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Abstract: This paper proposes novel analytical solutions of the mass-spring-damper systems described
by certain generalized fractional derivatives. The Liouville–Caputo left generalized fractional
derivative and the left generalized fractional derivative were used. The behaviors of the analytical
solutions of the mass-spring-damper systems described by the left generalized fractional derivative
and the Liouville–Caputo left generalized fractional derivative were represented graphically and
the effect of the orders of the fractional derivatives analyzed. We finish by analyzing the global
asymptotic stability and the converging-input-converging-state of the unforced mass-damper system,
the unforced spring-damper, the spring-damper system, and the mass-damper system.
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1. Introduction

Currently, many models in physics [1,2], mechanics [2,3], science and engineering [4],
bio-mathematics [5], biology [5], and finance and economics [6,7] can be modeled using fractional
derivatives. Fractional calculus has many applications in real-life problems. The recent investigations of
the applications of fractional calculus were published in different areas. In [8], the authors modeled the
electrical circuits using the fractional derivative operator. In [9], Santos modeled the nonlinear diffusion
equations with statistical processes using non-integer derivatives. In finance and economics, Yavuz [7]
used the fractional derivative to modeled the Black–Scholes equations. In physics and mathematical
methods for physics, Hristov proposed new diffusion equations using the Atangana–Baleanu fractional
derivative in [10,11]. Sene proposed the analytical solution of the Stokes first equation [12], fractional
diffusion equations [9,13], and Cateneao–Hristov equations [14]. For more recent applications of
fractional calculus, see [15,16].

Recently, the modeling of the mass-spring-damper equation using fractional derivatives has
interested some authors. In [17], the authors modeled the mass-spring-damper equation using
the Liouville–Caputo fractional derivative and the Caputo-Fabrizio fractional derivative. The
analytical solution of the fractional mass-spring-damper equation has been proposed and the classical
mass-spring-damper equation and the fractional mass-spring damper equation compared. In [18], Ray
et al. proposed a new method for getting the analytical solution of the mass-spring-damper equation
described by the Riemann–Liouville fractional derivative. In [19], Gómez-Aguilar introduced the
mass-spring and damper-spring models in the context of the Liouville–Caputo fractional derivative.
He proposed the analytical solutions and the numerical simulations. In [1], Delgado et al. proposed
the mass-spring-damper system involving variable order fractional derivatives. The authors in [1]
obtained analytical solutions for this system involving variable-order derivatives of the Atangana–Koca
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type. In [20], the authors considered the fractional mass-spring damper equation and proposed an
experimental evaluation of the viscous damping coefficient in the fractional underdamped oscillator.
In [4], the authors obtained analytical solutions for the mass-spring damper system involving the
Liouville–Caputo fractional derivative and the Laplace transform.

In this paper, we study the mass-spring-damper system with certain fractional generalized
derivatives. We consider the Liouville–Caputo generalized fractional derivative and the left generalized
fractional derivative. The Laplace transform of the previous operators is used to obtain the analytical
solutions of the mass-spring-damper equations in three cases: in the absence of mass, in the absence of a
spring, and the mass-spring-damper equation. Furthermore, we will investigate two properties of the
introduced models, and we will prove that the fractional mass damper equation described by certain
generalized fractional derivatives satisfies the converging-input-converging-state. Furthermore, in the
absence of the exogenous input, the trivial solution of the mass damper equation is Mittag–Leffler stable.

The paper is structured as follows: In Section 2, we propose the background on the generalized
fractional derivatives. In Section 3, we obtain the analytical solution of the mass-damper
equation, the analytical solution of the spring-damper equation, and the analytical solution of the
mass-spring-damper equation described by the Liouville–Caputo left generalized fractional derivative.
We analyze using the stability notion the behavior of the obtained analytical solutions. In the same
section, we obtain analytical solutions for the above cases considering the left generalized fractional
derivative. Finally, in Section 4, we finish by giving the concluding remarks.

2. Generalized Fractional Derivative Operators

The generalized fractional derivatives and integrals are the generalized form of the
Liouville–Caputo fractional derivative, the Riemann–Liouville fractional derivative, and the Riemann
fractional integral. The definition and lemma recalled in this section is the recent advancement in
the generalization of the fractional derivative and integral and can be found in [21,22]. For more
investigation related to the generalized fractional derivatives, see [21–23].

