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Abstract: In this article, the Lewis model was considered for the soybean drying process by new
fractional differential operators to analyze the estimated time in 50 ◦C, 60 ◦C, 70 ◦C, and 80 ◦C.
Moreover, we used dimension parameters for the physical meaning of these fractional models
within generalized and Caputo fractional derivatives. Results obtained with generalized fractional
derivatives were analyzed comparatively with the Caputo fractional, integer order derivatives and
Page model for the soybean drying process. All results for fractional derivatives are discussed and
compared in detail.
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1. Introduction

Drying kinetic phenomena is an important tool for long-continued food storing conditions. It is
based on the loss of humidity inside the foods. Moisture content has a direct impact on the reproduction
of fungus, must, microbial, etc. These negative effects of humidity make the storage time of foods
shorten and for this reason, it raises the cost burden.

Mathematical modeling formulas are an effective and useful instrument for predicting some real
world problems, such as the growth of microorganisms, the spread of outbreak diseases, tumor cell
growth, and drying kinetic models. If we mention the effectiveness of the current ordinary differential
models, we can clearly say that fractional differential equations are more alternative and efficient tools
than integer order counterparts.

Diffusion process models heat and mass transfer in solid matters. This process can be applied
with some differences on the drying kinetics of foods. Agutter et al. [1] described this diffusion process
in living organisms with the movements of particles inside the cells.

Fractional calculus has been rising in popularity in the last decades. Especially, fractional
differential modeling problems give more accurate results due to having a non-locality and memory
effect. However, the dimension of quantities has great importance for the physical meaning of the
problems. A new parameter must be used for preserving the dimension of quantities on fractionalizing
modeling problems [2,3]. Fractional derivatives are alternative tools to try to explain better anomalous
diffusion process with real data. For this reason, Simpson et al. [4] studied fractional mass transfer
modeling in food drying, also Ramírez et al. [5] analyzed the drying analysis of apple slices in view of
fractional calculus.

Modeling of mass transfer can be obtained by Fick’s Law. The fractional version of Fick’s Law can
be found in [6]. Although classical Lewis model describes exponential behavior of diffusion, fractional
Lewis model describes the non-exponential behavior of diffusion and it is called an anomalous
diffusion [7].
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The grain drying process speed depends on the conditions such as temperature, airflow,
and mechanical drying systems. Besides, drying kinetic models show the estimated time needed for
the optimum loss of humidity. These models take into account temperature effect, moisture content,
and airflow. Fick’s second law explains rates of diffusion involving both time and space

∂Y
∂t

= D∇2Y, (1)

where D is the diffusion coefficient and Y is the moisture content of the food.
Lewis model [8] is based on thin layer drying with temperature effect

∂Y
∂t

= −k(Y(t)−Ye), (2)

where Ye is equilibrium moisture content and k is a constant of drying has dimension min−1. If we
solve Equation (2), then we have the following solution

Y(t) = (Y0 −Ye)e−kt + Ye, (3)

where Y0 is the initial moisture content inside the food.
Page’s model [9] is the modified version of Lewis model with a changing parameter in the

exponential function
Y(t) = (Y0 −Ye)e−ktn

+ Ye, (4)

where n is an adjustment parameter used for fitting data. This method is more successful on fitting
real data than the Lewis method.

Fractional calculus has seen a rising in popularity in recent decades. The most important reason
for this is having applications in real world problems and its ability to obtain better results than
ordinary counterparts. The first known fractional derivative definitions are Riemann–Liouville and
Liouville–Caputo fractional derivatives. In recent years, new fractional derivative definitions have
been introduced by Caputo–Fabrizio (CF) [10], Atangana–Baleanu (AB) [11], and generalized AB [12].
Several studies were published involving these new fractional derivative definitions [13–22]. We can
mention countless studies in this area, therefore we want to give some of them: Sekerci et al. [23,24]
Kumar et al. [25], Ullah et al. [26], Singh et al. [27], Jajarmi et al. [28], Yusuf et al. [29],
Qureshi et al. [30,31], Bas et al. [32], and so on [33–36]. Generalized fractional integrals and derivatives
are defined by Katugampola [37,38]. This new type of fractional derivative shows the characteristic
of both Riemann–Liouville while ρ → 1 and the Hadamard [39] while ρ → 0. Its Caputo form is
introduced in [40].

