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Abstract: This paper is devoted to the admissibility issue of singular fractional order systems with
order α ∈ (0, 1) based on complex variables. Firstly, with regard to admissibility, necessary and
sufficient conditions are obtained by strict LMI in complex plane. Then, an observer-based controller
is designed to ensure system admissible. Finally, numerical examples are given to reveal the validity
of the theoretical conclusions.
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1. Introduction

Singular systems have attracted much increasing attention which have not only theoretical value
but also play an important role in practice in recent years. As everyone knows, singular systems have
always been the focus of attention and have extensive application in economic systems, power systems,
electronic systems and other areas in the development of control theory [1–4]. Due to the diversity
of applications, descriptor systems have better performance than normal systems. Duan et al. [5]
generalize the normal systems into the case of descriptor linear systems and examine some of the basic
equivalent structures and the solution of a general descriptor linear system. In [6], the paper considers
the issue of stabilization for a class of singular FOS by using appropriate matrix variable decoupling
technique. In fact, a lot of notations and significative results have been spread from standard systems
to singular systems.

At present, with the further study of fractional order systems, many scholars find that FOS have
better performance than the integer order counterpart. In recent years, scientists have found that
the dynamical behavior of many real world physical systems can be described by fractional order
differential equations more completely and precisely than the ordinary integer order differential
equations [7]. The relationship between FOS and normal system is verified in [8]. Sabatier et al. [9]
deal with LMI stability conditions for FOS. Tavazoei et al. [10] present a new approach to investigate
stability of fractional order linear time invariant systems with order between 1 and 2. In [11–14], papers
focus on the issue of initialization of fractional order systems including theory and application. Some
stability properties of fractional order systems are presented in [13]. The application of control methods
for initialized fractional order systems are shown in [14]. Later on, the observability of fractional order
systems are shown in [15]. Trigeassou et al. [16] consider state variables of fractional order differential
systems to verify that x(t) is pseudo state instead of real state. Sabatier et al. [17] reveal advantages of
fractional integration operator. A lot of results are given about the stability analysis of FOS in [18–22].
Lu et al. [19] research robust stability of FOS with order α: the 0 < α < 1 case. Zhang et al. [20]
propose the new stability criteria of FOS. The most important conclusion is obtained by linear matrix
inequality (LMI) in [23–26]. Wang et al. [23] focus on robust control issues of uncertain FOS based
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on model approximation in terms of LMI. In [27–29], many important results about FOS have been
studied and widely used. Podlubny [27] studies fractional order systems and PIλDµ-controllers are
designed. In [28,29], Sabatier et al. analyze the stability and stabilization of FOS.

With the rapid development of SFOS, many difficult and challenging problems have been solved
on this aspect in [29–33]. In [30], Zhang et al. propose the new admissibility conditions of linear
SFOS with the order 0 < α < 1 in terms of strict linear matrix inequalities. Ji et al. [33] discuss
the state and static output feedback stabilization of singular FOS with uncertainty. Yu et al. [34]
propose a original admissibility condition for SFOS. To remove the equality constraint in admissibility
criterion, Saliha et al. [35] provide a concise criterion. A novel necessary and sufficient condition for
the admissibility of singular fractional order systems is derived in terms of linear matrix inequalities
in [36]. Wei et al. [37,38] propose new results for stabilizing singular FOS and expect the sufficient and
necessary condition for output feedback control which are better than the existing works. Through the
above discussion, we know that singular fractional order systems where many challenging and
unsolved theoretical problems have been addressed in [34–38]. However, in our knowledge, the
problem of admissibility of singular FOS based on complex domain is still incomplete.

Based on these previous works, new sufficient and necessary admissibility conditions in terms of
strict LMI are proposed.

The contributions of this work can be summarized as follows:

• The purpose of this paper is to consummate the issue for singular FOS with the fractional order α

between (0, 1) to complex domain by presenting new theorems.
• Based on thinking about previous studies, we propose the new admissibility conditions by strict

LMI in complex domain.
• Finally, we design a novel observer-based controller for SFOS to guarantee the systems to

be admissible.

