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Abstract: The main goal of the paper is to present an approximate method for solving of a
two-dimensional nonlinear Volterra-Fredholm fuzzy integral equation (2D-NVFFIE). It is applied
the homotopy analysis method (HAM). The studied equation is converted to a nonlinear system
of Volterra-Fredholm integral equations in a crisp case. Approximate solutions of this system are
obtained by the help with HAM and hence an approximation for the fuzzy solution of the nonlinear
Volterra-Fredholm fuzzy integral equation is presented. The convergence of the proposed method
is proved and the error estimate between the exact and the approximate solution is obtained. The
validity and applicability of the proposed method is illustrated on a numerical example.
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1. Introduction

Fuzzy integral equations are one of the important branches of fuzzy analysis theory and they are
applied as an adequate apparatus in mathematical modeling in biology, chemistry, physics, engineering,
etc. (see, for example, [1–4]). One of the first applications of fuzzy integration was given by Wu and
Ma [5], who investigated the fuzzy Fredholm integral equation of the second kind.

In connection with the application, it is very important to such kind of problems. If methods for
solving such problems with uncertainty are developed, then, many real life models in different fields
with imprecise variable can be solved easily and accurately. Some fixed point theorems for complete
fuzzy metric space are given in [6–8]. In recent years, many mathematicians have studied a solution to
fuzzy integral equations by numerical methods [9–14].

Liao employed the basic idea of the homotopy in topology to propose a general analytic method
for nonlinear problems, namely HAM (see the monograph [15], and the papers [32] , [33], [34]). This
method is based on the concept of creating function series. If the series converges, its sum is the
solution of this system of equations. Later, HAM has been successfully applied to solve many types
of nonlinear problems such as multiple solutions of nonlinear boundary value problems ([16]), Abel
fuzzy integral equations ([17]), partial differential equations ([18]), two-dimensional linear Volterra
fuzzy integral equations ([19]), and fuzzy linear Volterra integral equations of the second kind ([20]).
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The paper presents an application of HAM for solving the following nonlinear Volterra-Fredholm
fuzzy integral equations with two variables (2D-NVFFIE)

u(s, t) =g(s, t)⊕ (FR)
t∫

c

k1(t, τ)� G1(u(s, τ))dτ⊕

⊕ (FR)
b∫

a

k2(s, ξ)� G2(u(ξ, t))dξ,

(1)

where g, u : A = [a, b] × [c, d] → E1 are continuous fuzzy-number valued functions, k1 : [c, d] ×
[c, d]→ R+, k2 : [a, b]× [a, b]→ R+ and G1, G2 : E1 → E1 are continuous functions. By E1 is denoted
the set of all fuzzy numbers.

The integral Equation (1) is called the Fredholm equation with respect to the position and Volterra
with respect to the time. This equation is used in many problems of mathematical physics, theory of
elasticity, contact problems and mixed problems of mechanics of continuous media (see [2,21]). In [22],
the Adomian decomposition method is applied for solving this equation.

The structure of this paper is organized as follows: In Section 2, some basic notations used in
fuzzy calculus are introduced. In Section 3, we present HAM. In Section 4, we apply HAM for the
parametric form of 2D-NVFFIE. In Section 5, we prove the convergence of the proposed method and
we give an error estimate. In Section 6, a numerical example is illustrating the application of the
presented above procedure for approximately solving of the studied equation.

2. Preliminaries

In this section, we review the fundamental notations of fuzzy set theory to be used throughout
this paper.

Definition 1 ([23]). A fuzzy number is a function u : R→ [0, 1] satisfying the following properties:

(i) u is upper semi-continuous on R;
(ii) u(x) = 0 outside of some interval [c, d];

(iii) there are the real numbers a and b with c ≤ a ≤ b ≤ d, such that u is increasing on [c, a], decreasing on
[b, d] and u(x) = 1 for each x ∈ [a, b];

(iv) u(rx + (1− r)y) ≥ min{u(x), u(y)} for any x, y ∈ R, r ∈ [0, 1] .

By E1 we denote the set of all fuzzy numbers. Any real number a ∈ R can be interpreted as a
fuzzy number ã = χ(a) and therefore R ⊂ E1.