Recently, Matias et al. [41] have studied fractional counterpart of Lewis model (2) within Caputo
fractional derivative and they have achieved fitting experimental data with Caputo fractional version
of Lewis model (2). Nicolin et al. studied the empirical drying model with fractional order [42].

In this study, we handled the Lewis model (see Equation (2)) within generalized fractional
derivatives, with a parameter for preserving the dimension on fractional equations. We considered
the soybean drying conditions at 50 ◦C, 60 ◦C, 70 ◦C, and 80 ◦C. We analyzed these results with
generalized fractional derivatives, including two parameters as α order and real ρ value, comparatively
with the Caputo fractional and integer order derivatives for Lewis model and Page model (4).

2. Mathematical Background

Definition 1. [43] The Caputo fractional derivative is given as, α > 0, α ∈ R ve n− 1 ≤ α < n, n ∈ N,

C
a Dα

x f (t) =
1

Γ (n− α)

x∫
a

dn f (t)
dtn (x− t)n−α−1 dt.
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Definition 2. [37] The generalized left and right fractional integrals of complex order α, Re(α) > 0 and
ρ ∈ R+ are given respectively by

a Iα,ρ f (t) =
1

Γ(α)

∫ t

a

(
tρ

ρ
− xρ

ρ

)α−1
f (x)dρx, (5)

and

Iα,ρ
b f (t) =

1
Γ(α)

∫ b

t

(
tρ

ρ
− xρ

ρ

)α−1
f (x)dρx, (6)

where dρx = dx
x1−ρ

Definition 3. [40] The generalized left and right fractional derivatives in the Caputo sense of complex order α,
Re(α) > 0, and ρ ∈ R+ are given, respectively, by

C
a Dα,ρ f (t) = a In−α,ργn f (t) (7)

=
1

Γ(n− α)

∫ t

a

(
tρ

ρ
− xρ

ρ

)n−α−1
γn f (x)dρx,

and

CDα,ρ
b f (t) = In−α,ρ

b (−γ)n f (t) (8)

=
1

Γ(n− α)

∫ b

t

(
tρ

ρ
− xρ

ρ

)n−α−1

(−γ)n f (x)dρx,

where γ = t1−ρ d
dt , ρ > 0. If ρ = 1 in this definition, we obtain a Caputo fractional derivative and if ρ→ 0, we

obtain a Caputo–Hadamard fractional derivative defined in [40].

Theorem 1. [44] ρ—Laplace transform of the function f (t) is given as

Lρ{ f (t)}(s) =
∫ ∞

0
e−s tρ

ρ f (t)
dt

t1−ρ
, ρ > 0, (9)

where f : [0, ∞)→ R is a real valued function.

Theorem 2. [44] ρ—Laplace transform of γ f (t) is defined as follows,

Lρ{γ f (t)}(s) = sLρ{ f (t)} − f (0). (10)

Theorem 3. [44] Let f ∈ ACn
γ[0, a], a > 0, α > 0, and γk =

(
t1−ρ d

dt

)k
f (t), k = 0, 1, ..., n has exponential

order ec tρ
ρ , then we have

Lρ{C
0 Dα,ρ f (t)} = sα

[
Lρ{ f (t)} −

n−1

∑
k=0

s−k−1
(

γk f
)
(0)

]
, (11)

where s > 0.