The rest of this paper is briefly outlined as follows. Some preliminaries are presented in Section 2.
Section 3 is devoted to the main results. In Section 4 numerical examples are presented to illustrate the
applicability of the results and finally conclusion is given in Section 5.

Throughout the text, XT , X̄ and X∗ denote the transpose, the conjugate and the conjugate
transpose of a matrix X,respectively. sym{X} denotes the expression X + XT . <(r) denotes the
real part of the complex number. r Matrices are the appropriate dimension without special description.

2. Preliminaries

Consider the following SFOS described by,
EDαx(t) = Ax(t) + Bu(t)

y = Cx(t)
x(0) = x0

(1)

where x(t) ∈ Cn is the pseudo state vector, u(t) ∈ Rm is the control input, x0 is the compatible initial
condition without introducing impulse behavior.E ∈ Rn×n may be singular satisfying 0 ≤ rank(E) =
r ≤ n. A ∈ Rn×n , B ∈ Rn×m, C is matrix with appropriate dimensions. The symbol Dαx(t) denotes
the Caputo fractional derivatives of α of function x(t) which is defined as [20]

cDα
t x(t) =

dα f (t)
dtα

=
1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α+1−m dτ, (2)

where m− 1 < α ≤ m, m ∈ Z+, and the gamma function Γ(x) =
∫ ∞

0 e−ttx−1dt. For convenience, we
simplify cDα

t x(t) to Dαx(t).
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System (1) can be rewritten in the following form:

EDαx(t) = Ax(t). (3)

System (3) reduces normal fractional order system as matrix E(= I) is nonsingular,

Dαx(t) = Ax(t). (4)

Then, we introduce the admissibility definition of SFOS which is similar to the integer
order system.

Definition 1 ([37]). System (3) is said to be regular if det(sαE− A) is not identially zero. System (3) is said
to be impulse free if deg(det(sE− A)) = rank(E). System (3) is said to be stable if all the finite generalized
eigenvalues of det(λE− A) = 0 lie in Dα = {λ : |arg(λ)| > απ

2 }. System (3) is said to be admissibility if it
is regular, impulse free and stable.

Next, we introduce some lemmas that will be needed in the sequel.

Lemma 1 ([20]). X ∈ Cn×n > 0 iff [
<(X) =(X)

−=(X) <(X)

]
> 0.

Lemma 2 ([20]). System (4) is asymptotically stable iff there exist two matrices X, Y ∈ Rn×n, such that[
X Y
−Y X

]
> 0, (5)

s(α)AX− c(α)AY + s(α)XAT + c(α)YAT < 0, (6)

where s(α) = sin(α π
2 ), c(α) = cos(α π

2 ).

Lemma 3 ([30]). Suppose that system (3) is regular, and two nonsingular matrices M and N such that

MEN =

[
Im 0
0 Nn−m

]
, MAN =

[
Ā1 0
0 In−m

]
, (7)

where Nn−m is nilpotent matrix, then we have:

(a) System (3) is impulse free if and only if Nn−m = 0.
(b) System (3) is stable if and only if |arg(spec(Ā1, α))| > α π

2 .
(c) System (3) is admissible if and only if Nn−m = 0 and |arg(spec(Ā1, α))| > α π

2 .

When the regularity of system (3) is not known, there always exist two nonsingular matrices M and N
such that

MEN =

[
Im 0
0 0

]
, MAN =

[
A11 A12

A21 A22

]
(8)

Lemma 4. X ∈ Cn×n > 0 if and only if X̄ ∈ Cn×n > 0.

3. Results

According to the above lemmas, the new admissibility criteria for system (3) is presented as follow.
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Theorem 1. The unforced SFOS in (3) with order 0 < α < 1 is admissible iff the following equivalent
statements hold:

(i) There exist X1 ∈ Cn×n, X2 ∈ Cn×n such that

EX1 ≥ 0, EX2 ≥ 0, (9)

sym{rAX1 + r̄AX2} < 0. (10)

(ii) There exists X ∈ Cn×n such that

EX ≥ 0, (11)

sym{rAX + r̄AX̄} < 0, (12)

where r = ej(1−α) π
2 .

