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Abstract: Fractional integration operational matrix of Chebyshev wavelets based on the Riemann–Liouville
fractional integral operator is derived directly from Chebyshev wavelets for the first time.
The formulation is accurate and can be applied for fractional orders or an integer order. Using the
fractional integration operational matrix, new Chebyshev wavelet methods for finding solutions of
linear-quadratic optimal control problems and analysis of linear fractional time-delay systems are
presented. Different numerical examples are solved to show the accuracy and applicability of the
new Chebyshev wavelet methods.

Keywords: fractional integration operational matrix of Chebyshev wavelets; Chebyshev wavelets
method; fractional time-delay optimal control; multifractional delay differential equation;
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1. Introduction

In some real-world problems, we deal with fractional calculus [1,2]. Fractional calculus has
important engineering applications [3], for example, in the analysis of viscoelasticity structures [4,5],
in mechanics [6,7], control systems [8], and in partial differential equations [9] which they arise in
many fields like Navier–Stokes equations that are of practical interest [10–12]. Fractional time-delay
optimal control has been a topic of interest during recent years [13,14]. We know that governing
state equations of some mechanical and control systems may result in second-order delay differential
equations [15,16]. So, it is obvious that we may deal with the optimal control of multiorder fractional
time-delay systems, in which a framework for the case when some fractional orders are greater than
one will be needed. In previous works, some methods to handle optimization of delay systems have
been presented, for example, in [17] by Bernoulli wavelets basis, in [18] by Legendre functions, in [19]
by Boubaker functions, and in [20] by Chelyshkov wavelets. In these works however, it is assumed that
there is a single fractional-order derivative in the state equation, control systems are unconstrained,
the proposed solutions should be obtained from solving systems of algebraic equations, and also there
is no discussion on the case when the fractional order is greater than one; it would therefore be helpful
if general solutions for these situations could be found. Analysis of the different types of fractional
differential equations [21] has been carried out in many texts by different methods, for example, [22–27].
In this paper, we study the optimal control and analysis of fractional delay systems by using Chebyshev
wavelets [28] which have many advantages over Chebyshev polynomials such as compact support,
providing accurate models of different types of delay systems, and a much wider range of capabilities.
As we shall see later in this paper, general solutions of the optimal control and analysis of linear
delay systems having fractional order state equations are presented. The fractional integration
operational matrix of the conventional Chebyshev wavelets was presented in [29]. Additionally,
in [30], another operational matrix of fractional order integration in the Riemann–Liouville sense
was derived. However, these operational matrices were derived by employing block pulse and hat
functions. It is desirable to have a general form of this matrix derived by employing Chebyshev
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wavelets, which is valid for all values of the order (integer and fractional). In this work, we obtain this
matrix directly from Chebyshev wavelets via a new technique by which we can solve optimal control
problems and delay differential equations having integer order and/or fractional order.

After stating some essential definitions in Section 2, by using the Riemann–Liouville fractional
integral operator we introduce a new general formulation for the fractional integration operational
of Chebyshev wavelets with scaling in Section 3, which is required for applying Chebyshev wavelet
methods on fractional order systems. Then, in Section 4, we present new Chebyshev wavelet methods
to the optimal control and analysis of fractional order systems having multiple delays and reverse
time. The accuracy of the proposed Chebyshev wavelet methods by considering several examples
are reported in Section 5. One can find from the results of the numerical examples that the proposed
Chebyshev wavelet methods provide accurate results. Since the method for fractional linear-quadratic
delay optimal control problems has the same idea to our previous method, it has some advantages
(mentioned in [28] and [31]) over the existing method.

2. Preliminaries

Definition 1. Chebyshev Wavelets (CWs) and CWs Expansion
The arbitrary scaled Chebyshev wavelets (ASCWs) with five arguments are defined as [28]

ψ
ξ
nm(t) = ψ(ξ, k, n, m, t) =


√

2ξk−1cmTm(2ξk−1t− 2n + 1), t ∈
[

n−1
ξk−1 , n

ξk−1

]
0, t /∈

[
n−1
ξk−1 , n

ξk−1

]
,

(1)

where ξ ∈ N≥2 and is chosen from the problem k ∈ N≥2, n = 1, 2, . . . , ξk−1 determines the location of
a subinterval and refers to the subinterval number, m = 0, 1, . . . , M− 1 is the degree of Tm, the coefficient cm is
c0 = 1/

√
π, cm 6=0 =

√
2/
√

π , and t ∈ [0, 1] is the independent variable. The Chebyshev polynomials of the
first kind Tm(x) [32] are presented as

T0(x) = 1, Tm(x) = m
m

∑
j=0

(−2)j(m + j− 1)!
(m− j)!(2j)!

(1− t)j for m > 0. (2)

We expand a function f (t) in terms of Chebyshev wavelets over the interval 0 ≤ t ≤ 1 as

f (t) =
N

∑
n=1

∞

∑
m=0

f ξ
nmψ

ξ
nm(t), (3)

where N is large enough. If we approximate f (t), say, the (M− 1)th term in ξk−1 subintervals, then we have

f (t) ∼=
ξk−1

∑
n=1

M−1

∑
m=0

f ξ
nmψ

ξ
nm(t) = fcwΨξ(t), (4)

where fcw and Ψξ(t) are 1× ξk−1M and ξk−1M× 1 vectors and

fcw := [ f ξ
10, . . . , f ξ

1M−1, f ξ
20, . . . , f ξ

2M−1, . . . , f ξ

ξk−10
, . . . , f ξ

ξk−1 M−1
],

Ψξ(t) := [ψξ
10(t), . . . , ψ

ξ
1M−1(t), ψ

ξ
20(t), . . . , ψ

ξ
2M−1(t), . . . , ψ

ξ

ξk−10
(t), . . . , ψ

ξ

ξk−1 M−1
(t)]>.

The constant coefficients f ξ
nm are obtained from

f ξ
nm =

cm√
2ξk−1

∫ π

0
f
(cos θ + 2n− 1

2ξk−1

)
cos(mθ) dθ. (5)
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Theorem 1. Let f , f ′, and f ′′ be piecewise continuous on the interval [0, 1], and | f (t)| , | f ′(t)| , | f ′′(t)| ≤ l.
Then, the accumulated error in f , |e| = | f (t)− fcwΨξ(t)|, for M > 2 satisfies

|e| ≤
{

2 + 1
N + 1

ξk−1 +
1
4
( 3

2N2 +
1

ξ2k−2 { 3
2 −

2M−1
M(M−1)}

)}
l.

Proof. For the truncated CWs expansion given in (4), from (5) we obtain | f ξ
n0||ψ

ξ
n0(t)| ≤ l,

| f ξ
n1||ψ

ξ
n1(t)| ≤ l/ξk−1 and | f ξ

nm||ψξ
nm(t)| ≤ l/(2ξ2k−2(m2 − 1)). Similarly, for (3), we find

| f ξ
n′0||ψ

ξ
n′0(t)| ≤ l, | f ξ

n′1||ψ
ξ
n′1(t)| ≤ l/N and | f ξ

n′m||ψ
ξ
nm(t)| ≤ l/(2N2(m2 − 1)). We can

write |e| = |∑N
n′=1 ∑∞

m=0 f ξ
n′mψ

ξ
n′m(t) − ∑ξk−1

n=1 ∑M−1
m=0 f ξ

nmψ
ξ
nm(t)|. If ξk−1 = N, we find

|e| = |∑N
n=1 ∑∞

m=M f ξ
nmψ

ξ
nm(t)| ≤ l(2M − 1)/(4N2 M(M − 1)). Otherwise, based on the value

of N and ξk−1 we consider two situations. 1. ξk−1 > N; for t ∈ [(n − 1)/ξk−1, n/ξk−1],
we have |e| = |∑∞

m=0 f ξ
n′mψ

ξ
n′m(t) − ∑M−1

m=0 f ξ
nmψ

ξ
nm(t)|. We know |∑∞

m=0 f ξ
n′mψ

ξ
n′m(t)| ≤ l + l/N +

3l/(8N2) and |∑M−1
m=0 f ξ

n′mψ
ξ
n′m(t)| ≤ l + l/ξk−1 + 3l/(8ξ2k−2) − l(2M − 1)/(4ξ2k−2 M(M − 1)).

