipped with the
former norm.

Assume the following hypotheses that we need to prove the existence and uniqueness results of
the problem Equations (1) and (2).

(G1) f : [0, 1]×R×R→ R is a continuous function;
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(G2) There exists a positive function ψ ∈ X such that
| f (t, x, y)| ≤ ψ(t) + a1|x|r1 + a2|y|r2 where a1, a2 ∈ R+ and 0 < r1, r2 ≤ 1;

(G3) The continuous function f (t, 0, 0) does not vanish identically in [0, 1];
(G4) limr→∞

f (t,x(t),y(t))
x(t)+y(t) = κ(t) uniformly in [0, 1] where x, y ∈ X, r = ‖x‖+ ‖y‖ and κ : [0, 1] → R

is continuous;
(G5) There exists a constant L > 0 such that:

| f (t, x, y)− f (t, x̂, ŷ)| ≤ L(|x− x̂|+ |y− ŷ|), t ∈ [0, 1], x, x̂, y, ŷ ∈ R.

For convenience, let:

Θ = Θp,r + Θp,0, (7)

Υ = Υr + Υ0 (8)

where:

Θp,r =
1

Γ(p + q− r + 1)
+

Γ(q + 2)
|1−ω|Γ(q− r + 2)Γ(p + q + 1)

(
1 +

n

∑
i=1

αiη
p+q
i

)

Υr = |µ|Θ0,r +
Γ(q + 2)

|1−ω|Γ(q− r + 2)

n

∑
i=1

βiηi

We express the operator T : X → X as:

(Tx)(t) =
1

Γ(q + p)

∫ t

0
(t− s)q+p−1 f (s, x(s), cDrx(s))ds− µ

Γ(q)

∫ t

0
(t− s)q−1x(s)ds

+
tq+1

1−ω
[T1(x) + T2( f )] (9)

and its rth Caputo fractional derivative:

cDr(Tx)(t) =
1

Γ(q + p− r− 1)

∫ t

0
(t− s)q+p−1 f (s, x(s), cDrx(s))ds

− µ

Γ(q− r)

∫ t

0
(t− s)q−r−1x(s)ds +

Γ(q + 2)tq+1−r

(1−ω)Γ(q− r + 2)
[T1(x) + T2( f )] (10)

where:

T1(x) =
µ

Γ(q)

∫ 1

0
(1− s)q−1x(s)ds− µ

n

∑
i=1

αi
Γ(q)

∫ ηi

0
(ηi − s)q−1x(s)ds +

n

∑
i=1

βi

∫ ηi

0
x(s)ds

T2( f ) =
n

∑
i=1

αi
Γ(p + q)

∫ ηi

0
(ηi − s)q+p−1 f (s, x(s), cDrx(s))ds

− 1
Γ(p + q)

∫ 1

0
(1− s)q+p−1 f (s, x(s), cDrx(s))ds.

It is easy to see that:

‖T1(x)‖ ≤ ‖x‖
Γ(q + 1)

(
|µ|+ |µ|

n

∑
i=1
|αi|η

q
i + Γ(q + 1)

n

∑
i=1
|βi|ηi

)
(11)

‖T2( f )‖ ≤ ‖ f ‖
Γ(p + q + 1)

(
1 +

n

∑
i=1
|αi|η

q+p
i

)
. (12)
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Our first result is discussing the existence of the solution for the problem by the Schauder fixed
point theorem.

Theorem 1. Assume that G1 and G2 hold. Then, the boundary value problem Equations (1) and (2) have a
solution.

Proof. We express the operator T : X → X and let a closed ball Bξ = {x ∈ X : ‖x‖X ≤ ξ} taking:

ξ > max{4‖ψ‖XΘ, (4a1Θ)
1

1−r1 , (4a2Θ)
1

1−r2 , 4ξΥ}

Then, we claim that TBξ ⊂ Bξ . For x ∈ Bξ and by the condition G1, we give:

|(Tx)(t)| ≤ 1
Γ(q + p)

∫ t

0
(t− s)q+p−1| f (s, x(s), cDrx(s))|ds +

|µ|
Γ(q)

∫ t

0
(t− s)q−1|x(s)|ds

+
1

|1−ω| [|T1(x)|+ |T2( f )|]

≤ (‖ψ‖X + a1ξr1 + a2ξr2)