Definition 1. The generalized integral of order α with ρ > 0 of a continuous function g : [a,+∞[−→ R is
defined by the following form:

(Iα,ρg) (t) =
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
g(s)

ds
s1−ρ

, (1)

where Γ(·) denotes the Gamma function, for, i.e., t > a, and 0 < α < 1.

Definition 2. The left generalized fractional derivative of order α with ρ > 0 of a continuous function
g : [a,+∞[−→ R is defined by the following form:

(Dα,ρg) (t) =
(

I1−α,ρg
)
(t) =

1
Γ(1− α)

(
t1−ρ d

dt

) ∫ t

a

(
tρ − sρ

ρ

)−α

g(s)
ds

s1−ρ
, (2)

where Γ(·) denotes the Gamma function, for, i.e., t > a, and 0 < α < 1.

Definition 3. The Liouville–Caputo generalized fractional derivative of order α with ρ > 0 of a continuous
function g : [a,+∞[−→ R is defined by the following expression:

(
Dα,ρ

c g
)
(t) =

1
Γ(1− α)

∫ t

a

(
tρ − sρ

ρ

)−α

γg(s)
ds

s1−ρ
, (3)

where Γ(·) denotes the Gamma function, for, i.e., t > a, γ = t1−ρ d
dt and 0 < α < 1.
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Definition 4. The ρ-Laplace transform of the Liouville–Caputo generalized fractional derivative of a continuous
function g : [a,+∞[−→ R is defined by the following expression:

Lρ

{(
Dα,ρ

c g
)
(t)
}
= sαLρ {g(t)} − sα−1g(a), (4)

where the ρ-Laplace transform of a given function g : [a,+∞[−→ R is represented by:

Lρ {g(t)} (s) =
∫ ∞

a
e−s tρ

ρ g(t)
dt

t1−ρ
. (5)

Definition 5. The ρ-Laplace transform of the left generalized fractional derivative of a function g : [a,+∞[−→
R is defined by the following expression:

Lρ {(Dα,ρg) (t)} = sαLρ {g(t)} −
(

I1−α,ρg
)
(a). (6)

Definition 6. The Mittag–Leffler function with two parameters is defined in the following form:

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk + β)
, (7)

where α > 0, β ∈ R and z ∈ C. The classical exponential function is recovered when the orders satisfy
α = β = 1.

3. Fractional Mass-Spring-Damper Systems

We obtain the analytical solutions for the fractional mass-spring-damper equation described by the
generalized fractional derivatives. We consider three cases: the fractional mass-spring damper equation
represented by the generalized fractional operators in absence of mass, the fractional mass-spring
damper equation described by the generalized fractional operators in the absence of a spring, and
finally, the fractional mass-spring damper equation represented by the generalized fractional operators.
We study the converging-input-conversing-state and the Mittag-Leffler stability of the proposed
fractional differential equations.

3.1. Caputo Generalized Fractional Derivative

We consider the fractional mass-spring-damper equation described by the Liouville–Caputo left
generalized fractional derivative [19]. The fractional differential equation is defined by:

m
σ2(1−α),ρ

D2α,ρ
c x(t) +

β

σ1−α
Dα,ρ

c x(t) + kx(t) = u(t), (8)

where the parameter m designs the mass, the parameter β represents the damping coefficient, k
represents the spring coefficient, σ represents fractional components, and u represents the exogenous
input of the fractional differential equation. The exogenous input considered in this section satisfies two
properties: u should be convergent and null. We will analyze the behavior of the analytical solution for
the fractional mass-spring-damper system when the exogenous input satisfies these above properties.

3.1.1. Absence of Mass

We consider the following spring-damper equation described by the Liouville–Caputo left
generalized fractional derivative:

β

σ1−α
Dα,ρ

c x(t) + kx(t) = u(t). (9)
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In the following theorem, we describe the procedure to obtain the analytical solution of the
fractional spring-damper equation.

Theorem 1. Under initial boundary condition x(a) = η and considering the source term as v, the fractional
spring-damper equation described by the Liouville–Caputo left generalized fractional derivative (9) is described
by the following expression:

x(t) = ηEα

(
λ

(
tρ − aρ

ρ

)α)
+
∫ t

a

(
tρ − sρ

ρ

)α−1
Eα,α

(
λ

(
tρ − sρ

ρ

)α)
u(s)

ds
s1−ρ

. (10)

where λ = − kσ1−α

β and the exogenous input is given by u(t) = σ1−αv(t)
β .