Proof. First of all, the equivalence of admissibility and (ii) are proved.
[Sufficiency:] Suppose the inequalities (11) and (12) hold, since E is singular, there exist invertible

matrices M and N satisfying (8).
Due to the invertibility of the matrix M, let

N−1XMT =

[
X11 X12

X21 X22

]
. (13)

Replacing (13) into (11), we obtain the following formula:

EX = M−1

[
I 0
0 0

]
N−1N

[
X11 X12

X21 X22

]
M−T

= M−1

[
X11 X12

0 0

]
M−T ≥ 0,

(14)

so it is shown that X11 ≥ 0, X12 = 0.
Considering (13), and using the expressions in (8), we have

sym{rAX + r̄AX̄} = sym{rM−1

[
A11X11 + A12X21 A12X22

A21X11 + A22X21 A22X22

]
M−T

+r̄M−1

[
A11X̄11 + A12X̄21 A12X̄22

A21X̄11 + A22X̄21 A22X̄22

]
M−T} < 0.

(15)

Then, it induces A22 reversible that represents system (3) is regular and impulse free. Then,
invertible matrices L and R can be defined such that

LER =

[
Ir1 0
0 0

]
, LAR =

[
A1 0
0 I

]
, (16)

where A1 ∈ Rr1×r1 , then let

X = R

[
X11 0
X21 X22

]
L−T . (17)
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From (16) and (17), it induces the equivalence of the following inequalities and conditions (12),[
Ψ11 ΨT

21
Ψ21 Ψ22

]
< 0,

where
Ψ11 = sym{rA1X11 + r̄A1X̄11},
Ψ21 = sym{rX21 + r̄X̄21},
Ψ22 = sym{rX22 + r̄X̄22}.

(18)

It follows that Ψ11 < 0. We deduce that the system Dαx1(t) = A1x(t) is stable, so system (3)
is also stable. Therefore, We conclude that system (3) is admissibile since it is regular, impulse free
and stable.

[Necessity:] Suppose that system (3) is admissible. Then, there exist invertible matrices such that
(8) holds and Dαx1(t) = A1x(t) is stable. There exists a matrix X̂1 = X̂∗1 ∈ Cn×n > 0 such that

sym{A1(rX̂1 + r̄ ¯̂X1)} < 0, (19)

with r = ej(1−α) π
2 , then let

X = R

[
X̂1 0
0 −I

]
L−T . (20)

It is easy to show that EX ≥ 0, then, we get

sym(rAX + r̄AX̄) = sym(L−1

[
rA1X̂1 0

0 −I

]
L−T + L−1

[
r̄A1

¯̂X1 0
0 −I

]
L−T) < 0. (21)

Therefore, it proves that the equivalence of (ii) and admissibility of SFOS (3). Afterwards,
the equivalence of (i) and (ii) is given.

(ii)⇒ (i): Taking X1 = X and X2 = X̄, it is obtained easily.
(i)⇒ (ii): It is proved in the following form, ∃EX1 ≥ 0, EX2 ≥ 0 s.t.

r̄X∗1 AT + rAX1 + rX∗2 AT + r̄AX2 < 0.

⇔ ∃EX1 ≥ 0, EX2 ≥ 0 s.t.

r̄X∗1 AT + rAX1 + rX∗2 AT + r̄AX2 < 0.

This implies that ∃EX1 ≥ 0, EX2 ≥ 0 s.t.

r̄X∗1 AT + rAX1 + rX∗2 AT + r̄AX2 + r̄X∗1 AT + rAX1 + rX∗2 AT + r̄AX2 < 0.

When X = X1 + X̄2, the inequality (12) is obtained.

Remark 1. Because the inequalities in (10) and (12) contain equality constraint, it has difficulty in solving.
Therefore, the following theorem introduces a matrix S ∈ Cn×(n−m) which is of full column rank and ES = 0.
With the help of the matrix S, a strict LMI without equality constraint condition is given.