Lemma 1. [44] Re(α) > 0 and
∣∣ a

sα

∣∣ < 1, the ρ—Laplace transform of some special functions are as below

i. Lρ

{
Eα

(
−a
(

tρ

ρ

)α)}
= sα

s(sα + a) .

ii. Lρ

{
1− Eα

(
−a
(

tρ

ρ

)α)}
= a

s(sα + a) .
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iii. Lρ

{(
tρ

ρ

)α−1
Eα,α

(
−a
(

tρ

ρ

)α)}
= 1

sα + a .

iv. Lρ

{(
tρ

ρ

)β−1
Eα,β

(
a
(

tρ

ρ

)α)}
= sα−β

sα − a .

3. Main Results

In this section, we consider the Lewis model (see Equation (2)) within generalized and Caputo
fractional derivatives by preserving dimension of the physical quantities for fractional operators. It has
already been discussed in numerous studies that mathematical models based on fractional order
derivatives give much better results than their integer order counterparts.

Caputo fractional derivative enables them to be used in physical, engineering, and biological
problems due to having integer order initial conditions. Hence, we can mention clearly in the
development of fractional calculus in real world problems began with the Caputo definition. In this
context, drying kinetic modeling is considered by Caputo and generalized fractional derivative in the
Caputo sense.

3.1. Lewis Drying Kinetic Model in Fractional Cases

We can give the model (Equation (2)) in fractional cases, generalized, and Caputo, so one can find
analytical solutions by using Laplace transforms.

Starting from this, we can give the fractional version of the Lewis model (Equation (2)).

3.1.1. Drying Kinetic with Generalized Fractional Derivative

C
0 Dα,ρ

t Y(t) = −kαρ(Y(t)−Ye), 0 < α ≤ 1, (12)

Y(0) = 1, (13)

If we take the ρ—Laplace transform of Equation (12) and using initial condition (Equation (13)),
then we have

Lρ

{
C
0 Dα,ρY (t)

}
(s) = Lρ {−kαρ(Y(t)−Ye)} (s), (14)

thus one can attain (
sαLρ{Y(t)}(s)− sα−1Y (0)

)
= Lρ{−kαρ(Y(t)−Ye)}(s), (15)

and from here, if we can take the inverse ρ–LT of the last equation, we can obtain analytical solution
as follows

Y (t) = Y(0)Eα

(
−kαρ

(
tρ

ρ

)α)
+ Ye

[
1− Eα

(
−kαρ

(
tρ

ρ

)α)]
. (16)

3.1.2. Drying Kinetic with Caputo Fractional Derivative

C
0Dα

t Y(t) = −kα(Y(t)−Ye), 0 < α ≤ 1, (17)

Y(0) = 1. (18)

If we take the Laplace transform of Equation (17) and using initial condition (Equation (18)),
then we have

L
{

C
0 DαY(t)

}
(s) = −L{−kα(Y(t)−Ye)} (s), (19)
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and from here, if we can take the inverse LT of the last equation, we can obtain analytical solution
as follows

Y(t) = (Y(0)−Ye)Eα (−kαtα) + Ye. (20)

4. Comparative Results

In this section, we analyze drying kinetics for soybean in 50 ◦C, 60 ◦C, 70 ◦C, and 80 ◦C.
Matias et al. [41] considered real data for the drying kinetics of soybean and managed to fit the
data to the results obtained within Caputo fractional sense. From this point of view, we compared the
generalized fractional derivative with Caputo, classical Lewis model, and Page model. We used all
parameters, like α order and k, Ye, n constants from [41], during our study. We adapted the k parameter
in the Caputo–Lewis model as kα for preserving physical quantities and hence the value of k will
change for each α parameters. We study to match generalized fractional results to the Caputo fractional
results of [41]. Tables 1–4 show the parameters used in Figures 1–4 respectively.

Table 1. Parameter values of models [41].