{
tp+q

Γ(p + q + 1)
+

1
(1−ω)Γ(p + q + 1)

+
∑n

i=1 |αi|η
p+q
i

(1−ω)Γ(p + q + 1)

}

+ ‖x‖X

{
|µ|tq

Γ(q + 1)
+

tq+1|µ|
(1−ω)Γ(q + 1)

+
tq+1|µ|

(1−ω)Γ(q + 1)

n

∑
i=1

αiη
q
i +

tq+1

(1−ω)

n

∑
i=1
|βi||ηi|

}

≤ (‖ψ‖X + a1ξr1 + a2ξr2)

{
1

Γ(p + q + 1)
+

1 + ∑n
i=1 |αi|η

p+q
i

(1−ω)Γ(p + q + 1)

}

+ ξ

{
|µ|

Γ(q + 1)
+
|µ|(1 + ∑n

i=1 |αi|η
q
i )

(1−ω)Γ(q + 1)
+

∑n
i=1 |βi||ηi|

1−ω

}
≤ (‖ψ‖X + a1ξr1 + a2ξr2)Θp,0 + ξΥ0

Similarly, we have:

| cDr(Tx)(t)| ≤ (‖ψ‖X + a1ξr1 + a2ξr2)Θp,r + ξΥr

Consequently,

‖Tx‖X = max |(Tx)(t)|+ max |( cDr(Tx)(t))|
≤ (‖ψ‖X + a1ξr1 + a2ξr2)(Θp,0 + Θp,r) + ξ(Υ0 + Υr)

≤ (‖ψ‖X + a1ξr1 + a2ξr2)Θ + ξΥ

≤ ξ

4
+

ξ

4
+

ξ

4
+

ξ

4
= ξ

Then, the operator T : X → X is uniformly bounded. Next, we show that T is equicontinuous.
We set:

N = max
t∈[0,1]

| f (t, x(t), cDrx(t))|+ 1
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and for x ∈ Bξ , let t1, t2 ∈ [0, 1], whereas for t1 < t2, we get:

|(Tx)(t2)− (Tx)(t1)| ≤
∣∣∣∣ 1
Γ(p + q)

∫ t2

0
(t2 − s)q+p−1 f (s, x(s), cDrx(s))ds

− µ

Γ(q)

∫ t2

0
(t2 − s)q−1x(s)ds− 1

Γ(p + q)

∫ t1

0
(t1 − s)q+p−1 f (s, x(s), Drx(s))ds

+
µ

Γ(q)

∫ t1

0
(t1 − s)q−1x(s)ds

∣∣∣∣+ ∣∣∣∣ (t2
q+1 − t1

q+1)

1−ω
(T1(x) + T2( f ))

∣∣∣∣
≤
∣∣∣∣ 1
Γ(p + q)

∫ t1

0
[(t2 − s)q+p−1 − (t1 − s)p+q−1] f (s, x(s), cDrx(s))ds

+
1

Γ(p + q)

∫ t2

t1

(t2 − s)q+p−1 f (s, x(s), cDrx(s))ds
∣∣∣∣

+

∣∣∣∣ µ

Γ(q)

∫ t1

0
[(t1 − s)q−1 − (t2 − s)q−1]x(s)ds +

µ

Γ(q)

∫ t2

t1

(t2 − s)q−1x(s)ds
∣∣∣∣

+
t2

q+1 − t1
q+1

|1−ω| (|T1(x)|+ |T2( f )|)

≤ N
Γ(p + q + 1)

(tp+q
2 − tp+q

1 ) +
2|µ|ξ

Γ(q + 1)
(t2 − t1)

q +
(t2

q+1 − t1
q+1)

(1−ω)

{
ξ
|µ|

Γ(q + 1)

+
N

Γ(p + q + 1)
+ N

∑n
i=1 |αi|ηi

p+q

Γ(p + q + 1)
+ ξ
|µ|∑n

i=1 |αi|ηi
q

Γ(q + 1)
+ ξ

n

∑
i=1
|βi||ηi|

}

Similarly,

|( cDrTx)(t2)− cDr(Tx)(t1)| ≤
N

Γ(p + q− r + 1)
(tp+q−r

2 − tp+q−r
1 ) +

2|µ|ξ
Γ(q− r + 1)

(t2 − t1)
q−r

+
Γ(q + 2)(t2

q−r+1 − t1
q−r+1)