Hence, |e| = |∑∞
m=0 f ξ

n′mψ
ξ
n′m(t)| + |∑

M−1
m=0 f ξ

nmψ
ξ
nm(t)| ≤ l + l/N + 3l/(8N2) + l + l/ξk−1 +

3l/(8ξ2k−2) − l(2M − 1)/(4ξ2k−2 M(M − 1)), which is equal to the given upper bound in the
theorem. 2. ξk−1 < N; in this situation, for t ∈ [(n′ − 1)/N, n′/N], we can find a similar statement.
Since l(2M − 1)/(4N2 M(M − 1)) ≤

{
2 + 1

N + 1
ξk−1 +

1
4
( 3

2N2 +
1

ξ2k−2 { 3
2 −

2M−1
M(M−1)}

)}
l, we have

proved the theorem.

Useful Properties of CWs

We have the following properties of CWs which will be used for applying CW method:

1.
∫ t

0 Ψξ(ς)dς can be expressed in terms of Ψξ(t) by the integration operational matrix of CWs
denoted by Pcw as ∫ t

0
Ψξ(ς)dς ∼= PcwΨξ(t); (6)

2. the product operational matrix of CWs for fcw denoted by the symbol f̃cw simplifies
fcwΨξ(t)Ψξ

>(t) to
fcwΨξ(t)Ψξ

>(t) ∼= Ψξ
>(t)f̃cw; (7)

3. Ψξ(t− hι) and Ψξ(t− h(t)), where hι is a time-delay and h(t) is a piecewise delay, are expressed
by the delay and the piecewise delay operational matrices of CWs denoted by the symbols, in turn,
Dιcw and Dt

cw, where

Ψξ(t− hι) =

{
0, 0 ≤ t < hι

DιcwΨξ(t), hι ≤ t ≤ 1,
(8)

Ψξ(t− h(t)) =

{
0, 0 ≤ t < h(t)
Dt

cwΨξ(t), h(t) ≤ t ≤ 1;
(9)

4. Ψξ(1− t) is expressed by the inverse (reverse) time operational matrix of CWs denoted by Υcw as

Ψξ(1− t) = ΥcwΨξ(t); (10)

5.
∫ 1

0 Ψξ(t)Ψξ
>(t) dt is obtained as the integration matrix of the product of two CWs vectors on

[0, 1] denoted by Γcw, that is, ∫ 1

0
Ψξ(t)Ψξ

>(t) dt = Γcw. (11)

The procedure for constructing these matrices were explained in detail in [28].

Definition 2. Riemann–Liouville Fractional Integral and Caputo Fractional Derivative
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The Riemann–Liouville fractional integral operator of order α denoted by Iα is defined as

Iα f (t) =

{
1

Γ(α)

∫ t
0 (t− ρ)α−1 f (ρ)dρ, α > 0

f (t), α = 0,
(12)

where Γ is the gamma function. The Caputo fractional derivative of order α denoted by Dα is defined by

Dα f (t) = In−αDn f (t), n− 1 < α ≤ n, n ∈ N.

Iαρm, where ρ is the independent variable, possesses the property

Iαρm =
Γ(m + 1)

Γ(m + α + 1)
ρm+α. (13)

Lemma 1. Let f (t) be a continuous function. For α1, α2 > 0, we have

Iα1+α2 f (t) = Iα1 [Iα2 f (t)]. (14)

Proof. The proof can be found in [1].

The Caputo derivative arises in modeling of some physical system and has the remarkable
property as

IαDα f (t) = f (t)−
n−1
∑

ν=0
f (ν)(0) tν

ν! . (15)

The Riemann–Liouville fractional integral and the Caputo fractional derivative operators denoted
by L are linear operators, that is, for functions f (t) and g(t) and scalars a and b, we have

L(a f (t) + bg(t)) = aL f (t) + bLg(t). (16)

3. The Fractional Integration Operational Matrix of CWs

In this section, we derive the fractional integration operational matrix of ASCWs which will be
used in the next section.

Theorem 2. The fractional integration of ASCW vector Ψξ(t) based on the Riemann–Liouville sense can be
obtained directly from Chebyshev wavelets as

IαΨξ(t) ∼= Pα
cwΨξ(t), (17)

where Pα
cw is the ξk−1M× ξk−1M fractional integration operational matrix of CWs.

Proof. Using a procedure similar to that in [33], we see from the definition of this wavelet and (12) that
when t < n/ξk−1, the integral is a function of the time over which the integrand is defined, so it should
be expanded by the wavelets of the current subinterval {ψξ

nm(t)}; when t = n /ξk−1, this definite
integral should be expanded by ASCWs of all subsequent subintervals {ψξ

ηm(t)}, η > n. Assume that
n = 1. Hence, if 0 ≤ t < 1/ξk−1, we can write

Iαψ
ξ
1m(t) = zy[yαm

10 , yαm
11 , yαm

12 , . . . , yαm
1M−1][ψ

ξ
10(t), ψ

ξ
11(t), ψ

ξ
12(t), . . . , ψ

ξ
1 M−1(t)]

>, (18)

where zy is a constant and for i = 0, 1, 2, . . . , M− 1, {yαm
1i } are constants. We must find these parameters.

From (1), we can write

Iαψ
ξ
1m(t) = Iα

{√
2ξk−1cmTm(2ξk−1t− 1)

}
. (19)



Fractal Fract. 2019, 3, 46 5 of 23

In order to use (13), we must modify (2). Setting −t −→ t yields Tm(−t) = m ∑m
j=0

(−2)j(m+j−1)!
(m−j)!(2j)! (1+ t)j.

From Tm(−t) = (−1)mTm(t), we find

Tm(t) = (−1)mm
m

∑
j=0

(−2)j(m + j− 1)!
(m− j)!(2j)!

(1 + t)j, m > 0. (20)

Using (20), a more general formula for Tm(t) is

Tm(t) = (−1)mam

m

∑
j=0

(−2)j(am + j− 1)!
(m− j)!(2j)!

(1 + t)j, m ≥ 0 (21)

where am =

{
1, m = 0
m, m 6= 0

. Now from (19), (13), and (21), we have

Iαψ
ξ
1m(t) = (−1)m

√
2ξk−1cmam Iα

m

∑
j=0

(−2)j(am + j− 1)!
(m− j)!(2j)!

(2ξk−1)jtj

= (−1)m
√

2ξk−1cmam

m

∑
j=0

(−2)j(am + j− 1)!
(m− j)!(2j)!

(2ξk−1)j Γ(j + 1)
Γ(j + α + 1)

tj+α.

By substituting the formula of Iαψ
ξ
1m(t) into (5), we can write

(−1)m
√

2ξk−1cmam
ci√

2ξk−1

∫ π

0

m

∑
j=0

(−2)j(am + j− 1)!
(m− j)!(2j)!

(2ξk−1)j Γ(j + 1)
Γ(j + α + 1)

(cos θ + 1
2ξk−1

)j+α
cos(iθ) dθ =

(
1

2ξk−1

)α

(−1)mamcmci

∫ π

0

m

∑
j=0

(−2)j(am + j− 1)!Γ(j + 1)
(m− j)!(2j)!Γ(j + α + 1)

(cos θ + 1)j+α cos(iθ) dθ.

By ϕξ
n(t) := [ψξ

n0(t), ψ
ξ
n1(t), ψ

ξ
n2(t), . . . , ψ

ξ
nM−1(t)]

>, we see that IαΨξ(t) = Iα[ϕξ
1(t), 0, 0, · · · , 0].

Hence, it follows from (18) for 0 ≤ t < 1/ξk−1 that

IαΨξ(t) =
(

1
2ξk−1

)α



Yα
10 0 0 0 · · · 0 0

Yα
11 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

Yα
1M−1 0 0 0 · · · 0 0

0(ξk−1−1)M×ξk−1M


Ψξ(t), (22)

where
Yα

1m = [yαm
10 , yαm

11 , yαm
12 , . . . , yαm

1M−1]1×M

and

yαm
1i = (−1)mamcmci

∫ π

0

m

∑
j=0

(−2)j(am + j− 1)!Γ(j + 1)
(m− j)!(2j)!Γ(j + α + 1)

(cos θ + 1)j+α cos(iθ) dθ.