Proof. Let λ = − kσ1−α

β and the exogenous input u(t) = σ1−αv(t)
β . This follows the following fractional

differential equation:
Dα,ρ

c = λx(t) + u(t). (11)

We notice that the fractional differential Equation (11) is a linear fractional differential equation
described by the Liouville–Caputo generalized fractional derivative. The solution is obtained by
applying the ρ-Laplace transform. x̄ represents the usual Laplace transform of the function x, and ū
represents the usual Laplace transform of the input function u. This yields:

sα x̄(s)− sαη = λx̄(s) + ū(s),

sα x̄(s)− λx̄(s) = sαη + ū(s),

x̄(s) =
sα−1η

sα − λ
+

ū(s)
sα − λ

. (12)

Inverting Equation (12), we obtain the analytical solution of the fractional differential equation
expressed by Equation (9) in the following form:

x(t) = ηEα

(
λ

(
tρ − aρ

ρ

)α)
+
∫ t

a

(
tρ − sρ

ρ

)α−1
Eα,α

(
λ

(
tρ − sρ

ρ

)α)
u(s)

ds
s1−ρ

. (13)

Let us show some special cases of the fractional spring-damper-equation. Let the exogenous input
converge to a constant source term u0. Using Theorem 1, the solution of the fractional spring-damper
equation is given by:

x(t) =
[

η +
u0β

kσ1−α

]
Eα

(
− kσ1−α

β

(
tρ − aρ

ρ

)α)
− u0β

kσ1−α
. (14)

We observe that when exogenous input u converges to u0 and t converges to infinity under the
assumption that λ ≤ 0, the solution of the fractional spring-damper converges to u0

λ = u0β

kσ1−α , as
well. That is, the fractional spring-damper system described by the Liouville–Caputo left generalized
fractional derivative satisfies the property “converging-input-converging-state” [24]. The behaviors of
the analytical solution of the fractional spring-damper equation for different values of the orders α,
a = 0, η = 1, and ρ = 1 are depicted in Figure 1.
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Figure 1. Numerical simulation for Equation (14) considering different values of α, arbitrarily chosen.

We can observe as well that with the orders α = 1, a = 0, and ρ = 1, we recover the analytical
solution of the classical spring-damper system represented by the following expression:

x(t) =
[

η +
u0β

k

]
exp

(
− k

β
t
)
− u0β

k
. (15)

The second case considers the unforced fractional spring-damper system defined by the following
equation:

β

σ1−α
Dα,ρ

c x(t) + kx(t) = 0. (16)

The solution of Equation (16) is given by:

x(t) = ηEα

(
− kσ1−α

β

(
tρ − aρ

ρ

)α)
. (17)

In other words, the trivial solution of the unforced fractional spring-damper defined by
Equation (16) is asymptotically stable [25]. The behaviors of the analytical solution of the unforced
fractional spring-damper equation for different values of the orders α, a = 0, η = 1, and ρ = 1 are
depicted in Figure 2.

Figure 2. Numerical simulation for Equation (17) considering different values of α, arbitrarily chosen.

The third case consider an exogenous input sinusoidal. In other words, we consider u(t) =

u0 cos (wt); thus, the fractional spring-damper equation is represented by:

β

σ1−α
Dα,ρ

c x(t) + kx(t) = u0 cos (wt) . (18)
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Under Theorem 1, the analytical solution of the fractional spring-damper equation is described by:

x(t) = ηEα

(
λ

(
tρ − aρ

ρ

)α)
+ u0

∫ t

a

(
tρ − sρ

ρ

)α−1
Eα,α

(
λ

(
tρ − sρ

ρ

)α)
cos (ws)

ds
s1−ρ

. (19)

The behaviors of the analytical solution of the fractional spring-damper Equation (19) under the
sinusoidal source term, for different values of α, a = 0, η = 1, and ρ = 1 are depicted in Figure 3.

Figure 3. Numerical simulation for Equation (19) considering different values of α, arbitrarily chosen.