Γ(q− r + 2)(1−ω)

{
ξ
|µ|

Γ(q + 1)
+

N
Γ(p + q + 1)

+ N
∑n

i=1 |αi|ηi
p+q

Γ(p + q + 1)

+ξ
|µ|∑n

i=1 |αi|ηi
q

Γ(q + 1)
+ ξ

n

∑
i=1
|βi||ηi|

}

Observe that (tp+q
2 − tp+q

1 ), (tq+1
2 − tq+1

1 ), (t2 − t1)
q, (tp+q−r

2 − tp+q−r
1 ), (tq−r+1

2 − tq−r+1
1 ), and

(t2 − t1)
q−r approach uniformly zero as t1 approaches t2. Then, the operator T is equicontinuous,

and we get that the operator T is uniformly bounded since TBξ ⊂ Bξ . Therefore, the Arzela–Ascoli
theorem leads to that the operator being completely continuous. Hence, the Schauder fixed point
theorem ensures the existence of the solution for problem Equations (1) and (2).

The second result is discussing the existence of the solution by using Krasnoselskii–Zabreiko’s
fixed point theorem:

Lemma 4 ([41]). LetW be a Banach space. Suppose that F : W → W is a completely continuous mapping
and G :W →W is a bounded linear mapping such that 1 is not an eigenvalue of G and:

lim
‖x‖→∞

‖Fx−Gx‖
‖x‖ = 0.

Then, F has a fixed point inW .

Theorem 2. Assume that G1, G3, and G4 hold. Then, the boundary value problem Equations (1) and (2) have a
solution if ‖κ‖Θ + Υ < 1 where Θ and Υ are defined as in Equations (7) and (8), respectively.
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Proof. Let f (t, x(t), cDrx(t)) = κ(t)(x(t) + cDrx(t)), and consider the linear operator:

(Fx)(t) =
1

Γ(q + p)

∫ t

0
(t− s)q+p−1κ(s)(x(s) + cDrx(s))ds− µ

Γ(q)

∫ t

0
(t− s)q−1x(s)ds

+
tq+1

1−ω
[T1(x) + T2(κ(x + cDrx))]

and its fractional derivative:

cDr(Fx)(t) =
1

Γ(q + p− r− 1)

∫ t

0
(t− s)q+p−1κ(s)(x(s) + cDrx(s))ds

− µ

Γ(q− r)

∫ t

0
(t− s)q−r−1x(s)ds

+
Γ(q + 2)tq+1−r

(1−ω)Γ(q− r + 2)
[T1(x) + T2(κ(x + cDrx))] .

Now, we show that one is not an eigenvalue of Fx(t) and cDrFx(t). Use the proof by contradiction.
Suppose that one is an eigenvalue of Fx(t), and cDrFx(t) using Equations (11) and (12), we can
deduce that:

‖Fx‖ ≤ ‖x‖X

{
‖κ‖

Γ(p + q + 1)
+

|µ|
Γ(q + 1)

+
|µ|

Γ(q + 1)(1−ω)
+

‖κ‖
Γ(p + q + 1)(1−ω)

+
‖κ‖∑n

i=1 |αi|ηi
p+q

Γ(p + q + 1)
+

|µ|∑n
i=1 ηi

q

Γ(q + 1)(1−ω)
+

n

∑
i=1
|βi||ηi|

}

and:

‖ cDrFx‖ ≤ ‖x‖X

{
‖κ‖

Γ(p + q− r + 1)
+

|µ|
Γ(q− r + 1)

+
|µ|Γ(q + 2)

Γ(q− r + 1)Γ(q + 1)(1−ω)

+
‖κ‖Γ(q + 2)

Γ(q− r + 1)Γ(p + q + 1)(1−ω)
+
‖κ‖Γ(q + 2)∑n

i=1 |αi|ηi
p+q

Γ(q− r + 2)Γ(p + q + 1)

+
|µ|Γ(q + 2)|∑n

i=1 ηi
q

Γ(q− r + 2)Γ(q + 1)(1−ω)
+

Γ(q + 2)∑n
i=1 |βi||ηi|

Γ(q− r + 2)(1−ω)

}
.

This implies:

‖Fx‖X = max |(Fx)(t)|+ max |( cDr(Fx)(t))|
≤ ‖x‖X {‖κ‖Θ + Υ} < ‖x‖X .