Denote R+ = (0, ∞).
For any 0 < r ≤ 1 we denote the r-level set [u]r = {x ∈ R : u(x) ≥ r} that is a closed interval and

[u]r = [ur
−, ur

+] for all r ∈ [0, 1], where u−, u+ can be considered as functions u−, u+ : [0, 1]→ R, such
that u− is increasing and u+ is decreasing.

For u, v ∈ E1, k ∈ R the addition and the scalar multiplication are defined by [u⊕ v]r = [u]r +

[v]r = [ur
− + vr

−, ur
+ + vr

+] and [k� u]r = k.[u]r =

{
[kur
−, kur

+], k ≥ 0

[kur
+, kur

−], k < 0.
The neutral element with respect to ⊕ in E1 is denoted by 0̃ = χ{0} .
According to [24], we can summarize the following algebraic properties:
(i) u⊕ (v⊕ w) = (u⊕ v)⊕ w and u⊕ v = v⊕ u for any u, v, w ∈ E1;
(ii) u⊕ 0̃ = 0̃⊕ u = u for any u ∈ E1;
(iii) with respect to 0̃, none u ∈ E1 \ R, u 6= 0̃ has opposite in (E1,⊕);
(iv) for any a, b ∈ R with a, b ≥ 0 or a, b ≤ 0 and any u ∈ E1 we have (a + b)� u = a� u⊕ b� u;
(v) for any a ∈ R and any u, v ∈ E1 we have a� (u⊕ v) = a� u⊕ a� v;
(vi) for any a, b ∈ R and any u ∈ E1 we have a� (b� u) = (ab)� u and 1� u = u.
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As a distance between fuzzy numbers we use the Hausdorff metric.

Definition 2 ([24]). For arbitrary fuzzy numbers u = (ur
−, ur

+) and v = (vr
−, vr

+) the quantity D(u, v) =
sup

r∈[0,1]
max{|ur

− − vr
−|, |ur

+ − vr
+|} is the distance between u, v.

Lemma 1 ([24]). The following properties of the above distance hold:
(i) (E1, D) is a complete metric space;
(ii) D(u⊕ w, v⊕ w) = D(u, v), for all u, v, w ∈ E1;
(iii) D(k� u, k� v) = |k|D(u, v), for all u, v ∈ E1, for all k ∈ R;
(iv) D(u⊕ v, w⊕ e) = D(u, w) + D(v, e), for all u, v, w, e ∈ E1;
(v) D(u⊕ v, 0̃) ≤ D(u, 0̃) + D(v, 0̃), for all u, v ∈ E1;
(vi) D(k1 � u, k2 � u) = |k1 − k2|D(u, 0̃), for all k1, k2 ∈ R with k1k2 ≥ 0 and u ∈ E1.

For any fuzzy-number-valued function f : I ⊂ R → E1 we define the functions f (., r), f (., r) :
I → R, by

f (t, r) = ( f (t))r
− and f (t, r) = ( f (t))r

+ for each t ∈ I, r ∈ [0, 1].

These functions are called the left and right r−level functions of f .
We will use the notion of Henstock integral for fuzzy-number-valued functions defined as follows::
Let f : [a, b]→ E1. For ∆n : a = x0 < x1 < ... < xn−1 < xn = b a partition of the interval [a, b], we

consider the points ξi ∈ [xi−1, xi], i = 1, ..., n, and the function δ : [a, b]→ R+.
The partition P = {([xi−1, xi]; ξi); i = 1, ..., n} denoted by P = (∆n, ξ) is called δ-fine iff [xi−1, xi] ⊆

(ξi − δ(ξi), ξi + δ(ξi)).

Definition 3 ([24]). For I ∈ E1, the function f is fuzzy-Henstock integrable on [a, b] if for any ε > 0 there is

a function δ : [a, b]→ R+ such that for any partition δ-fine P, D(
n
∑

i=1
(xi − xi−1)� f (ξi), I) < ε. The fuzzy

number I is named the fuzzy-Henstock integral of f and will be denoted by (FH)
b∫
a

f (t)dt.

When the function δ : [a, b] → R+ is constant, then we obtain the Riemann integrability for
fuzzy-number-valued functions ([23]). In this case, I ∈ E1 is called the fuzzy-Riemann integral of f on

[a, b], being denoted by (FR)
b∫
a

f (t)dt. Consequently, the fuzzy-Riemann integrability is a particular

case of the fuzzy-Henstock integrability, and therefore the properties of the integral (FH) will be valid
for the integral (FR), too.