Figures Parameters Page Lewis Classical Lewis Caputo Lewis Gen. Frac.

k 0.31 0.178 0.0835014 0.0579262
Figure 1a Ye 0.10 0.12 0.09 0.01

α 0.57478 0.5
ρ 0.8
n 0.52

k 0.31 0.178 0.0835014 0.0430676
Figure 1b Ye 0.10 0.12 0.09 0.01

α 0.57478 0.6
ρ 0.8
n 0.52

k 0.31 0.178 0.0835014 0.0917365
Figure 1c Ye 0.10 0.12 0.09 0.01

α 0.57478 0.63
ρ 0.8
n 0.52

k 0.31 0.178 0.0835014 0.187836
Figure 1d Ye 0.10 0.12 0.09 0.01

α 0.57478 0.9
ρ 0.8
n 0.52

Table 2. Parameter values of models [41].

Figures Parameters Page Lewis Classical Lewis Caputo Lewis Gen. Frac.

k 0.39 0.23 0.109725 0.0911242
Figure 2a Ye 0.08 0.10 0.07 0.008

α 0.53 0.45
ρ 0.85
n 0.46

k 0.39 0.23 0.109725 0.065617
Figure 2b Ye 0.08 0.10 0.07 0.001

α 0.53 0.52
ρ 0.85
n 0.46

k 0.39 0.23 0.109725 0.142309
Figure 2c Ye 0.08 0.10 0.07 0.01

α 0.53 0.65
ρ 0.95
n 0.46
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(d)

Figure 1. Comparison of drying kinetics for soybean under different models at 50 ◦C: (a–d) Parameter
values are shown in Table 1.
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Caputo Gen frac Lewis Page
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(c)

Figure 2. Comparison of drying kinetics for soybean under different models at 60 ◦C: (a–c) Parameter
values are shown in Table 2.
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Table 3. Parameter values of models [41].

Figures Parameters Page Lewis Classical Lewis Caputo Lewis Gen. Frac.

k 0.35 0.21 0.0785997 0.0822175
Figure 3a Ye 0.07 0.10 0.05 0.1

α 0.50050 0.61
ρ 0.79
n 0.49

k 0.35 0.21 0.0785997 0.126885
Figure 3b Ye 0.07 0.10 0.05 0.05

α 0.50050 0.85
ρ 0.79
n 0.49

Caputo Gen frac Lewis Page

0 10 20 30 40 50 60
t0.0

0.2

0.4

0.6

0.8

1.0
T(t)

(a)

Caputo Gen frac Lewis Page

0 10 20 30 40 50 60
t0.0

0.2

0.4

0.6

0.8

1.0
T(t)

(b)

Figure 3. Comparison of drying kinetics for soybean under different models at 70 ◦C: (a,b) Parameter
values are shown in Table 3.

Table 4. Parameter values of models [41].

Figures Parameters Page Lewis Classical Lewis Caputo Lewis Gen. Frac.

k 0.35 0.24 0.125972 0.106117
Figure 4a Ye 0.05 0.08 0.04 0.01

α 0.55 0.52
ρ 0.9
n 0.48

k 0.35 0.24 0.125972 0.142309
Figure 4b Ye 0.05 0.08 0.04 0.01

α 0.55 0.65
ρ 0.95
n 0.48

Caputo Gen frac Lewis Page

0 10 20 30 40 50 60
t0.0

0.2

0.4

0.6

0.8

1.0
T(t)

(a)

Caputo Gen frac Lewis Page

0 10 20 30 40 50 60
t0.0

0.2

0.4

0.6

0.8

1.0
T(t)

(b)

Figure 4. Comparison of drying kinetics for soybean under different models at 80 ◦C: (a,b) Parameter
values are shown in Table 4.
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5. Discussion

In this section, we discuss drying kinetic models, which are Lewis (Equation (2)), Page
(Equation (4)), and fractional Lewis Equations (Equation (12)) and (Equation (17)) involving
generalized and Caputo fractional operators, respectively. We illustrate the governing drying kinetic
equations with fractional, classical, and Page models. Matias et al. [41] considered real data for the
soybean drying process and managed to fit the data to the results obtained within the Caputo fractional
sense. From this point of view, we compared generalized fractional and classical derivatives to the
Page model and made use of parameters, like α order of Caputo and k, Ye, n parameters, from [41]
during our study.