When t = 1/ξk−1, we must have Iαψ
ξ
1m(t) = zj ∑ξk−1

η=2 [j
αm
η0 , jαm

η1 , jαm
η2 , . . . , jαm

ηM−1]ϕ
ξ
η(t), where zj and {jαm

ηi }
are constants. From (12),

Iαψ
ξ
1m(t) =

1
Γ(α)

∫ t

0
(t− ρ)α−1

√
2ξk−1cmTm(2ξk−1ρ− 1) dρ.
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For m = 0, we get Iαψ
ξ
10(t) = 1

Γ(α)

∫ 1
ξk−1

0 (t − ρ)α−1
√

2ξk−1c0 dρ =

√
2ξk−1c0

Γ(α+1) (tα − (t − 1
ξk−1 )

α).
From this, the following statement about the higher degrees follows by induction

Iαψ
ξ
1m(t) = (−1)m

√
2ξk−1cmam

m

∑
j=0

(−2)j(am + j− 1)!
(m− j)!(2j)!

(2ξk−1)j Γ(j + 1)
Γ(j + α + 1)

(
tj+α−

(−1)m−j(t− 1
ξk−1 )

j+α
)
.

Substituting t, we find Iαψ
ξ
1m(t) =

( 1
2ξk−1

)α
∑ξk−1

η=2 Jα
ηmϕ

ξ
η(t), where Jα

ηm = [jαm
η0 , jαm

η1 , jαm
η2 , . . . , jαm

ηM−1]1×M.

In the second interval η = 2 and it is defined over [1/ξk−1, 2/ξk−1]. So, by Cmi := (−1)mamcmci and
setting t = (cos θ + 3)/(2ξk−1), we have

jαm
2i = Cmi

∫ π

0

m

∑
j=0

(−2)j(am + j− 1)!Γ(j + 1)
(m− j)!(2j)!Γ(j + α + 1)

{(cos θ + 3)j+α − (−1)m−j(cos θ + 1)j+α} cos(iθ) dθ.

Additionally, in the last interval [(ξk−1 − 1)/ξk−1, 1], where η = ξk−1, we find that

jαm
ξk−1i = Cmi

∫ π

0

m

∑
j=0

(−2)j(am + j− 1)!Γ(j + 1)
(m− j)!(2j)!Γ(j + α + 1)

{(cos θ + 2ξk−1 − 1)j+α

− (−1)m−j(cos θ + 2ξk−1 − 3)j+α} cos(iθ) dθ.

Therefore, when t = 1/ξk−1

IαΨξ(t) =
(

1
2ξk−1

)α



0 · · · 0 0 Jα
20 Jα

30 · · · Jα
ξk−10

0 · · · 0 0 Jα
21 Jα

31 · · · Jα
ξk−11

...
. . .

...
...

...
...

. . .
...

0 · · · 0 0 Jα
2M−1 Jα

3M−1 · · · Jα
ξk−1 M−1

0(ξk−1−1)M×ξk−1M


Ψξ(t), (23)

where

jαm
ηi = Cmi

∫ π

0

m

∑
j=0

(−2)j(am + j− 1)!Γ(j + 1)
(m− j)!(2j)!Γ(j + α + 1)

{(cos θ + 2η − 1)j+α − (−1)m−j(cos θ + 2η − 3)j+α}

cos(iθ) dθ.

In general, if (n− 1)/ξk−1 ≤ t(n) < n/ξk−1, where t(n) = t + (n− 1)/ξk−1, we see

Iαψ
ξ
nm(t(n)) =

1
Γ(α)

∫ t(n)

n−1
ξk−1

(t(n)− ρ)α−1
√

2ξk−1cmTm(2ξk−1ρ− 2n + 1)dρ.

Substituting ε = ρ− (n− 1)/ξk−1, gives us

Iαψ
ξ
nm(t(n)) = (−1)m

√
2ξk−1cmam

m

∑
j=0

(−2)j(am + j− 1)!
(m− j)!(2j)!

(2ξk−1)j Γ(j + 1)
Γ(j + α + 1)

(
t(n)− n−1

ξk−1

)j+α.

In this subinterval we must set t(n) = (cos θ + 2n− 1)/(2ξk−1) to exanpd Iαψ
ξ
nm(t(n)) by the wavelets

of the current subinterval. This gives (2ξk−1)j(t(n)− (n− 1)/ξk−1)j+α = (1/(2ξk−1)α)(cos θ + 1)j+α,
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so Iαψ
ξ
nm(t(n)) has the same coefficient as Iαψ

ξ
1m(t) in terms of the CWs vector, and for t(n) < n/ξk−1

we have

IαΨξ(t) =
(

1
2ξk−1

)α



0(n−1)M×ξk−1M

0 · · · 0 0 Yα
10 0 0 · · · 0

0 · · · 0 0 Yα
11 0 0 · · · 0

...
. . .

...
...

...
...

...
. . .

...
0 · · · 0 0 Yα

1M−1 0 0 · · · 0

0(ξk−1−n)M×ξk−1M


Ψξ(t). (24)

When t(n) = n/ξk−1, we find Iαψ
ξ
n0(t(n)) =

1
Γ(α)

∫ n
ξk−1
n−1
ξk−1

(t(n)− ρ)α−1
√

2ξk−1c0 dρ =

√
2ξk−1c0

Γ(α+1) ((t(n)−

n−1
ξk−1 )

α − (t(n)− n
ξk−1 )

α). Also we see that Iαψ
ξ
n1(t(n)) =

1
Γ(α)

∫ n
ξk−1
n−1
ξk−1

(t(n)− ρ)α−1
√

2ξk−1c1(2ξk−1ρ−

2n+ 1) dρ = −
√

2ξk−1c1
Γ(α+1) ((t(n)− n−1

ξk−1 )
α +(t(n)− n

ξk−1 )
α)+

√
2ξk−1c1

Γ(α+2) (2ξk−1)((t(n)− n−1
ξk−1 )

1+α− (t(n)−
n

ξk−1 )
1+α). By induction, we get the following statement for the higher degrees

Iαψ
ξ
nm(t(n)) = (−1)m

√
2ξk−1cmam

m

∑
j=0

(−2)j(am + j− 1)!
(m− j)!(2j)!

(2ξk−1)j Γ(j + 1)
Γ(j + α + 1)(

(t(n)− n−1
ξk−1 )

j+α − (−1)m−j(t(n)− n
ξk−1 )

j+α
)

.

Iαψ
ξ
nm(t(n)) must be expanded in its next subintervals, that is, (n+ 1)− th, (n+ 2)− th, . . . , (ξk−1)− th

subintervals, so that Iαψ
ξ
nm(t(n)) = ∑ξk−1

η=n+1 Jα
ηmϕ

ξ
η(t(η)). Hence, when t(n) = n/ξk−1, we obtain

IαΨξ(t) =
(

1
2ξk−1

)α



0(n−1)M×ξk−1M

0 · · · 0 0 0 Jα
n+10 Jα

n+20 · · · Jα
ξk−10

0 · · · 0 0 0 Jα
n+11 Jα

n+21 · · · Jα
ξk−11

...
. . .

...
...

...
...

...
. . .

...
0 · · · 0 0 0 Jα

n+1M−1 Jα
n+2M−1 · · · Jα

ξk−1 M−1

0(ξk−1−n)M×ξk−1M



Ψξ(t). (25)

For η = n + 1 by t(n) = (cos θ + 2η − 1)/(2ξk−1), we find

jαm
ηi = Cmi

∫ π

0

m

∑
j=0

(−2)j(am + j− 1)!Γ(j + 1)
(m− j)!(2j)!Γ(j + α + 1)

{(cos θ + 3)j+α − (−1)m−j(cos θ + 1)j+α} cos(iθ) dθ.

In general, jαm
ηi is obtained from

Cmi

∫ π

0

m

∑
j=0

(−2)j(am + j− 1)!Γ(j + 1)
(m− j)!(2j)!Γ(j + α + 1)

{(cos θ + 2η − 2n + 1)j+α − (−1)m−j(cos θ + 2η − 2n− 1)j+α}

cos(iθ) dθ.
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We find that Jα
n+1m|η=n+1 = Jα

2m|η=2, Jα
n+2m|η=n+1 = Jα

3m|η=3, ..., and Jα
ξk−1m|η=n+1 = Jα

ξk−1−(n−1)m|η=2,

where Jα
n+1m|η=n+1 indicates the computed Jα

n+1m for (n + 1)-th subinterval. Taking (22)–(25) together
and by

Yα :=


Yα

10
Yα

11
...