Lemma 2 ([25]). Let f : [a, b]→ E1. Then f is (FH) integrable if and only if f (., r) and f (., r) are Henstock
integrable for any r ∈ [0, 1]. Furthermore, for any r ∈ [0, 1],(FH)

b∫
a

f (t)dt

r

=

(H)

b∫
a

f (t, r)dt, (H)

b∫
a

f (t, r)dt

 .

Remark 1. If f : [a, b] → E1 is continuous, then f (., r) and f (., r) are continuous for any r ∈ [0, 1] and
consequently, they are Henstock integrable. According to Lemma 1 we infer that f is (FH) integrable

For any fuzzy-number-valued function f : A = [a, b]× [c, d] → E1 we can define the functions
f (., ., r), f (., ., r) : A → R, by f (s, t, r) = ( f (s, t))r

− and f (s, t, r) = ( f (s, t))r
+ for all (s, t) ∈ A and

r ∈ [0, 1]. These functions are called the left and right r−level functions of f .

Definition 4 ([26]). A fuzzy-number-valued function f : A→ E1 is called:
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(i) continuous in (x0, y0) ∈ A if for any ε > 0 there exists δ > 0 such that for any (x, y) ∈ A with
|x− x0| < δ, |y− y0| < δ it follows that D( f (x, y), f (x0, y0)) < ε.

(ii) continuous on A if it is continuous in each (x, y) ∈ A;
(iii) bounded if there exists M ≥ 0 such that D( f (x, y), 0̃) ≤ M for all (x, y) ∈ A.

On the set C(A, E1) = { f : A→ E1; f is continuous} the metric is defined by:

D∗( f , g) = max
(s,t)∈A

D( f (s, t), g(s, t)) for all f , g ∈ C(A, E1).

We see that (C(A, E1), D∗) is a complete metric space.

3. The Homotopy Analysis Method

We will give a brief overview of the main used method—HAM. Homotopy analysis method
transforms the considered equation into the corresponding deformation equation. Using this method,
we solve the operator equation

N(u(z)) = 0, z ∈ Ω, (2)

where N is the operator, u is the unknown function and Ω is any domain of the variable z.
Define the homotopy operatorH as

H(Φ, p) ≡ (1− p)L(Φ(z; p)− u0(z))− phN(Φ(z; p)),

where p ∈ [0, 1] is an embedded parameter, h 6= 0 denotes the convergence control parameter (see, for
example [27,28]), u0 represents the initial approximation of the solution of (2) and L is linear operator
with property L(0) = 0.

Solving equationH(Φ, p) = 0, we get the zero-order deformation equation

(1− p)L(Φ(z; p)− u0(z)) = phN(Φ(z; p)), (3)

Substitute p = 0 in (3) and obtain L(Φ(z; 0)− u0(z)) = 0. Therefore, Φ(z; 0) = u0(z). If p = 1,
then N(Φ(z; p)) = 0, i.e., Φ(z; 1) is solution of the Equation (2). In this way, the change of parameter p
from zero to one corresponds to the transition from a trivial task to the original task.

Taking the Maclaurin series of function Φ(z; p) with respect to the parameter p, we obtain

Φ(z; p) = u0(z) +
∞

∑
m=1

um(z)pm, (4)

where u0(z) = Φ(z; 0) and

um(z) =
1

m!
∂mΦ(z; p)

∂pm |p=0, m = 1, 2, 3, .... (5)

If the above series converges for p = 1, we obtain the required solution

u(z) =
∞

∑
m=0

um(z). (6)

In order to determine the function um we differentiate m-times, with respect to parameter p, the left
and right-hand side of Formula (3), then the obtained result is divided by m! and substituted with
p = 0 which gives the so-called mth-order deformation equation (m ≥ 1):

L(um(z)− χmum−1(z)) = hRm(ũm−1(z)), (7)
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where ũm−1(z) = {u0(z), u1(z), ..., um−1(z)}, and

χm =

{
0, m = 1
1, m ≥ 2

(8)

and

Rm(ũm−1(z)) =
1

(m− 1)!