This is a contradiction, because our supposition that one is an eigenvalue of the operator ‖Fx‖X
is the wrong assumption. Hence, one is not an eigenvalue of ‖Fx‖X . The operator ‖Tx‖X is uniformly
bounded and equicontinuous as in Theorem 1.



Fractal Fract. 2020, 4, 18 9 of 13

Now, we prove ‖Tx−Fx‖X
‖x‖X

→ 0 as ‖x‖X → ∞, then:

‖Tx− Fx‖ ≤ 1
Γ(q + p)

∫ t

0
(t− s)q+p−1| f (s, x(s) cDrx(s))− κ(s)(x(s) +c Drx(s))|ds

+
1

|1−ω| |T2( f )− T2(κ(x +c Drx))|

≤ 1
Γ(q + p)

∫ t

0
(t− s)q+p−1

∣∣∣∣ f (s, x(s) cDrx(s))
x(s) +c Drx(s)

− κ(s)
∣∣∣∣ (|x(s)|+ |cDrx(s)|ds

+
1

|1−ω|

[
1

Γ(p + q)

∫ 1

0
(1− s)q+p−1

∣∣∣∣ f (s, x(s) cDrx(s))
x(s) +c Drx(s)

− κ(s)
∣∣∣∣ (|x(s)|+ |cDrx(s)|)ds

+
n

∑
i=1

|αi|
Γ(p + q)

∫ ηi

0
(ηi − s)q+p−1

∣∣∣∣ f (s, x(s) cDrx(s))
x(s) +c Drx(s)

− κ(s)
∣∣∣∣ (|x(s)|+ |cDrx(s)|)ds

]

≤
{

1
Γ(p + q + 1)

+
1

Γ(p + q + 1)(1−ω)
+

∑n
i=1 |αi|ηi

p+q

Γ(p + q + 1)|1−ω|

} ∣∣∣∣ f (t, x(t) cDrx(t))
x(t) +c Drx(t)

− κ(t)
∣∣∣∣ ‖x‖X

and similarly,

‖ cDrTx− cDrFx‖ ≤
{

1
Γ(p + q− r + 1)

+
Γ(q + 2)

Γ(q− r + 2)Γ(p + q + 1)|1−ω|

+
Γ(q + 2)∑n

i=1 |αi|ηi
p+q

Γ(q− r + 2)Γ(p + q + 1)|1−ω|

} ∣∣∣∣ f (t, x(t)Drx(t))
x(t) +c Drx(t)

− κ(t)
∣∣∣∣ ‖x‖X

Therefore,

‖Tx− Fx‖X
‖x‖X

=
‖(Tx)(t)− (Fx)(t)‖

‖x‖X
+
‖ cDr(Tx)(t)− cDr(Fx)(t)‖

‖x‖X

≤
{

1
Γ(p + q + 1)

+
1 + ∑n

i=1 |αi|η
p+q
i

(1−ω)Γ(p + q + 1)
+

1
Γ(p + q− r + 1)

+
Γ(q + 2)(1 + ∑n

i=1 |αi|η
p+q
i )

(1−ω)Γ(q− r + 2)Γ(p + q + 1)

}

×
∣∣∣∣ f (t, x(t) cDrx(t))

x(t) + cDrx(t)
− κ(t)

∣∣∣∣
By assumption G4,

lim
‖x‖→∞

‖Tx− Fx‖X
‖x‖X

= 0

Then, Krasnoselskii–Zabreiko’s fixed point theorem leads to the existence of a solution for the
boundary value problem Equations (1) and (2).

We present now the Banach contraction principle to prove the uniqueness of the solution for
problem Equations (1) and (2).

Theorem 3. Assume that G1 and G5 hold. The boundary value problem Equations (1) and (2) have a unique
solution if σ < 1 where:

σ = LΘ + Υ

and Θ and Υ are defined as in Equations (7) and (8), respectively.
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Proof. Using the assumption G5, we have:

|(Tx)(t)− (Tx̂)(t)| ≤ 1
Γ(q + p)

∫ t

0
(t− s)q+p−1| f (s, x(s), cDrx(s))− f (s, x̂(s), cDr x̂(s))|ds

+
|µ|

Γ(q)