Yα
1M−1

 , Jα
η−1 :=


Jα

η0
Jα

η1
...

Jα
ηM−1

 ,

we have IαΨξ(t) ∼= Pα
cwΨξ(t), where

Pα
cw =

1(
2ξk−1

)α


p̄α

1
p̄α

2
...

p̄α
ξk−1

 , p̄α
n =

[ (n−1) times︷ ︸︸ ︷
0 0 · · · 0 Yα Jα

1 Jα
2 · · · Jα

ξk−1−1

]
,

in which 0 is a zero matrix of order M and the proof is complete.

Corollary 1. Setting η − 1 −→ η, the fractional integration operational matrix of CWs Pα
cw obtained from

Pα
cw =

1(
2ξk−1

)α


Yα Jα

1 Jα
2 Jα

3 · · · Jα
ξk−1−1

0 Yα Jα
1 Jα

2 · · · Jα
ξk−1−2

...
...

...
...

. . .
...

0 0 0 0 · · · Yα

 , (26)

where

Yα =


yα0

10 yα0
11 yα0

12 . . . yα0
1M−1

yα1
10 yα1

11 yα1
12 . . . yα1

1M−1
...

...
...

. . .
...

yαM−1
10 yαM−1

11 yαM−1
12 . . . yαM−1

1M−1

 , Jα
η =


jα0
η0 jα0

η1 jα0
η2 . . . jα0

ηM−1
jα1
η0 jα1

η1 jα1
η2 . . . jα1

ηM−1
...

...
...

. . .
...

jαM−1
η0 jαM−1

η jαM−1
η2 . . . jαM−1

ηM−1

 , (27)

yαm
1i = (−1)mamcmci

∫ π

0

m

∑
j=0

(−2)j(am + j− 1)!Γ(j + 1)
(m− j)!(2j)!Γ(j + α + 1)

(cos θ + 1)j+α cos(iθ) dθ, (28)

jαm
ηi = (−1)mamcmci

∫ π

0

m

∑
j=0

(−2)j(am + j− 1)!Γ(j + 1)
(m− j)!(2j)!Γ(j + α + 1)

{(cos θ + 2η + 1)j+α−

(−1)m−j(cos θ + 2η − 1)j+α} cos(iθ) dθ. (29)

Corollary 2. The integration operational matrix of CWs Pcw in (6) is a particular case of the fractional
integration operational matrix when α = 1, and the presented formulation can be used for this case.

Corollary 3. When we set ξ = 2, the fractional integration operational matrix of CWs with scaling Pα
cw can be

applied on the conventional Chebyshev wavelets.

Thus, the fractional integration operational matrix of CWs is obtained directly from Chebyshev
scaling functions as claimed. In (28) and (29), we have some definite integrals which can be calculated
by many available numerical methods. We will present some tests for the accuracy of the fractional
integration operational matrix in illustrative examples.
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4. Chebyshev Wavelet Methods for Fractional Delay Systems

We present CW methods to the optimal control and analysis of fractional order delay systems in
this section.

4.1. Optimal Control of Linear-Quadratic Fractional Time-Delay Systems

Consider a linear fractional time-delay system described by

Dαx(t) = A(t)x(t) + B(t)u(t) +
a

∑
µ=1

Eµ(t)x(t− hµ) +
b

∑
ν=1

Fν(t)u(t− hν) + G(t)x(1− t) + d(t), (30)

x(i)(0) = xi,

{
x(t) = θ(t) −hx ≤ t < 0
u(t) = ζ(t) −hu ≤ t ≤ 0,

where 0 < α ≤ 2, t ∈ [0, 1], x(t) and u(t) are qth state and rth control vectors, A(t), B(t), Eµ(t), Fν(t),
and G(t) are matrices of appropriate dimensions, d(t) as a qth vector represents disturbances, i = 0, 1
and x(i) denotes dix

dti , hµ and hν are delays, θ(t) and ζ(t) are, respectively, qth and rth specified initial
vector functions, hx = max{{hµ}} and hu = max{{hν}}. The fractional time-delay system is to be
controlled to minimize the quadratic performance index

J = 1
2 x>(1)Tx(1) + 1

2

∫ 1

0

{
x>(t)Q(t)x(t) + u>(t)R(t)u(t)

}
dt, (31)

where T and Q(t) are positive semidefinite matrices and R(t) is a positive definite matrix.
Depending on the value of α, we consider two cases as A and B to solve the problem.

A. 0 < α ≤ 1

We take hµ =
εµ

ωµ
and hν = εν

ων
, where εµ, ωµ, εν, ων ∈ N. Then, we set ξ = κ.LCM({ωµ} , {ων}),

where κ = 1, 2, . . . , ξ − 1. By applying the α-integral (the Riemann–Liouville fractional integral of
order α) to both sides of (30), we have

IαDαx(t) = Iα
{

A(t)x(t) + B(t)u(t) + ∑a
µ=1 Eµ(t)x(t− hµ) + ∑b

ν=1 Fν(t)u(t− hν) + G(t)x(1− t) + d(t)
}

. (32)

From (15), we have IαDαx(t) = x(t)− x(0). Using (4), xi(t) = Ψ>ξ (t)x
>
icw, where i = 1, 2, . . . , q

and x>icw is a ξk−1M × 1 vector of unknown parameters. From the property of Kronecker product,
for x(t) ∈ Rq we can write

x(t) = (Ψ>ξ (t)⊗ Iq)Xcw.

Similarly,
x0 = (Ψ>ξ (t)⊗ Iq)X0

cw,

so the left side of (32) becomes

IαDαx(t) = (Ψ>ξ (t)⊗ Iq)
{

Xcw − X0
cw

}
, (33)

where Xcw is a qξk−1M× 1 column vector of unknown parameters, X0
cw is a known qξk−1M× 1 column

vector and they are defined as

Xcw = [Xξ1
10 , Xξ2

10 , . . . , Xξq
10 , . . . , Xξ1

1M−1, Xξ2
1M−1, . . . , Xξq

1M−1, . . . , Xξ1
ξk−1 M−1

, Xξ2
ξk−1 M−1

, . . . , Xξq
ξk−1 M−1

]>,

X0
cw =

√
π√

2ξk−1
[X0

1, X0
2, . . . , X0

ξk−1 ]
>, X0

n = [x>0 ,

q(M−1)︷ ︸︸ ︷
0, 0, . . . , 0].
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We expand the control vector in terms of CWs as

u(t) = (Ψ>ξ (t)⊗ Ir)Ucw,

where Ucw is a rξk−1M× 1 column vector of unknown parameters and

Ucw = [Uξ1
10 , Uξ2

10 , . . . , Uξr
10, . . . , Uξ1

1M−1, Uξ2
1M−1, . . . , Uξr

1M−1, . . . , Uξ1
ξk−1 M−1

, Uξ2
ξk−1 M−1

, . . . , Uξr
ξk−1 M−1

]>.

The disturbance can be expanded as

d(t) = (Ψ>ξ (t)⊗ Iq)dcw,

where

dcw = [dξ1
10, dξ2

10, . . . , dξq
10, . . . , dξ1

1M−1, dξ2
1M−1, . . . , dξq

1M−1, . . . , dξ1
ξk−1 M−1

, dξ2
ξk−1 M−1

, . . . , dξq
ξk−1 M−1

]>.

Assume that d(t) = [d1(t), d2(t), . . . , dq(t)]>. The coefficients {dξv
nm}, where v = 1, 2, . . . , q, are obtained

from (5) as dξv
nm = cm√

2ξk−1

∫ π
0 dv

( cos θ+2n−1
2ξk−1

)
cos(mθ) dθ.

We expand the time-varying matrices of the state equation in terms of CWs as

A(t) = Acw(Ψξ(t)⊗ Iq), Eµ(t) = Eµcw(Ψξ(t)⊗ Iq), G(t) = Gcw(Ψξ(t)⊗ Iq),

B(t) = Bcw(Ψξ(t)⊗ Ir), Fν(t) = Fνcw(Ψξ(t)⊗ Ir).

Acw, Eµcw, Gcw, Bcw, and Fνcw are constant matrices which can be determined by using (5). For detailed
information, see [31]. In like manner, the initial functions can be expressed as

θ(t− hµ) = (Ψ>ξ (t)⊗ Iq)θµcw, ζ(t− hµ) = (Ψ>ξ (t)⊗ Ir)ζµcw.