(
∂m−1N[Φ(z; p)]

∂pm−1

)
|p=0. (9)

Apply L−1 to both sides of (7) and obtain

um(z) = χmum−1(z)) + hL−1(Rm(ũm−1(z))). (10)

If we are not able to determine the sum of the series in (6), then for the approximate solution of
the considered equation we accept the partial sum of this series

sm(z) =
m

∑
i=0

ui(z). (11)

Choosing in an appropriate way the convergence control parameter h, we can influence the
convergence region of the created series and the rate of this convergence ([15,29]). One of the methods
to select the value of this parameter is the so-called “optimization method” ([15]). In this method, we
define the squared residual of the governing equation

En(h) =
∫
Ω

(N(sn(z))
2dz (12)

where sn(z) and ui(z) are defined by (11) and (10) respectively and they depend on h.
The optimum value of the convergence control parameter is obtained by determining the

minimum of this squared residual. The effective region of the convergence control parameter is
additionally defined by

Rh = {h : lim
n→∞

En(h) = 0}. (13)

Choosing a different value of the convergence control parameter than the optimal one, but still
belonging to the effective region, we also obtain the convergent series, only the rate of convergence is
lower. A version of the method with the above described selection of optimal value the convergence
control parameter is called the basic optimal HAM ([15]).

4. Applying HAM to 2D-NVFFIE (1)

In this section we introduce the parametric form of the integral Equation (1) and then we will
apply HAM for solving this equation.

Let u(s, t, r) = (u(s, t, r), u(s, t, r)) and g(s, t, r) = (g(s, t, r), g(s, t, r)); 0 ≤ r ≤ 1 and (s, t) ∈ A are
parametric form of functions u(s, t) and g(s, t), respectively. So the parametric form of equation (1) is
as follows:

u(s, t, r) = g(s, t, r) +
t∫

c

k1(t, τ)G1(u(s, τ, r))dτ +

b∫
a

k2(s, ξ)G2(u(ξ, t, r))dξ,

u(s, t, r) = g(s, t, r) +
t∫

c

k1(t, τ)G1(u(s, τ, r))dτ +

b∫
a

k2(s, ξ)G2(u(ξ, t, r))dξ.
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We define

H1(u(s, t, r), u(s, t, r)) = min{G1(β) : u(s, t, r) ≤ β ≤ u(s, t, r)},
H2(u(s, t, r), u(s, t, r)) = min{G2(β) : u(s, t, r) ≤ β ≤ u(s, t, r)},
F1(u(s, t, r), u(s, t, r)) = max{G1(β) : u(s, t, r) ≤ β ≤ u(s, t, r)},
F2(u(s, t, r), u(s, t, r)) = max{G2(β) : u(s, t, r) ≤ β ≤ u(s, t, r)},

where (s, t) ∈ A. Then,

k1(t, τ)G1(u(s, τ, r)) =

{
k1(t, τ)H1(u(s, τ, r), u(s, τ, r)), if k1(t, τ) ≥ 0
k1(t, τ)F1(u(s, τ, r), u(s, τ, r)), if k1(t, τ) < 0,

k2(s, ξ)G2(u(ξ, t, r)) =

{
k2(s, ξ)H2(u(ξ, t, r), u(ξ, t, r)), if k2(s, ξ) ≥ 0
k2(s, ξ)F2(u(ξ, t, r), u(ξ, t, r)), if k2(s, ξ) < 0,

k1(t, τ)G1(u(s, τ, r)) =

{
k1(t, τ)F1(u(s, τ, r), u(s, τ, r)), if k1(t, τ) ≥ 0
k1(t, τ)H1(u(s, τ, r), u(s, τ, r)), if k(t, τ) < 0,

k2(s, ξ)G2(u(ξ, t, r)) =

{
k2(s, ξ)F2(u(ξ, t, r), u(ξ, t, r)), if k2(s, ξ) ≥ 0

k2(s, ξ)H2(u(ξ, t, r), u(ξ, t, r)), if k2(s, ξ) < 0

for a ≤ s, ξ ≤ b, c ≤ τ ≤ t ≤ d and 0 ≤ r ≤ 1.
Let for all a ≤ s, ξ ≤ b, c ≤ τ ≤ t ≤ d and 0 ≤ r ≤ 1 the functions G1(β), G2(β) are increasing for

β ∈ [u(s, t, r), u(s, t, r)] and k1(t, τ) ≥ 0, k2(s, ξ) ≥ 0.
Then the parametric form of Equation (1) is

u(s, t, r) = g(s, t, r) +
t∫

c

k1(t, τ)G1(u(s, τ, r))dτ

+

b∫
a

k2(s, ξ)G2(u(ξ, t, r))dξ, s ∈ [a, b], t ∈ [c, d], r ∈ [0, 1],

(14)

u(s, t, r) = g(s, t, r) +
t∫

c

k1(t, τ)G1(u(s, τ, r))dτ

+

b∫
a

k2(s, ξ)G2(u(ξ, t, r))dξ, s ∈ [a, b], t ∈ [c, d], r ∈ [0, 1].