∫ t

0
(t− s)q−1|x(s)− x̂(s)|ds

+
1

|1−ω| (|T1(x)− T1(x̂)|+ |T2( f (s, x(s), cDrx(s)))− T2( f (s, x̂(s), cDr x̂(s)))|)

≤ L‖x− x̂|‖X

{
tp+q

Γ(p + q + 1)
+

1
|1−ω|Γ(p + q + 1)

+
∑n

i=1 |αi|η
p+q
i

|1−ω|Γ(p + q + 1)

}

+ ‖x− x̂‖X

{
|µ|tq

Γ(q + 1)
+

tq+1|µ|
|1−ω|Γ(q + 1)

+
tq+1|µ|

|1−ω|Γ(q + 1)

n

∑
i=1
|αi|η

q
i +

1
|1−ω|

n

∑
i=1
|βi||ηi|

}
≤ (LΘp,0 + Υ0)‖x− x̂‖X

likewise,

| cDr(Tx)(t)− cDr(Tx̂)(t)| ≤ (LΘp,r + Υr)‖x− x̂‖X

Hence,

‖Tx− Tx̂‖X = max
t∈[0,1]

|(Tx)(t)− (Tx̂)(t)|+ max
t∈[0,1]

|( cDr(Tx)(t))− ( cDr(Tx̂)(t))|

≤ (LΘp,0 + Υ0)‖x− x̂‖X + (LΘp,r + Υr)‖x− x̂‖X

≤ (LΘ + Υ)‖x− x̂‖X ≤ σ‖x− x̂‖X

Since σ < 1, then the operator Tx is a contraction. Therefore, from the contraction mapping
principle, the boundary value problem Equations (1) and (2) have a unique solution on [0, 1].

4. Example

Example 1. Consider the following boundary value problem:
cD

9
8

(
cD

5
8 + 1

10

)
x(t) = f (t, x(t), D

3
8 x(t)), 0 < t < 1

x(0) = 0, cD
5
8 x(0) = 0,

x(1) = 1
4 x( 1

3 ) +
1
2 x( 1

9 ) +
1
5

∫ 1/3
0 x(s)ds + 2

5

∫ 1/9
0 x(s)ds.

(13)

We choose p = 9/8, q = 5/8, r = 3/8, αi =
i
4 , βi =

i
7 , ηi =

1
3i , (i = 1, 2), and µ = 1/4. Define the

continuous function by:

f (t, x, y) =
et sin(πt)
(2 + t)3 +

t cos2 πt
(3− t)4 (x + y)

Observe that the function f is continuous and f (t, 0, 0) = et sin(πt)
(2+t)3 6= 0 on (0, 1), which means that the

assumptions G1 and G3 hold. Now, we have:

f (t, x, y)
x + y

=
et sin(πt)

(2 + t)3(x + y)
+

t cos2 πt
(3− t)4

which implies that:

lim
‖x‖X→∞

f (t, x, y)
x + y

=
t cos2 πt
(3− t)4 = κ(t) and ‖κ‖ = 1

16
.
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Thus, we can calculate ‖κ‖Θ + Υ ∼ 1
16 (3.01664) + 0.75232 = 0.94086 < 1. Therefore, by Theorem 2,

the boundary value problem Equations (1) and (2) have a solution in [0, 1].
Furthermore, it is clear that the function f satisfies the assumption G5 with L = 1/16 and σ = LΘ + Υ ∼

0.94086 < 1. Then, by Theorem 3, the boundary value problem Equations (1) and (2) have a unique solution
in [0, 1].

5. Conclusions

The existence and uniqueness of the solution for the fractional nonlinear Langevin equation of
two different fractional orders under the boundary conditions containing multi-point and multi-strip
were studied. We found an equivalence of the problem by using the tools of fractional calculus and
fixed point theorems. To examine our problem, we employed Krasnoselskii–Zabreiko, Schauder,
and Banach contraction fixed point theorems. Our method was simple and appropriate for a
diversity of real-world problems by choosing different forms of the function f in the Langevin
equation. For instance, if f = −γ(x(t))cDrx(t)) + η(x(t))ξ(t) + F(t, x(t)) where γ(x(t)) is the
position-dependent phenomenological fluid friction coefficient, F(z, t) is the external force field,
η(x(t)) is the intensity of the stochastic force, and ξ(t) is a zero-mean Gaussian white noise term, then
the model describes the fractional Markovian set of stochastic differential equations [42].
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