θµcw, ζνcw for µ = 1, 2, . . . , a and ν = 1, 2, . . . , b are qξk−1M× 1 and rξk−1M× 1 vectors defined by

θµcw = [θ
µξ1
10 , θ

µξ2
10 , . . . , θ

µξq
10 , . . . , θ

µξ1
1M−1, θ

µξ2
1M−1, . . . , θ

µξq
1M−1, . . . , θ

µξ1
ndµ M−1, . . . , θ

µξq
ndµ M−1,

(ξk−1−ndµ )qM︷ ︸︸ ︷
0, 0, 0, . . . , 0 ]>,

ζνcw = [ζνξ1
10 , ζ

νξ2
10 , . . . , ζ

νξr
10 , . . . , ζ

νξ1
1M−1, ζ

νξ2
1M−1, . . . , ζ

νξr
1M−1, . . . , ζ

νξ1
ndν M−1, . . . , ζ

νξr
ndν M−1,

(ξk−1−ndν )rM︷ ︸︸ ︷
0, 0, 0, . . . , 0]>,

where ndµ
= hµξk−1 and ndν

= hνξk−1 . From the conditions of initial functions, we have

x(t− hµ) = θ(t− hµ) + (Ψ>ξ (t− hµ)⊗ Iq)Xcw = (Ψ>ξ (t)⊗ Iq){θµcw + (D>µcw ⊗ Iq)Xcw},

u(t− hν) = ζ(t− hν) + (Ψ>ξ (t− hν)⊗ Ir)Ucw = (Ψ>ξ (t)⊗ Ir){ζνcw + (D>νcw ⊗ Ir)Ucw}.

For a matrix Oi of order 1 × qMξk−1, we have Oi(Ψξ(t) ⊗ Iq)(Ψ>ξ (t) ⊗ Iq) = Ψ>ξ (t)Õi,

where i = 1, 2, . . . , q. We form a matrix as Ot := [ O>1 O>2 ··· O>q ]>, by considering the property
of the product operational matrix, we see that Ot(Ψξ(t) ⊗ Iq)(Ψ>ξ (t) ⊗ Iq) = (Ψ>ξ (t) ⊗ Iq)Õt.
Additionally, for a 1 × rMξk−1 matrix Oi, we get Oi(Ψξ(t) ⊗ Ir)(Ψ>ξ (t) ⊗ Ir) = Ψ>ξ (t)Õi.
Similarly, by forming Ot, we find Ot(Ψξ(t) ⊗ Ir)(Ψ>ξ (t) ⊗ Ir) = (Ψ>ξ (t) ⊗ Iq)Õt. From these facts
and the expressions given above, using (16) in the right-hand side of (32) and by (7)–(10) and (17) we
can write
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Iα
{

A(t)x(t) + B(t)u(t) +
a

∑
µ=1

Eµ(t)x(t− hµ) +
b

∑
ν=1

Fν(t)u(t− hν) + G(t)x(1− t) + d(t)
}

=Iα
{

Acw(Ψξ(t)⊗ Iq)(Ψ
>
ξ (t)⊗ Iq)Xcw + Bcw(Ψξ(t)⊗ Ir)(Ψ

>
ξ (t)⊗ Ir)Ucw

+
a

∑
µ=1

(Eµcw(Ψξ(t)⊗ Iq)(Ψ
>
ξ (t)⊗ Iq){θµcw + (D>µcw ⊗ Iq)Xcw})

+
b

∑
ν=1

(Fνcw(Ψξ(t)⊗ Ir)(Ψ
>
ξ (t)⊗ Ir){ζνcw + (D>νcw ⊗ Ir)Ucw})

+ Gcw(Ψξ(t)⊗ Iq)(Ψ
>
ξ (t)⊗ Iq)(Υ

>
cw ⊗ Iq)Xcw + (Ψ>ξ (t)⊗ Iq)dcw

}
=Iα{Ψ>ξ (t)⊗ Iq}

(
ÃcwXcw + B̃cwUcw +

a

∑
µ=1

(Ẽµcwθµcw + Ẽµcw(D>µcw ⊗ Iq)Xcw) +
b

∑
ν=1

(F̃νcwζνcw

+ F̃νcw(D>νcw ⊗ Ir)Ucw) + G̃cw(Υ
>
cw ⊗ Iq)Xcw + dcw

)
=(Ψ>ξ (t)⊗ Iq)(Pα

cw
> ⊗ Iq)

(
ÃcwXcw + B̃cwUcw +

a

∑
µ=1

(Ẽµcwθµcw + Ẽµcw(D>µcw ⊗ Iq)Xcw)

+
b

∑
ν=1

(F̃νcwζνcw + F̃νcw(D>νcw ⊗ Ir)Ucw) + G̃cw(Υ
>
cw ⊗ Iq)Xcw + dcw

)
, (34)

where we have denoted the product operational matrices of Acw, Bcw, Eµcw, Fνcw, Gcw by, in turn,
Ãcw, B̃cw, Ẽµcw, F̃νcw, G̃cw. Now, the following compatibility constraint is imposed at tι, where ι =

1, 2, . . . , ξk−1 − 1, and tι = ι/ξk−1,
x(t−ι ) = x(t+ι );

this constraint can be written
(Ψcc ⊗ Iq)Xcw = 0(ξk−1−1)q×1, (35)

where by ρι := [

ι−1︷ ︸︸ ︷
01×M · · · 01×M ϕ

ξ
n
>
(1/ξk−1) −ϕξ

n
>
(0)

ξk−1−ι−1︷ ︸︸ ︷
01×M · · · 01×M ], Ψcc =

 ρ1
ρ2
...

ρ
ξk−1−1

.

After substituting (33) and (34) in (32), and considering (35) we get[
(Pα

cw
> ⊗ Iq)Ãcw + ∑a

µ=1(P
α
cw
> ⊗ Iq)Ẽµcw(D>µcw ⊗ Iq) + (Pα

cw
> ⊗ Iq)G̃cw(Υ

>
cw ⊗ Iq)− Iqξk−1 M

Ψcc ⊗ Iq

(Pα
cw
> ⊗ Iq)B̃cw + ∑b

ν=1(P
α
cw
> ⊗ Iq)F̃νcw(D>νcw ⊗ Ir)

0

] [
Xcw

Ucw

]

=

[
−X0

cw − (Pα
cw
> ⊗ Iq)dcw −∑a

µ=1(P
α
cw
> ⊗ Iq)Ẽµcwθµcw −∑b

ν=1(P
α
cw
> ⊗ Iq)F̃νcwζνcw

0

]
.

(36)

Setting
Q(t) = Qcw(Ψξ(t)⊗ Iq), R(t) = Rcw(Ψξ(t)⊗ Ir)

in (31), and using (7) and (11) yields

J = 1
2

[
Xcw

Ucw

]> [
Ψξ(1)Ψ>ξ (1)⊗ T + (Γcw ⊗ Iq)Q̃cw 0

0 (Γcw ⊗ Ir)R̃cw

] [
Xcw

Ucw

]
, (37)

where we have denoted the product operational matrices of Qcw and Rcw by, in turn, Q̃cw and R̃cw.
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Finally, from (36), (37), and ΨξC :=
[

Ψcc
Ψ>ξ (0)

]
, the fractional time-delay optimal control problem is

min 1
2

[
Xcw

Ucw

]> [
Ξ1 Ξ2

Ξ3 Ξ4

] [
Xcw

Ucw

]
, (38)

subject to

[
Λ1 Λ2

Λ3 Λ4

] [
Xcw

Ucw

]
=

[
b1

b2

]
, (39)

where
Ξ1 = Ψξ(1)Ψ>ξ (1)⊗ T + (Γcw ⊗ Iq)Q̃cw,
Ξ2 = 0qξk−1 M×rξk−1 M,
Ξ3 = 0rξk−1 M×qξk−1 M,
Ξ4 = (Γcw ⊗ Ir)R̃cw,

 (40)

Λ1 = (Pα
cw
> ⊗ Iq)Ãcw + ∑a

µ=1(P
α
cw
> ⊗ Iq)Ẽµcw(D>µcw ⊗ Iq) + (Pα

cw
> ⊗ Iq)G̃cw(Υ

>
cw ⊗ Iq)− Iqξk−1 M,

Λ2 = (Pα
cw
> ⊗ Iq)B̃cw + ∑b

ν=1(P
α
cw
> ⊗ Iq)F̃νcw(D>νcw ⊗ Ir),

Λ3 = ΨξC ⊗ Iq,
Λ4 = 0qξk−1×rξk−1 M,

 (41)

b1 = −X0
cw − (Pα

cw
> ⊗ Iq)dcw −∑a

µ=1(P
α
cw
> ⊗ Iq)Ẽµcwθµcw −∑b

ν=1(P
α
cw
> ⊗ Iq)F̃νcwζνcw,

b2 =

[
0q(ξk−1−1)×1

x0

]
.