(15)

We consider the operators

L(u(s, t, r)) = u(s, t, r)

and

N(u(s, t, r)) = u(s, t, r)− g(s, t, r)−
t∫

c

k1(t, τ)G1(u(s, τ, r))dτ −
b∫

a

k2(s, ξ)G2(u(ξ, t, r))dξ.

Then we get
um(s, t, r) = χmum−1(s, t, r) + hRm(ũm−1(s, t, r)), (16)

where χm is determined by (8).
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From (9) for the operator Rm, m ≥ 1 we obtain

Rm(ũm−1(s, t, r)) =
1

(m− 1)!

(
∂m−1

∂pm−1 N(
∞

∑
i=0

ui(s, t, r)pi)

)
|p=0

=
1

(m− 1)!
∂m−1

∂pm−1

(
∞

∑
i=0

ui(s, t, r)pi − g(s, t, r)

)
|p=0

−

− 1
(m− 1)!

∂m−1

∂pm−1

 t∫
c

k1(t, τ)G1(
∞

∑
i=0

ui(s, τ, r))pidτ +

b∫
a

k2(s, ξ)G2(
∞

∑
i=0

ui(ξ, t, r)pi)dξ


|p=0

= um−1(s, t, r)− 1− λm

(m− 1)!
g(s, t, r)− 1

(m− 1)!

t∫
c

k1(t, τ)

(
∂m−1

∂pm−1 G1(
∞

∑
i=0

ui(s, τ, r)pi)

)
|p=0

dτ

− 1
(m− 1)!

b∫
a

k2(s, ξ)

(
∂m−1

∂pm−1 G2(
∞

∑
i=0

ui(ξ, t, r))pi

)
|p=0

dξ,

By the definitions of the appropriate operators we obtain

u1(s, t, r) = h(u0(s, t, r)− g(s, t, r)

−
t∫

c

k1(t, τ)G1(u0(s, τ, r))dτ −
b∫

a

k2(s, ξ)G2(u0(ξ, t, r))dξ),
(17)

where u0 ∈ C(A× [0, 1], R) and for m ≥ 2

um(s, t, r) = (1 + h)um−1(s, t, r)

− h
(m− 1)!

t∫
c

k1(t, τ)

(
∂m−1

∂pm−1 G1(
∞

∑
i=0

ui(s, τ, r)pi)

)
|p=0

dτ

− h
(m− 1)!

b∫
a

k2(s, ξ)

(
∂m−1

∂pm−1 G2(
∞

∑
i=0

ui(ξ, t, r)pi)

)
|p=0

dξ.

(18)

5. Convergence of the HAM

In this section we prove convergence of HAM and find an error estimate.
We introduce the following conditions:
(i) g ∈ C(A, E1), k1 ∈ C([c, d] × [c, d], R+), k2 ∈ C([a, b] × [a, b], R+) and M1 =

maxt,τ∈[c,d] k1(t, τ) > 0 and M2 = maxt,τ∈[a,b] k2(s, ξ)| > 0.
(ii) there exist constants Lk > 0, k = 1, 2 such that

D(Gk(u), Gk(v)) ≤ LkD(u, v), for u, v ∈ E1, k = 1, 2;

(iii) The inequality
α = M1L1(d− c) + M2L2(b− a) < 1 (19)

holds.
We will use the following result:

Theorem 1 ([22]). Let the conditions (i)–(iii) be fulfilled. Then the integral Equation (1) has an unique solution.
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Remark 2. According to Theorem 1 if the conditions (i)–(iii) are fulfilled, then the Equations (14) and (15) have
unique solutions.

Theorem 2. Let

1. the conditions (i)–(iii) are fulfilled.
2. the functions um(s, t, r), m ≥ 1, are defined by relations (17) and (18).
3. Lk < 1 for k = 1, 2
4. the series

∞

∑
i=0

ui(s, t, r) (20)

converges.