In the case α = 1, a = 0, and ρ = 1, we recover the analytical solution of the classical
spring-damper system represented by the following expression:

x(t) = η exp
(
− k

β
t
)
+ u0

∫ t

0
exp

(
− k

β
(t− s)

)
cos (ws) ds. (20)

3.1.2. Absence of the Spring Coefficient

We obtain the analytical solution of the fractional mass-damper equation (β = 0) described by
the Liouville–Caputo left generalized fractional derivative. The following equation characterizes the
fractional differential equation under consideration:

m
σ2(1−α),ρ

D2α,ρ
c x(t) + kx(t) = u(t). (21)

Let λ = − kσ2(1−α),ρ

m , u(t) = v(t)σ2(1−α),ρ

m , and the initial boundary condition defined by x(0) = η.

Theorem 2. The analytical solution of the fractional mass-damper equation described by the Liouville–Caputo
left generalized fractional derivative equation (21) is represented by the following expression:

x(t) = ηE2α

(
λ

(
tρ − aρ

ρ

)2α
)
+
∫ t

a

(
tρ − sρ

ρ

)2α−1
E2α,2α

(
λ

(
tρ − sρ

ρ

)2α
)

u(s)
ds

s1−ρ
. (22)

Proof. Let λ = − kσ2(1−α),ρ

m ; the initial boundary condition is x(a) = η, and the exogenous input

u(t) = σ2(1−α),ρv(t)
m . We have the following fractional differential equation:

D2α,ρ
c = λx(t) + u(t). (23)

The solution is obtained after the application of the ρ-Laplace transform. Let x̄ represent the usual
Laplace transform of the function x and ū represent the usual Laplace transform of the exogenous
input u. We have:
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s2α x̄(s)− s2αη = λx̄(s) + ū(s),

s2α x̄(s)− λx̄(s) = s2αη + ū(s),

x̄(s) =
s2α−1η

s2α − λ
+

ū(s)
s2α − λ

. (24)

We apply the inverse of the ρ-Laplace transform to both sides of Equation (24), and we obtain
the analytical solution of the fractional differential equation expressed by Equation (23) in the
following form:

x(t) = ηE2α

(
λ

(
tρ − aρ

ρ

)2α
)
+
∫ t

a

(
tρ − sρ

ρ

)2α−1
E2α,2α

(
λ

(
tρ − sρ

ρ

)2α
)

u(s)
ds

s1−ρ
. (25)

Let us show some special cases of the fractional mass-damper equation. Let the exogenous input
converge to a constant source term u0. Using Theorem 2, the solution of the fractional mass-damper
equation described by the Liouville–Caputo left generalized fractional derivative is given by:

x(t) =
[

η − u0m
kσ2(1−α),ρ

]
E2α

(
− kσ2(1−α),ρ

m

(
tρ − aρ

ρ

)2α
)
+

u0m
kσ2(1−α),ρ

. (26)

Let the exogenous input u converge to u0, as t converges to infinity. Under the assumption λ ≤ 0,
the solution of the fractional mass damper described by the Liouville–Caputo left generalized fractional
derivative converges to u0

λ = u0β

kσ1−α , as well. That is, the fractional mass-damper system satisfies the
property converging-input-converging-state [24].

The behaviors of the analytical solution of the fractional mass-damper equation for different
values of the orders α, a = 0, η = 1, and ρ = 1 are depicted in Figure 4.

Figure 4. Numerical simulation for Equation (26) considering different values of α, arbitrarily chosen.

As in the previous section, we can observe that when the orders α = 1, a = 0 and ρ = 1, we recover
the analytical solution of the classical mass-damper system represented in the following expression:

x(t) =
[
η − u0m

k

]
cos

(
k
β

t
)
− u0m

k
. (27)

Let the unforced fractional mass-damper equation be represented by the following equation:

m
σ2(1−α),ρ

D2α,ρ
c x(t) + kx(t) = 0. (28)



Fractal Fract. 2019, 3, 39 8 of 15

Considering Theorem 2, we obtain the following solution:

x(t) =
[

η − u0m
kσ2(1−α),ρ

]
E2α

(
− kσ2(1−α),ρ

m

(
tρ − aρ

ρ

)2α
)

. (29)

The trivial solution of the unforced fractional mass-damper defined by Equation (28) is
asymptotically stable. The behaviors of the analytical solution of the unforced fractional mass-damper
equation for different values of α, a = 0, η = 1, and ρ = 1 are depicted in Figure 5.