We tried to match the generalized fractional results to the fractional result of [41]. Thus, we can
easily say that the generalized fractional results are much better than the Caputo fractional results in all
conditions in Figures 1a,b, 2a,b, 3a and 4a. Furthermore, generalized fractional results work compatible
with the Page model results in Figures 1c, 2c, 3b and 4b. Also, we observed generalized fractional
result approaches to classical Lewis model in Figure 1d. Figures 5–7 compares the Lewis generalized
fractional results under different α orders and real ρ values. We show the effect of generalized fractional
derivative on Lewis model under different finite times t = 5, 10, 20, 50, 100, and 200 for changing α, ρ

parameters in Figures 8–10.

α = 0.5 α = 0.8 α = 0.9 α = 1

ρ = 0.8

0 20 40 60 80 100
t0.0

0.2

0.4

0.6

0.8

1.0
T(t)

Figure 5. Comparison of drying kinetics with Lewis generalized fractional model under different
α orders.

ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 1

α = 0.8

0 20 40 60 80 100
t0.0

0.2

0.4

0.6

0.8

1.0
T(t)

Figure 6. Comparison of drying kinetics with Lewis generalized fractional model under different
ρ values.
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Out[50]=

α = 0.8, ρ = 0.4 α = 0.9, ρ = 0.4

α = 0.8, ρ = 0.6

0 20 40 60 80 100
t0.0

0.2

0.4

0.6

0.8

1.0
T(t)

Figure 7. Comparison of drying kinetics with Lewis generalized fractional model under different α

orders and ρ values.

t = 5 t = 10 t = 20 t = 50 t = 100 t = 200

ρ = 0.8

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

α

T
(α
)

t = 5 t = 10 t = 20 t = 50 t = 100 t = 200

ρ = 0.5

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

α

T
(α
)

Figure 8. Comparison of drying kinetics with Lewis generalized fractional model under different finite
times, kαρ = 0.24, Y0 = 1, Ye = 0.09.

t = 5 t = 10 t = 20 t = 50 t = 100 t = 200

α = 0.65

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

ρ

T
(ρ
)

t = 5 t = 10 t = 20 t = 50 t = 100 t = 200

α = 0.5

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

ρ

T
(ρ
)

Figure 9. Comparison of drying kinetics with Lewis generalized fractional model under different finite
times, kαρ = 0.24, Y0 = 1, Ye = 0.09.
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α = 1, t = 50 α = 0.5, t = 50 α = 0.5, t = 100 α = 0.5, t = 200

0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

ρ

T
(ρ
)

ρ = 1, t = 50 ρ = 0.2, t = 50 ρ = 0.2, t = 100 ρ = 0.2, t = 200

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

α

T
(α
)

ρ = 1, t = 50 ρ = 0.5, t = 50 ρ = 0.5, t = 100 ρ = 0.5, t = 200

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

α

T
(α
)

Figure 10. Comparison of drying kinetics with Lewis generalized fractional model under different
finite times, different α orders and different ρ values, kαρ = 0.24, Y0 = 1, Ye = 0.09.

6. Conclusions

Consequently, we considered the Lewis model (Equation (2)), which was used for the grain
drying process in view of generalized fractional and Caputo fractional derivatives. However, we used
a parameter for preserving the dimension of fractional equations and hence, equations will have
meaning from a physical viewpoint.

We analyzed the results based on scientific data for the soybean drying process and compared the
results in view of Caputo and generalized fractional derivatives. We observed that the generalized
fractional derivative gives compatible results with the Caputo fractional results in all conditions. It is
worth noting that different real ρ values differ when changing between Page and fractional results.

Eventually, generalized fractional derivatives give good results compatible with Caputo in
all conditions for the Lewis model (Equation (2)), which was used for the grain drying process.
The generalized fractional derivatives for the Lewis model gave more advantageous results than the
integer order counterparts based on scientific data applied by Matias et al. [41].
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