Then the sum of the series (20) is the unique solution of Equation (14).

Proof. Introduce the notation

Hk,m(s, t, r) =
1

m!

(
∂m

∂pm Gk(
∞

∑
i=0

ui(s, t, r)pi)

)∣∣∣p=0

, k = 1, 2.

From [30], if Gk is the contraction mapping and the series (20) converges to u(s, t, r), then the series
∞
∑

m=0
Hk,m(s, t, r), k = 1, 2, is respectively convergent to Gk(u(s, t, r)).

From condition 4, it follows that for any (s, t, r) ∈ A× [0, 1] we have lim
m→∞

um(s, t, r) = 0.

By applying the definition of the operator L we can write

n

∑
m=1

L(um(s, t, r)− χmum−1(s, t, r))

=
n

∑
m=1

(um(s, t, r)− χmum−1(s, t, r)) = un(s, t, r).

Hence
∞
∑

m=1
L(um(s, t, r)− χmum−1(s, t, r)) = lim

n→∞
un(s, t, r) = 0.

Therefore, h
∞
∑

m=1
Rm(ũm−1(s, t, r)) =

∞
∑

m=1
L(um(s, t, r) − χmum−1(s, t, r)) and

∞
∑

m=1
Rm(ũm−1(s, t, r)) = 0.

Then we obtain

0 =
∞

∑
m=1

Rm(ũm−1(s, t, r)) =
∞

∑
m=1

(um−1(s, t, r)

− 1− λm

(m− 1)!
g(s, t, r)−

t∫
c

k1(t, τ)

(
1

(m− 1)!
∂m−1

∂pm−1 G1(
∞

∑
i=0

ui(s, τ, r))pi

)
|p=0

dτ

−
b∫

a

k2(s, ξ)

(
1

(m− 1)!
∂m−1

∂pm−1 G2(
∞

∑
i=0

ui(ξ, t, r))pi

)
|p=0

dξ

=
∞

∑
m=1

um−1(s, t, r)− g(s, t, r)−
t∫

c

k1(t, τ)
∞

∑
m=1

H1,m−1(s, τ, r)dτ

−
b∫

a

k2(t, τ)
∞

∑
m=1

H2,m−1(ξ, t, r)dξ.
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Hence 0 = u(s, t, r)− g(s, t, r)−
t∫

c
k1(t, τ)G1(u(s, τ, r))dτ −

b∫
a

k2(s, ξ)G2(u(ξ, t, r))dξ.

Theorem 3. Let the condition (i)–(iii) be fulfilled.
Then the value of the convergence control parameter h can be selected such that the series (20) converges in

A.

Proof. Let E = (C(A, R), ‖.‖) be the Banach space of all continuous functions on A and sn(s, t, r) =
n
∑

i=0
ui(s, t, r) for (s, t) ∈ A, r ∈ [0, , 1].

We will prove that {sn} is a Cauchy sequence in E.
We get

‖s1 − s0‖ = ‖u1‖ ≤ |h|(‖u0‖+ ‖g‖+ M1(d− c)φ1 + M2(b− a)φ2), (21)

where φ1 = max
(s,t)∈A

|G1(u0(s, t, r)| and φ2 = max
(s,t)∈A

|G2(u0(s, t, r)|.

Let m ≥ 1 and n > m. Then we obtain

‖sn − sm‖ = max
(s,t)∈A

|sn(s, t, r)− sm(s, t, r)| = max
(s,t)∈A

|
n

∑
i=0

ui(s, t, r)−
m

∑
i=0

ui(s, t, r)|

= max
(s,t)∈A

|
n

∑
i=m+1

ui(s, t, r)| = max
(s,t)∈A

|
n−1

∑
i=m

ui+1(s, t, r)|

= max
(s,t)∈A

|(1 + h)
n−1

∑
i=m

ui(s, t, r)− h(
n−1

∑
i=m

(

t∫
c

k1(t, τ)H1,idτ +

b∫
a

k2(s, ξ)H2,idξ))|

= max
(s,t)∈A

|(1 + h)
n−1

∑
i=m

ui(s, t, r)− h{
t∫

c

k1(t, τ)
n−1

∑
i=m

H1,idτ +

b∫
a

k2(s, ξ)
n−1

∑
i=m

H2,idξ)}|

From [31] we have

n−1

∑
i=m

H1,i = G1(sn−1)− G1(sm−1), and
n−1

∑
i=m

H2,i = G2(sn−1)− G2(sm−1).