 (42)

So, fractional linear-quadratic delay optimal control problems are converted to QP problems
which as we shall see later (without doing any significant work) by constructing (40)–(42) and putting
into (38) and (39) we are able to solve such problems.

Next, we extend the CW method to the system in which the fractional order is greater than 1.

B. 1 < α ≤ 2

This causes a change in (33) or the left side of (32); using (15), in which n = 2, we find that

IαDαx(t) = x(t)− x(0)− (t⊗ Iq)ẋ(0)

= (Ψ>ξ (t)⊗ Iq)Xcw − (Ψ>ξ (t)⊗ Iq)X0
cw − (Ψ>ξ (t)⊗ Iq)(τcw ⊗ Iq)ẋ(0)

= (Ψ>ξ (t)⊗ Iq)
{

Xcw − X0
cw − (τcw ⊗ Iq)ẋ(0)

}
, (43)

where we have set
t = Ψ>ξ (t)τcw (44)

and ẋ(0) = x(1)(0). (43) has the effect of changing the matrix b1. Therefore, b1 in (42) is changed to

b1 = −X0
cw − (τcw ⊗ Iq)ẋ(0)− (Pα

cw
>⊗ Iq)dcw −∑a

µ=1(P
α
cw
>⊗ Iq)Ẽµcwθµcw −∑b

ν=1(P
α
cw
>⊗ Iq)F̃νcwζνcw. (45)

The other matrices are the same as before and just by changing b1 given in (45) we solve the problem.

4.2. Analysis of Linear Fractional Time-Delay Systems

Now, we present a method for the analysis of linear systems modeled by multifractional delay
differential equations. Indeed, the following discussion permits an extension of the method to
multifractional optimal control problems. Consider a general linear system modeled by

Dα1x(t) + Ω1Dα2x(t) + Ω2Dα3x(t− h) = A(t)x(t) + B(t)u(t) + C(t)x(t− h(t)) + ∑a
µ=1 Eµ(t)x(t− hµ), (46)
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where 1 < α1 ≤ 2, 0 < α2 ≤ 1, 0 < α3 ≤ 1, t ∈ [0, 1], x(t) is qth state vector, u(t) is rth input vector,
Ω1, Ω2, A(t), B(t), C(t), and Eµ(t) are matrices, h and {hµ}, µ = 1, 2, . . . , a are delays, and h(t) is
a piecewise constant delay. The initial condition and function are

x(i)(0) = xi, x(t) = θ(t) , t < 0.

The problem is to find the response of the given fractional time-delay system.
Assume that Ω1 and Ω2 are time-invariant matrices. Similar to Section 4.1, we expand x(t) , x0,

A(t), B(t), Eµ(t), θ(t− hµ), and u(t) in terms of CWs (Ucw in known). In addition, we express C(t)
and θ(t− h(t)) as C(t) = Ccw(Ψξ(t)⊗ Iq) and θ(t− h(t)) = (Ψ>ξ (t)⊗ Iq)θ

t
cw, where θt

cw was defined

in [28]. Moreover, we can write θ(t− h) = (Ψ>ξ (t)⊗ Iq)θcw and θ(−h) = (Ψ>ξ (t)⊗ Iq)θ
0
cw. For h and

h(t), we have two delay operational matrices as Dcw and Dt
cw. Using the Riemann–Liouville fractional

integral (order α1) on the left side of (46), substituting the given expressions and using (14) now yield

Iα1{Dα1x(t) + Ω1Dα2x(t) + Ω2Dα3x(t− h)}
= x(t)− x(0)− (t⊗ Iq)ẋ(0) + Iα1−α2 [Iα2{Ω1Dα2x(t)}] + Iα1−α3 [Iα3{Ω2Dα3x(t− h)}]
= (Ψ>ξ (t)⊗ Iq)[Xcw − X0

cw − (τcw ⊗ Iq)ẋ(0)] + Iα1−α2(Ψ>ξ (t)⊗Ω1)[Xcw − X0
cw]

+ Iα1−α3(Ψ>ξ (t)⊗Ω2)[θcw − θ0
cw + (D>cw ⊗ Iq)Xcw]

= (Ψ>ξ (t)⊗ Iq){Xcw − X0
cw − (τcw ⊗ Iq)ẋ(0) + (Pα1−α2

cw
> ⊗Ω1)Xcw − (Pα1−α2

cw
> ⊗Ω1)X0

cw

+ (Pα1−α3
cw

> ⊗Ω2)(D>cw ⊗ Iq)Xcw + (Pα1−α3
cw

> ⊗Ω2)θcw − (Pα1−α3
cw

> ⊗Ω2)θ
0
cw}, (47)

where τcw is defined in (44). Moreover, by the same procedure in the right side of (46), we find

Iα1{A(t)x(t) + B(t)u(t) + C(t)x(t− h(t)) +
a

∑
µ=1

Eµ(t)x(t− hµ)}

= (Ψ>ξ (t)⊗ Iq)(P
α1
cw
> ⊗ Iq)

(
ÃcwXcw + B̃cwUcw + C̃cwθ

t
cw + C̃cw(Dt

cw
> ⊗ Iq)Xcw

+
a

∑
µ=1

(Ẽµcwθµcw + Ẽµcw(D>µcw ⊗ Iq)Xcw)
)
. (48)

Then, by (47) and (48),

Xcw =
[
Iqξk−1 M + (Pα1−α2

cw
> ⊗Ω1) + (Pα1−α3

cw
> ⊗Ω2)(D>cw ⊗ Iq)− (Pα1

cw
> ⊗ Iq)Ãcw

− (Pα1
cw
> ⊗ Iq)C̃cw(Dt

cw
> ⊗ Iq)−

a

∑
µ=1

(Pα1
cw
> ⊗ Iq)Ẽµcw(D>µcw ⊗ Iq)

]−1

[
X0

cw + (τcw ⊗ Iq)ẋ(0) + (Pα1−α2
cw

> ⊗Ω1)X0
cw − (Pα1−α3

cw
> ⊗Ω2)θcw + (Pα1−α3

cw
> ⊗Ω2)θ

0
cw

+ ((Pα1
cw
> ⊗ Iq)B̃cwUcw + (Pα1

cw
> ⊗ Iq)C̃cwθ

t
cw +

a

∑
µ=1

(Pα1
cw
> ⊗ Iq)Ẽµcwθµcw

]
, (49)

where Xcw is the solution of the fractional-order delay differential equation in the form of CWs.
We can summarize these methods in two given algorithms like those in [28].

5. Illustrative Examples

In this section, we are going to use the new fractional integration operational matrix of Chebyshev
wavelets to some fractional systems. We shall give some tests for the accuracy of the new formulation.
It has already been mentioned in [33] that the proposed method (modeling a linear-quadratic optimal
control problem as a QP) has good future and high degree of flexibility. We have considered
different kinds of conditions and constraints in the previous works, and we can solve the fractional
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linear-quadratic optimal control problem in such situations. But to show the flexibility of the method,
we will consider different kinds of constraints.

5.1. Example 1

We are interested in finding the optimal control and state which, when applied to the fractional
time-delay system, are expressed by

Dαx(t) = −x(t) + x(t− 1
3 ) + u(t)− 0.5u(t− 2

3 ), 0 ≤ t ≤ 1{
θ(t) = 1, − 1

3 ≤ t < 0
ζ(t) = 0, − 2

3 ≤ t ≤ 0

minimize the cost function

J = 1
2

∫ 1

0

{
x2(t) + 1

2 u2(t)
}

dt, (50)

where x(0) = 1 and x(1)(0) = −0.1.
We select ξ = 3, setting k = 2 and M = 3 gives

Pcw = 1
6α

[ Yα Jα
1 Jα

2
0 Yα Jα

1
0 0 Yα

]
, Γcw = 2

π .blkdiag (Γ, Γ, Γ) , Dµcw =
[

D1
03×9

]
, Dνcw =

[
D2

06×9

]
,

D1 = [06×3 I6], D2 = [03×6 I3], X0
cw =

√
π
6
[
1, 0, 0, 1, 0, 0, 1, 0, 0

]>,θµcw =
[√

π
6 , 0, 0, 0, 0, 0, 0, 0, 0

]>.