Theorem 2. System (3) is admissible iff there exist matrices X, Y ∈ Cn×n, Q ∈ C(n−m)×n such that (5)
holds and

sym{rA(XET + SQ) + r̄AYET} < 0. (22)
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Proof. Suppose that there exist matrices X, Y, Q such that (5) and (22) hold. Let

X̃1 = XET + r−1SQ, X̃2 = YET . (23)

Then, it is similar to the proof of Theorem 1, so not to be described in detail herein.

Corollary 1. System (3) is admissible iff there exist matrices X, Y ∈ Cn×n, Q ∈ C(n−m)×n such that (5)
holds and

sym{r(ETX + SQ)A + r̄ETYA} < 0. (24)

3.1. Stabilization of SFOS

For a SFOS, it is necessary to ensure the SFO system is admissibile by designing the state feedback
controller which is given in the following:

u(t) = Kx(t), K ∈ Cm×n. (25)

When system (1) have a controller (25), it obtains the following closed-loop system:{
EDαx(t) = (A + BK)x(t)

y = Cx(t)
(26)

Then, it has
sym{r(A + BK)(XET + SQ) + r̄(A + BK)YET} < 0. (27)

For SFOS (1), the closed-loop system in (26) with controller (25) is admissible if and only if there
exist matrices X, Y ∈ Cn×n, Q ∈ C(n−m)×n, and Z ∈ Cm×n such that (5) holds and

sym(rA(XET + SQ) + r̄AYET + BZ) < 0. (28)

Afterwards, we obtain the following gain matrix,

K = Z(r(XET + SQ) + r̄YET)−1. (29)

3.2. Observer-Based Control for SFOS

For SFOS (1), we consider the following form to design the controller:{
EDα x̂(t) = Ax̂(t) + Bu(t) + L(Cx̂(t)− y(t))

u(t) = Kx̂(t)
(30)

where K and L are defined as the parameter gains. The following closed-loop system is given,

ĚDαν(t) = Aclν(t) (31)

with Ě =

[
E 0
0 E

]
, ν(t) =

[
x(t)

x(t)− x̂(t)

]
, Acl =

[
A + BK −BK

0 A + LC

]
. Conditions of the

admissibility for system (31), or the pair (Ě, Acl) are given by the following results.

Theorem 3. System in (31) is admissible if and only if there exist matrices X1 = X∗1 , X2 = X∗2 ∈ Cn×n > 0,
Y1 = Y∗1 , Y2 = Y∗2 ∈ Cn×n > 0 such that Lemma 2 holds, Q1 ∈ C(n−q)×n, Q2 ∈ Cn×(n−q), W1 ∈ Cm×n,
W2 ∈ Cn×m, satisfying

sym{rA(X1ET + S1Q1) + r̄AY1ET + BW1} < 0, (32)

sym{r(ETX2 + Q2S2)A + r̄ETY2 A + W2C} < 0, (33)
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where S1 ∈ Cn×(n−q) and S2 ∈ C(n−q)×n are full column rank and ES1 = 0, S2E = 0. The following gain
matrices are given,

K = W1(r(X1ET + S1Q1) + r̄Y1ET)−1,
L = (r(ETX2 + Q2S2) + r̄ETY2)

−1W2.
(34)

Proof. [Sufficiency:] From Theorem 2 and (32), it obtains that (E, A + BK) is admissible.
Therefore, the system (E, A + BK) is admissible if and only if there exist matrix X1 = X∗1 ∈

Cn×n > 0 satisfying

Λ = sym{r(A + BK)(X̃2ET + S1Q̃2) + r̄(A + BK)Y1ET} < 0. (35)

By (32), it is equivalently expressed as

Ω = sym{r(A + LC)(X1ET + S1Q1) + r̄(A + LC)Y1ET} < 0. (36)

Then, a scalar ε satisfying ε > 0, the LMI holds as follow,

sym{rAcl(X̌ĚT + Š1Q̌) + r̄AclY̌1ĚT} =
[

Λ −εBK(X̃2ET + S1Q̃2 + Y1ET)