Consequently, from conditions (ii) and (iii) we obtain

‖sn − sm‖ = max
(s,t)∈A

|(1 + h)(sn−1 − sm−1)− h{
t∫

c

k1(t, τ)(G1(sn−1)− G1(sm−1))dτ

+

b∫
a

k2(s, ξ)(G2(sn−1)− G2(sm−1))dξ}| ≤ |1 + h|‖sn−1 − sm−1‖

+ |h|{M1L1(d− c)‖sn−1 − sm−1‖+ m2L2(b− a)‖sn−1 − sm−1‖}
= (|1 + h|+ |h|α)‖sn−1 − sm−1‖ = βh‖sn−1 − sm−1‖

where βh = |1 + h|+ |h|α.
Let n = m + 1 then

‖sm+1 − sm‖ ≤ βh‖sm − sm−1‖ ≤ βh
2‖sm−1 − sm−2‖

≤ . . . . . . . . . . . . . . . . . . . . .

≤ βh
m‖s1 − s0‖ = βh

m‖u1‖.
(22)
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Using the triangle inequality and (22) we have

‖sn − sm‖ ≤ ‖sm+1 − sm‖+ ‖sm+2 − sm+1‖+ · · ·+ ‖sn − sn−1‖
≤ (βh

m + βh
m+1 + ... + βh

n−1)‖u1‖ ≤ βh
m(1 + βh + βh

2 + ... + βh
n−m−1)‖u1‖

≤ βh
m 1− βh

n−m

1− βh
‖u1‖.

We choose the value of the parameter h ∈ (−2, 0) such that

0 < α <
1− |1 + h|
|h| . (23)

Then βh = |1 + h|+ |h|α ∈ (0, 1) and 1− βh
n−m < 1. Therefore, ‖sn − sm‖ <

βh
m

1−βh
‖u1‖

Since ‖u1‖ < ∞ then ‖sn − sm‖ → 0 as m→ ∞,and the sequence {sn} is a Cauchy sequence in

E. Therefore, the series
∞
∑

i=1
ui(s, t, r) converges.

Similarly, we have {sn} is a Cauchy sequence .

From the proof of Theorem 3 it follows an upper bound of the error:

Theorem 4. Let the condition (i)–(iii) be fulfilled.
Then the error of the approximate solution can be estimated as follows

‖u− sn‖ ≤
βh

n

1− βh
|h|(‖u0‖+ ‖g‖+ M1(d− c)φ1 + M2(b− a)φ2),

where βh = |1 + h|+ |h|α and α is defined by (19).

6. Numerical Example

In this section, we will illustrate the obtained theoretical results on a numerical example.

Example 1. Let A = [0, 1]× [0, 1]. Consider the Equation (1) in the partial case of

k1(t, τ) =
1
5
(t + τ), k2(s, ξ) =

3
5

sξ, G1(u) =
1

15
u2, G2(u) =

1
5

u

and
g(s, t, r) = ((

24
25

st− 7
900

s2t4(1 + r))(1 + r), (
24
25

st− 7
900

s2t4(3− r))(3− r)).

Then the exact solution of (1) in this partial case is given by

uexact(s, t, r) = (st(1 + r), st(3− r)).

In this case the conditions (i)–(iii) are satisfied with M1 = 2
5 , M2 = 3

5 , L1 = 2
5 , L2 = 1

5 and α = 7
25 . We

choose the value of parameter h : 7
25 < 1−|1+h|

|h| or h ∈ (−1.5625, 0). Numerically determined, the optimal
value of the convergence control parameter h is equal to −1.0098.
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By using CAS “Wolfram Mathematica” and the proposed above method, we obtain

u0(s, t, r) = 0,

u1(s, t, r) = h(u0(s, t, r)− g(s, t, r)−
t∫

0

1
75

(t + τ)u2
0(s, τ, r)dτ −

1∫
0

3
25

sξu0(ξ, t, r)dξ),

u1(s, t, r) = −h{24
25

st− 7
900

s2t4(1 + r)}(1 + r),

u2(s, t, r) = (1 + h)u1(s, t, r)− h(
t∫

0

1
75

(t + τ)2u0(s, τ, r)u1(s, τ, r)dτ +

1∫
0

3
25

sξu1(ξ, t, r)dξ),

u2(s, t, r)