For α = 1, 0.999, we found, in turn, J∗ = 0.37313 and J∗ = 0.373042 (∗ indicates optimal condition).
Choosing M = 7, of the optimal cost J∗, are shown in Table 1. This fractional optimal control problem
has been studied in some texts as [18–20]. By using the QP solver in MATLAB, we can easily solve
the problem for various values of α. By doing this, the comparison is made in Table 1 and one can
see the accuracy of the method which provides a similar result as that we have found by Chebyshev
wavelets [28] in the case α = 1. Additionally, we solve this problem for α > 1; as a test for the new
fractional integration operational matrix of CWs, we apply Lemma 1 in (41) and (42): Strategy 1, we use

PT
cwPα−1

cw
T; and Strategy 2, we use directly Pα

cw
T. The results are reported in Table 2. Comparing the

results of the test shows the accuracy of the new matrix.

Table 1. Comparison of J∗ for 0.5 ≤ α ≤ 1, Example 1.

α This Work; k = 2, M = 7 [28]; k = 2, M = 7 [34]; k = 2, M = 7 [18] [19] [20]

1 0.37311293528 0.373112935096 0.373112935279 0.01451 0.04553 0.37311264
0.999 0.37302124305 0.01450
0.99 0.37219761493 0.01436 0.3721964
0.95 0.36856850562 0.3685506
0.9 0.36409192174 0.01336 0.3640344
0.89 0.36320335165
0.8 0.35528976948 0.01314 0.3551193
0.7 0.34662823700 0.3463065
0.5 0.32938391796

Table 2. J∗ for α > 1, Example 1.

α J∗, Strategy 1 J∗, Strategy 2

1.001 0.34564307806 0.34564144998
1.01 0.34638051376 0.34636577766
1.05 0.34965701531 0.34961784656
1.1 0.35375919815 0.35376402419
1.11 0.35458119323 0.35460259170
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The optimal cost in (50) indicates the total system energy [35] by equating the state weighting
matrix to zero for α = 1, 0.9, we have

∫ 1
0

1
4 u∗

2
(t)dt = 0.08987169038, 0.09433894184,

∫ hν

0
1
4 u∗

2
(t)dt =

0.08533015864, 0.08831955446, respectively. Now, we consider constraints on control energy as

Case 1:
∫ 1

0
1
4 u2(t)dt ≤ 0.05.

Case 2:
∫ hν

0
1
4 u2(t)dt ≤ 0.05, where hν = 2

3 .

Proceeding as we did for approximating the cost function in (31), we model these problems
by quadratically-constrained quadratic programs, then we can use the Toolbox introduced in [36].
The optimal controls and states obtained by this Toolbox for some α are shown in Figure 1. The values
of the optimal cost J∗ are given in Table 3. In addition, to get a feel for the accuracy of the method,
the values of g1 :=

∫ 1
0

1
4 u∗

2
(t)dt and g2 :=

∫ hν

0
1
4 u∗

2
(t)dt are given in this table. Since the optimal

control of the unconstrained system does not satisfy both the constraints, we take e1 = 0.05− g1 and
e2 = 0.05− g2 as criteria for the accuracy which must be small. We find that e1, e2 ≤ 4.82E− 08.
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Figure 1. Optimal states and controls for Cases 1 and 2, Example 1.

Table 3. Numerical results for Cases 1 and 2, Example 1.

Case 1 Case 2

α J∗ g1 α J∗ g2 g1

1 0.38129264275 0.0499999578 1 0.37958583678 0.0499999519 0.0553443427
0.999 0.38121931108 0.0499999578 0.999 0.37950598319 0.0499999519 0.0553602137
0.99 0.38056110670 0.0499999583 0.99 0.37878828547 0.0499999523 0.0555045828
0.9 0.37412772028 0.0499999624 0.9 0.37167971572 0.0499999560 0.0570967526
0.8 0.36721704588 0.0499999659 0.8 0.36383702347 0.0499999589 0.0591798411
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5.2. Example 2

The problem is minimizing

J =
∫ 2

0

{
x2(t) + u2(t)

}
dt,

subject to
Dαx(t) = tx(t) + x(t− 1) + u(t) + a(0.2− 0.15 cos t), 0 ≤ t ≤ 2

θ(t) = 1, −1 ≤ t < 0,

where x(0) = 1 and ẋ(0) = 0.05. Additionally, a = 0, 1 and we may have the disturbance in the system.
Setting t/2 −→ t, the state equation is rescaled as

Dαx(t) = 2α{2tx(t) + x(t− 1
2 ) + u(t) + a(0.2− 0.15 cos 2t)}, 0 ≤ t ≤ 1.

We apply the method on this problem for different values of α. We begin with the case in which
α ≤ 1 and a = 0 (with no disturbance) to compare the results of the method. Additionally, for α ≤ 1
and α > 1, we solve the problem with a = 1, where the disturbance affects the plant dynamics.
This situation may arise when control systems are subjected to external disturbances. We also solve
the problem by the methods presented in [28] and [34] (integer values of α). Our results are given
in Table 4. For some values of α ≥ 1, the results of applying the method to the system are shown
in Figure 2. We can see the results of applying the new method presented for fractional optimization
agree very well with those obtained by the previous methods (for integer order). This is one of the
efficient tests to verify the accuracy of the proposed fractional integration operational matrix of CWs.

Table 4. Comparison of J∗ for Example 2.

a α This Work, k = 2, M = 7 [28] k = 2, M = 7 [34] k = 2, M = 7 [20] [37] [38]

0 1 4.79679791916 4.79679791913 4.79679870920 4.79679868 4.7968 4.796817
0 0.999 4.79697117915
0 0.99 4.79853220259 4.7766443
0 0.95 4.80544625813 4.6907801
0 0.9 4.81377758646 4.5728139
0 0.8 4.82825064845 4.3096610
0 0.7 4.83888850210 4.0256671
0 0.5 4.84814116845

1 0.9 5.27371052428
1 0.99 5.24118253395
1 0.999 5.23791614199
1 1 5.23755370619 5.23755370619 5.23755466744
1 1.001 5.49646031081
1 1.01 5.49452438269
1 1.1 5.46836520817
1 1.2 5.42892272878
1 1.3 5.38170076246
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Figure 2. Optimal states and controls, Example 2 with the disturbance.



Fractal Fract. 2019, 3, 46 17 of 23

Remark 1. By modifying the cost function and the state equation of the system given in Example 2 in Section 5.2
as J = 1/2

∫ 2
0 {x

2(t) + u2(t)}dt and Dαx(t) = x(t− 1) + u(t), we have a problem which has been studied
in [17–20]. We solve this problem by making small changes in the model parameters of Example 2 and this is
one of the advantages of the method. For all α, we have exactly x∗(0) = 1, which is the initial condition of the
system and should be satisfied. This indicates that x∗(0) is satisfied accurately. A comparison is made in Table 5.
The optimal states and controls for some α are shown in Figure 3. The new state equation must be rescaled as
Dαx(t) = 2αx(t− 1/2) + 2αu(t), 0 ≤ t ≤ 1.

Table 5. Comparison of J∗, Remark 1.

α This Work; k = 2, M = 7 [20] [18] [19] [17]

1 1.647874 1.64787419 0.4727464 0.00002674 0.3048
0.99 1.648911 1.6459912 0.4778890
0.9 1.658451 1.6248785 0.5021900
0.8 1.669404 1.5926486 0.4985242
0.7 1.680951 1.5519859
0.5 1.708245 0.00186172
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Figure 3. Optimal states and controls, Remark 1.

5.3. Example 3

Consider the system [39]{
Dαx1(t) = x2(t)
Dαx2(t) = −10x1(t)− 5x2(t)− 2x1(t− 1)− x2(t− 1) + u(t),

0 ≤ t ≤ 5

θ(t) = [1, 1]> , −1 ≤ t < 0

and the performance index

J = 1
2

∫ 5

0

{
10x2

1(t) + x2
2(t) + u2(t)

}
dt.