0 εΩ

]
< 0, (37)

for X̌ =

[
X1 0
0 εX̃2

]
,Y̌1 =

[
Y1 0
0 εY1

]
, Q̌ =

[
Q1 0
0 εQ̃2

]
, Š1 =

[
S1 0
0 S1

]
. Hence, we obtain

that the closed-loop system (31) is admissible under the conditions of Theorem 2.
[Necessity:] If system (31) is admissible, and X́, Ý1, Q́ and S̄1 with appropriate

dimensions satisfying
sym(rAcl(X́ĚT + S̄1Q́) + r̄AclÝ1ĚT) < 0. (38)

Suppose there exist matrices satisfying X́ =

[
X1 0
0 X2

]
, Ý1 =

[
Y1 0
0 Y1

]
, Q́ =

[
Q1 0
0 Q2

]
,

S̄1 =

[
S1 0
0 S1

]
, W1 = K(r(X1ET + S1Q1) + r̄Y1ET). Then, we obtain that if X́ such that Lemma 2

holds, so
[

In 0
]

X́

[
In

0

]
such that Lemma 2 holds. Furthermore, one has

[
In 0

]
sym(rAcl(X́ĚT + S̄1Q́) + r̄AclÝ1ĚT)

[
In

0

]

= sym{r(A + BK)(X1ET + S1Q1) + r̄(A + BK)Y1ET}

= sym(rA(X1ET + S1Q1) + r̄AY1ET + BW1)

< 0,

(39)

which implies inequality (32). Apparently, (33) is obtained in the similar way. It completes the proof
of Theorem 3.
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4. Numerical Example

4.1. Admissibility

Example 1. Consider SFOS (3) with α = 0.5, and

E =

 1 1 1
1 1 1
0 0 1

 , A =

 −1 1 0
−3 −4 1
0 0 −2

 . (40)

A feasible solution is given in the following by LMI (22) of Theorem 2:

X = 108 ∗

 2.8857 1.0441 0.4275
1.0441 −1.8416 −0.3945
0.4275 −0.3945 0.7279

 , Y =

 0 −4.2749 3.9448
4.2749 0 −7.2789
−3.9448 7.2789 0

 , (41)

Q = 108 ∗
[
−5.1317 0.4044 −0.5777

]
.

Setting the initial conditions x(0) = [2 − 2 4]T , the state responses of the resulting closed-loop control
systems are illustrated in Figure 1.

Time(s)

0 5 10 15 20 25 30 35 40 45 50

S
ta

te
s
 

-5

-4

-3

-2

-1

0

1

2

3

4

5

x
1
(t)

x
2
(t)

x
3
(t)

Figure 1. States responses of singular FOS in Example 1.

4.2. Controller Design

Example 2. Consider the following SFOS described in (30) with α = 0.3 and

E =

 1 3 0
2 −1 0
1 5 0

 , A =

 1 1 −1
2 −2 −1
4 1 −4

 , (42)

B =

 −1 1
1 −1
1 1

 , C =

[
1 0 0
0 0 1

]
. (43)
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Afterwards, an observer-based controller is designed to ensure the closed-loop system in (30) is admissible.
We get the following results by the conditions (32) and (33) of Theorem 3:

K =

[
−0.1168 0.2476 −0.5767
0.0028 0.0060 −0.0140

]
, (44)

L =

 3.4074 0.0210
8.3516 −0.0283
2.8518 −0.0024

 . (45)

SFO system in (30) is unstable initially and its states response is shown in Figure 2. Then,
the closed-loop SFO system in (31) is stable under the condition of Theorem 3 and its states responses
is shown in Figure 3.

time(s)

0 2 4 6 8 10 12 14 16 18 20

s
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te
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0

1

2

3

4

5
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x
2
(t)

x
3
(t)

Figure 2. States responses of singular FOS in Example 2.
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Figure 3. States responses of closed-loop system (31) in Example 2.
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5. Conclusions

The issue of admissibility of SFOS is considered based on complex variables in complex domain.
We derive the Theorem 1 by an LMI approach as α belonging 0 < α < 1. Then, an observer-based
controller is designed to guarantee the stability of the SFOS. Finally, we demonstrate the validity of the
proposed results by giving the numerical examples. Further works will still be focused on the series of
the issue of SFOS.
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