= {−h(
24
25

st− 7
900

s2t4(1 + r))− h2(
242

252 st + (
7

3.104 st4 − 7
900

s2t4)(1 + r))}(1 + r),

u3(s, t, r) = (1 + h)u2(s, t, r)

− h(
t∫

0

1
75

(t + τ)(u2
1(s, τ, r) + 2u0(s, τ, r)u2(s, τ, r))dτ +

1∫
0

3
25

sξu2(ξ, t, r)dξ),

u3(s, t, r) = {−h(
24
25

st− 7
900

s2t4(1 + r))

− h2(
1151
252 st +

14
3.104 st4(1 + r)− 7

450
s2t4(1 + r))

− h3(
13824

253 st +
21
104 st4(1 + r)− 343

36.253 s2t4(1 + r)

− 26
27.253 s3t7(1 + r)2 +

931
675.9002 s4t10(1 + r)3)}(1 + r),

s3(s, t, r) = {−3h(
24
25

st− 7
900

s2t4(1 + r))

− h2(
1727
252 st +

7
104 st4(1 + r)− 7

300
s2t4(1 + r))

− h3(
13824

253 st +
21
104 st4(1 + r)− 343

36.253 s2t4(1 + r)

− 26
27.253 s3t7(1 + r)2 +

931
675.9002 s4t10(1 + r)3)}(1 + r).

Therefore, in this particular case we obtain for the error

∆3(s, t, 0.5) = |uexact(s, t, 0.5)− s3(s, t, 0.5)|.

The results are shown in the Table 1.



Fractal Fract. 2020, 4, 9 12 of 14

Table 1. Values of errors ∆3(s, t, 0.5).

h = −1 h = −1.0098

s t = 0.2 0.4 0.6 t = 0.2 0.4 0.6

0.1 2.0296×10−6 5.5943×10−6 1.4641×10−6 9.6097×10−7 3.3509×10−6 1.0844×10−5

0.3 6.2286×10−6 1.9018×10−5 5.5214×10−5 2.9769×10−6 1.1556×10−5 4.0119×10−5

0.5 1.0627×10−5 3.5632×10−5 1.1181×10−4 5.1318×10−6 2.1982×10−5 8.0508×10−5

0.7 1.5241×10−5 5.5688×10−5 1.8548×10−4 7.4422×10−6 3.4889×10−5 1.3308×10−4

h = −0.9 h = −1.4

s t = 0.2 0.4 0.6 t = 0.2 0.4 0.6

0.1 7.5640×10−5 1.5374×10−4 2.4064×10−4 1.2216×10−3 2.4483×10−3 3.6934×10−3

0.3 2.2747×10−4 4.7011×10−4 7.6690×10−4 3.6672×10−3 7.3840×10−3 1.1278×10−2

0.5 3.8006×10−4 7.9849×10−4 1.3538×10−3 1,2371×10−2 1,9123×10−2 2,6976×10−2

0.7 5.3341×10−4 1.1391×10−3 2.0022×10−3 8.5681×10−3 1.7409×10−2 2.7227×10−2

Remark 3. In the standard case r = 1 we have E1 = R and the Equation (1) is reduced to the exact equation.
In this case

g(s, t) = g(s, t, 1) = g(s, t, 1) =
48
25

st− 14
450

s2t4,

uexact(s, t) = uexact(s, t, 1) = uexact(s, t, 1) = 2st,

and differently than the “fuzy" case we obtain the following equalities:

un(s, t) = un(s, t, 1) = un(s, t, 1),

sn(s, t) = sn(s, t, 1) = sn(s, t, 1),

∆n(s, t) = ∆n(s, t, 1) = ∆n(s, t, 1) = |uexact(s, t)− sn(s, t)|, n = 0, 1, 2, ....

These equalities lead to more simple calculations in the case of R comparatively with the “fuzy" case E1.

7. Conclusions

In this paper, HAM is applied for solving the two-dimensional nonlinear Volterra-Fredholm fuzzy
integral equations, where the solution is found in the form of a series. It is shown that if this series is
convergent, its sum is the solution of the considered equation. Sufficient conditions for the convergence
of this series are given. Additionally, the error of the approximate solution, taken as the partial sum of
generated series, is estimated. The presented example shows that the investigated method is effective
in solving the equations of considered kind.
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