Figure 5. Numerical simulation for Equation (29) considering different values of α, arbitrarily chosen.

Considering the exogenous input u(t) = u0 cos (wt), the fractional mass damper equation is
represented by:

m
σ2(1−α),ρ

D2α,ρ
c x(t) + kx(t) = u0 cos (wt) . (30)

Using Theorem 2, the analytical solution is expressed in the following form:

x(t) = ηE2α

(
λ

(
tρ − aρ

ρ

)2α
)
+ u0

∫ t

a

(
tρ − sρ

ρ

)2α−1
E2α,2α

(
λ

(
tρ − sρ

ρ

)2α
)

cos (ws)
ds

s1−ρ
. (31)

The behaviors of the analytical solution of the fractional mass-damper equation (31) for different
values of α, a = 0, η = 1, and ρ = 1 are depicted in Figure 6.

Figure 6. Numerical simulation for Equation (31) considering different values of α, arbitrarily chosen.

3.1.3. In the Presence of Mass and Spring Coefficients

We obtain the analytical solution of the fractional mass-spring-damper equation described by
the Liouville–Caputo left generalized fractional derivative. The fractional differential equation under
consideration is described by:
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m
σ2(1−α),ρ

D2α,ρ
c x(t) +

β

σ1−α
Dα,ρ

c x(t) + kx(t) = u(t). (32)

We consider κ = m
σ2(1−α),ρ , b = β

σ1−α , and c = k, and the exogenous input is null u = 0. Equation (32)
can be rewritten in the following form:

κD2α,ρ
c x(t) + bDα,ρ

c x(t) + cx(t) = 0. (33)

Applying the ρ-Laplace transform to both sides of Equation (33), it follows that:

κs2α x̄(s)− κs2α−1η + bsα x̄(s)− bsα−1η + cx̄(s) = 0,

κs2α−1η + bsα−1η = x̄(s)
(

κs2α + bsα + c
)

,

κs2α−1η

κs2α + bsα + c
+

bsα−1η

κs2α + bsα + c
= x̄(s). (34)

We obtain the analytical solution of the fractional mass-spring-damper equation without input by
applying the inverse of the ρ-Laplace transform to both sides of Equation (35). The analytical solution
is obtained using series decomposition:

x(t) =
∞

∑
k=0

(−1)k

k!

(
b
κ

)k
η

(
tρ − aρ

ρ

)kα

E(k)
2α,1−kα

(
− c

κ

(
tρ − aρ

ρ

)2α
)

+
∞

∑
k=0

(−1)k

k!

(
b
κ

)k+1
η

(
tρ − aρ

ρ

)(k+1)α
E(k)

2α,1−(k−1)α

(
− c

κ

(
tρ − aρ

ρ

)2α
)

. (35)

The behaviors of the analytical solution of the fractional mass-spring-damper equation (35) for
different values of α, a = 0, η = 1 and ρ = 1 are depicted in Figure 7.

Figure 7. Numerical simulation for Equation (35) considering different values of α, arbitrarily chosen.

3.2. Left Generalized Fractional Derivative

Now, we consider the mass-spring-damper equation described by the left generalized fractional
derivative defined by:

m
σ2(1−α),ρ

D2α,ρx(t) +
β

σ1−α
Dα,ρx(t) + kx(t) = u(t). (36)

We investigate the analytical solutions of Equation (36) when the Liouville–Caputo left generalized
fractional derivative is replaced by the left generalized fractional derivative. We consider three
cases: the absence of mass m = 0, the absence of a spring β = 0, and the complete fractional
mass-spring-damper system.
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3.2.1. Absence of Mass

The following equation describes the fractional differential equation under consideration:

β

σ1−α
Dα,ρx(t) + kx(t) = u(t). (37)

In the following theorem, we describe the analytical solution of the fractional
spring-damper equation.

Theorem 3. Under boundary condition
(

I1−α,ρx
)
(a) = η and the source term v, the analytical solution of the

fractional spring damper equation (37) is described by the following expression:

x(t) = η

(
tρ − aρ

ρ

)α−1
Eα,α

(
λ

(
tρ − aρ

ρ

)α)
+
∫ t

a

(
tρ − sρ

ρ

)α−1
Eα,α

(
λ

(
tρ − sρ

ρ

)α)
u(s)

ds
s1−ρ

, (38)

where λ = − kσ1−α

β and the exogenous input u(t) = σ1−αv(t)
β .