The problem is to find a control u(t) which will steer this system from the initial condition x(0) = [1, 1]>

to the final state conditions x(5) = [−1, 2]>.
In [39], a heavy terminal cost as Jt = 106[(x1(5) + 1)2 + (x2(5)− 2)2] is added to the performance

index to indicate the terminal constraints. In our method however, by adding the equality constraint
to the model of the system we are able to solve such problems, the results are summarized in Table 6.
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Table 6. Comparison of J∗ for Example 3.

α This Work, k = 2, M = 7 [39]

1 74.1065868949 74.1173
0.99 75.4717293676
0.98 76.8343875120
0.97 78.1913320078
0.96 79.5404056247
0.95 80.8802694101

5.4. Example 4

Minimize

J = 1
2

∫ 1

0

{
x>(t)

[
1 t
t t2

]
x(t) + (t2 + 1)u2(t)

}
dt,

subject to

Dα1x(t)− a

[
−2.7 3.1

0 0.08

]
Dα2x(t) =

[
t2 + 1 1

0 2

]
x(t− 1

2 ) +

[
1

t + 1

]
u(t) +

[
t + 1
t2 + 1

]
u(t− 1

4 ),

{
θ(t) = [1, 1]> , − 1

2 ≤ t ≤ 0
ζ(t) = 1, − 1

4 ≤ t ≤ 0,

where α1 = 1, α2 < 1, and a = 0, 1.
From the initial state function, we have x(0) = θ(0). We solve the problem for different choices

of α2. The values of J∗ are given in Table 7. Comparing J∗ for the case a = 0 with that obtained by
our previous research, we see that the accuracy is impressive. In the first choice, where a = 1 and
α2 = 0.999, we impose another type of constraint classified as interior point constraints. The interior
point constraint is

1.01x1(ti) = 1.5x2(ti) + 0.035, where ti = t f − hν.

By solving this problem we get J∗ = 1.51942766043, Figure 4 shows the optimal states and control
in which the value of x∗(ti) to evaluate the accuracy of the method is given; the interior point constraint
is satisfied exactly.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

α
1
 = 1 & α

2
 = 0.999

t

O
pt

im
al

 S
ta

te
s

 

 

x
1
* (t)

x
2
* (t)

x*(t
i
) = [−0.11345549722, −0.09972670146]T

0 0.2 0.4 0.6 0.8 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

α
1
 = 1 & α

2
 = 0.999

t

O
pt

im
al

 C
on

tr
ol

 

 

u*(t)

Figure 4. x∗(t) and u∗(t) for Case 2 with the interior point constraint, Example 4.
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Table 7. J∗ for Example 4.

a α1 α2 This Work [31]

0 1 1.56224137355 1.56224137354
1 1 0.999 1.41013747158
1 1 0.99 1.41106062244
1 1 0.95 1.41378641071
1 1 0.91 1.41668866306
1 1 0.9 1.41740062973
1 1 0.8 1.42442691113

5.5. Example 5

Another test is applying the fractional operational matrix directly on the problem possesses
an exact solution. We present a simple example to compare the values of the approximated solution by
the new fractional integration operational matrix with those obtained by the previous formulation and
with the true values of the solution. From Corollary 3, we do this by setting k = 2 and selecting the same
degree M = 3 of CWs and, except this operational matrix, all other elements of (49) are the same. We
use two operational matrices, as the one is presented in this work and other one was proposed in [30].
Assume that D0.5x(t) = t0.9, where x(0) = 1 and the exact solution is x(t) = (Γ(1.9)/Γ(2.4))t1.4 + 1.
Here, we apply the fractional operational matrices directly on this problem to integrate t0.9 (expanded
in its CW series as Ucw) in the Riemann–Liouville sense. The results of this comparison are given
numerically and graphically in Table 8 and Figure 5. We see our fractional integration operational
matrix provides more accurate result than the previous presentation. Some statements concerning
convergence rate of CW method are presented in [28]. By using the procedure like that mentioned in
this reference, we find the convergence is superlinear. From our formulation given in (26)–(29), we get

P0.5
cw =


0.50794909 0.2394495 −0.047889899 0.4622839 −0.12303356 0.04291499
−0.079816499 0.20317963 0.14512831 0.092846798 −0.071331294 0.038369003
−0.20113758 −0.17737905 0.17307895 −0.17585329 0.011876661 0.011549406

0 0 0 0.50794909 0.2394495 −0.047889899
0 0 0 −0.079816499 0.20317963 0.14512831
0 0 0 −0.20113758 −0.17737905 0.17307895

 .

Table 8. Comparison of errors for Example 5.

t This Work; ξ = 2, k = 2, M = 3 [30] k = 2, M = 3

0.1 0.00238 0.00230
0.3 0.00194 0.00342
0.5− 0.00231 0.00795
0.5+ 0.00027 0.00182
0.7 0.00015 0.00053
0.9 0.00024 0.00092
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Figure 5. Graphs of solution and error in Example 5.
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5.6. Example 6

This problem has been studied in [27]. We want to analyze the fractional delayed damped Mathieu
equation as

ẍ(t) + (a + b cos(ωt))x(t) + cDα1 x(t) = dDα2 x(t− τ),

where a = 50, b = 5, ω = 2, c = 1, d = 0.5, τ = 1, θ(t) = sin t, τ ≤ t ≤ 0, t f = 10, and ẋ(0) = 1.
We solve this problem by two techniques:

(1) We use the proposed method directly on this system;
(2) By the technique used in [27], we first select the first derivative of x(t) as a new state which is

x2(t) , ẋ(t), and set x1(t) = x(t), then we solve the new problem as

D1x(t) =

[
0 1

−50− 5 cos 2t 0

]
x(t) +

[
0 0
−1 0

]
Dα1x(t) +

[
0 0

0.5 0

]
Dα2x(t− 1),

where θ(t) = [sin t, cos t]> is the corresponding initial function. In addition, we consider
two cases.

Case 1: α1 = 0 and α2 = 0.89.
Case 2: α1 = 0.95 and α2 = 0.85.

The results of these techniques are shown in Figure 6. There is a good agreement between the
two techniques. Using our method, such problems can be solved directly. The method can easily be
extended to the case 0 < α1 ≤ 1, while this may be difficult in some methods like that in [40].
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Figure 6. Solutions of Example 6.

5.7. Example 7

Finally, we apply the fractional operational matrix on a nonlinear time-delay system, see [41].
Consider the nonlinear fractional time-lag system

Dαx(t) = x(t− 1)u(t− 2), 0 ≤ t ≤ t f{
θ(t) = 1, −1 ≤ t ≤ 0
ζ(t) = 0, −2 ≤ t ≤ 0

with the performance index

J =
∫ t f

0

{
x2(t) + u2(t)

}
dt,

where we have
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Case 1: t f = 3 and the system is unconstrained.
Case 2: t f = 6 and the path constraint is x(t) + u(t) ≥ 0.3.
Case 3: t f = 6 and the path constraint is tx(t) + u(t) ≥ 0.3.

We use an approximation scheme in which a nonlinear delay problem is replaced with a sequence
of linear delay problems, for an example see [42]. It should be noted that there are some remarkable
schemes, like that proposed in [43], that can be implemented by the fmincon function provided by
the optimization toolbox in MATLAB. The results of the scheme by using quadprog are reported in
Table 9. By comparing J∗, we see that the method is accurate in this nonlinear problem. For Case 3,
the optimal states and controls for some values of α are shown in Figure 7.

Table 9. Comparison of J∗ for Example 7.

Case 1 Case 2 Case 3

α This Work [41] [44] This Work [41] This Work

1 2.761594156 2.761599 2.761837 3.108192976 3.108259352 3.764357269
0.99 2.758815336 3.111200334 3.766855849
0.9 2.733594641 3.154392881 3.801712657
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Figure 7. Optimal states and controls for Example 7, Case 3.

6. Conclusions

Fractional integration operational matrix of Chebyshev wavelets based on Riemann–Liouville
sense has been obtained. With the use of this matrix, a simple method for optimal control of fractional
linear-quadratic time delay systems and also a framework for the analysis of multifractional time-delay
systems have been presented. We have seen that the new formulation is accurate and can be applied
on the cases we have α = 1. The proposed method can be applied to multifractional optimal control
problems and also to more complicated situations in which systems are subject to some constraints.
In future work, we can use the presented concepts to the optimal control of nonlinear fractional systems.
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