Proof. Let the following fractional differential equation be described by the left generalized
fractional derivative:

Dα,ρ = λx(t) + u(t). (39)

The solution of Equation (39) is obtained applying the ρ-Laplace transform. In this case, x̄
represents the usual Laplace transform of the function x, and ū represents the usual Laplace transform
of the input function u. We obtain:

sα x̄(s)− η = λx̄(s) + ū(s),

sα x̄(s)− λx̄(s) = η + ū(s),

x̄(s) =
η

sα − λ
+

ū(s)
sα − λ

. (40)

Inverting Equation (40) using the inverse of the ρ-Laplace transform, we obtain the analytical
solution of the fractional differential equation expressed by Equation (39). We have:

x(t) = η

(
tρ − aρ

ρ

)α−1
Eα,α

(
λ

(
tρ − aρ

ρ

)α)
+
∫ t

a

(
tρ − sρ

ρ

)α−1
Eα,α

(
λ

(
tρ − sρ

ρ

)α)
u(s)

ds
s1−ρ

. (41)

Let the exogenous input converge to a constant source term u0. Using Theorem 1, the solution of
the fractional spring-damper equation is given by:

x(t) = η

(
tρ − aρ

ρ

)α−1
Eα,α

(
− kσ1−α

β

(
tρ − aρ

ρ

)α)
− u0β

kσ1−α
Eα

(
− kσ1−α

β

(
tρ − aρ

ρ

)α)
+

u0β

kσ1−α
. (42)

When the exogenous input u converges to u0 and t converges to infinity, under the assumption
λ ≤ 0, the solution of the fractional spring-damper system converges to u0

λ = u0β

kσ1−α . Thus, the fractional
spring-damper system satisfies the property converging-input-converging-state [24]. The behaviors
of the analytical solution of the fractional spring-damper equation for several values of the orders α,
a = 0, and η = 1 are depicted in Figure 8.

For the unforced fractional spring-damper system, using Theorem 3, we obtain the
following solution:

x(t) = η

(
tρ − aρ

ρ

)α−1
Eα,α

(
− kσ1−α

β

(
tρ − aρ

ρ

)α)
. (43)
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Figure 8. Numerical simulation for Equation (42) considering different values of α, arbitrarily chosen.

The trivial solution of the unforced fractional spring-damper defined by:

β

σ1−α
Dα,ρx(t) + kx(t) = 0,

is Mittag–Leffler stable [25]. The behavior of the analytical solution of the unforced fractional
spring-damper equation for several values of the orders α, a = 0, and η = 1 is depicted in Figure 9.

Figure 9. Numerical simulation for Equation (43) considering different values of α, arbitrarily chosen.

When the exogenous input is sinusoidal, let u(t) = u0 cos (wt), and the fractional spring-damper
equation is represented by:

β

σ1−α
Dα,ρx(t) + kx(t) = u0 cos (wt) . (44)

Under Theorem 3, the analytical solution of the fractional spring-damper equation (44) is
described by:

x(t) = η

(
tρ − aρ

ρ

)α−1
Eα,α

(
λ

(
tρ − aρ

ρ

)α)
+ u0

∫ t

a

(
tρ − sρ

ρ

)α−1
Eα,α

(
λ

(
tρ − sρ

ρ

)α)
cos (ws)

ds
s1−ρ

. (45)

The behaviors of the analytical solution of the fractional spring damper equation (45) under the
sinusoidal source term for several values of the orders α, a = 0, and η = 1 are depicted in Figure 10.
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Figure 10. Numerical simulation for Equation (45) considering different values of α, arbitrarily chosen.

3.2.2. Absence of the Spring Coefficient

We obtain the analytical solution of the fractional mass-damper equation described by the left
generalized fractional derivative. The following equation defines the fractional differential equation
when β = 0:

m
σ2(1−α),ρ

D2α,ρx(t) + kx(t) = u(t). (46)

For simplicity λ = − kσ2(1−α),ρ

m , u(t) = v(t)σ2(1−α),ρ

m , and the initial condition is
(

I1−α,ρx
)
(a) = η.

The main result is described in the following theorem.

Theorem 4. The analytical solution of the fractional mass-damper equation described by the Caputo left
generalized fractional derivative (46) is described by the following expression:

x(t) = η

(
tρ − aρ

ρ

)2α−1
E2α,2α

(
λ

(
tρ − aρ

ρ

)2α
)
+
∫ t

a

(
tρ − sρ

ρ

)2α−1
E2α,2α

(
λ

(
tρ − sρ

ρ

)2α
)

u(s)
ds

s1−ρ
. (47)

Proof. After simplifications, we obtain the following fractional differential equation:

D2α,ρ = λx(t) + u(t). (48)

The solution is obtained after the application of the ρ-Laplace transform. Let x̄ represent the usual
Laplace transform of the function x and ū represent the usual Laplace transform of the exogenous
input u; we obtain:

s2α x̄(s)− η = λx̄(s) + ū(s),

s2α x̄(s)− λx̄(s) = η + ū(s),

x̄(s) =
η

s2α − λ
+

ū(s)
s2α − λ

. (49)

Applying the inverse of the ρ-Laplace transform to both sides to Equation (49), we obtain the
analytical solution of the fractional differential equation expressed by Equation (48). We have the
solution defined by:

x(t) = η

(
tρ − aρ

ρ

)2α−1
E2α,2α

(
λ

(
tρ − aρ

ρ

)2α
)
+
∫ t

a

(
tρ − sρ

ρ

)2α−1
E2α,2α

(
λ

(
tρ − sρ

ρ

)2α
)

u(s)
ds

s1−ρ
. (50)

When the exogenous input converges to a constant source term u0, the solution of the fractional
mass-damper equation is obtained by using Theorem 4 in the following form:
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x(t) = η

(
tρ − aρ

ρ

)2α−1
E2α,2α

(
λ

(
tρ − aρ

ρ

)2α
)
− u0m

kσ2(1−α),ρ
E2α

(
− kσ2(1−α),ρ

m

(
tρ − aρ

ρ

)2α
)
+

u0m
kσ2(1−α),ρ

. (51)

When the exogenous input u converges to u0 and t converges to infinity, the solution of the
fractional mass-damper equation converges to u0m

kσ2(1−α),ρ . The fractional mass-damper system described
by the left generalized fractional derivative satisfies the property converging-input-converging-
state [24], and the behaviors of the analytical solution of the fractional mass-damper equation for
several values of the order α, a = 0, and η = 1 are depicted in Figure 11.

Figure 11. Numerical simulation for Equation (51) considering different values of α, arbitrarily chosen.

Now, we consider the unforced fractional mass-damper equation described by the left generalized
fractional derivative represented by:

m
σ2(1−α),ρ

D2α,ρx(t) + kx(t) = 0. (52)

The analytical solution of the unforced fractional mass-damper equation is given by the
following equation:

x(t) = η

(
tρ − aρ

ρ

)2α−1
E2α,2α

(
λ

(
tρ − aρ

ρ

)2α
)

. (53)

The trivial solution of the unforced fractional mass-damper defined by Equation (52) is
Mittag–Leffler stable. The behaviors of the analytical solution of the unforced fractional mass-damper
equation described by the left generalized fractional derivative for several values of the orders α, a = 0,
and η = 1 are depicted in Figure 12.

Figure 12. Numerical simulation for Equation (53) considering different values of α, arbitrarily chosen.
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Considering the exogenous input u(t) = u0 cos (wt), the fractional mass-damper equation is
represented by:

m
σ2(1−α),ρ

D2α,ρx(t) + kx(t) = u0 cos (wt) . (54)

It follows from Theorem 4 that the analytical solution of the fractional mass-damper equation is
expressed in the following form:

x(t) = η

(
tρ − aρ

ρ

)2α−1
E2α,2α

(
λ

(
tρ − aρ

ρ

)2α
)
+ u0

∫ t

a

(
tρ − sρ

ρ

)2α−1
E2α,2α

(
λ

(
tρ − sρ

ρ

)2α
)

cos (ws)
ds

s1−ρ
. (55)

The behaviors of the analytical solution of the fractional mass-damper equation given by
Equation (53) for several values of the order α, a = 0, and η = 1 are depicted in Figure 13.

Figure 13. Numerical simulation for Equation (55) considering different values of α, arbitrarily chosen.

4. Conclusions

In this paper, we investigated the analytical solution of the fractional mass-spring-damper
equation described by the Caputo generalized fractional derivative and the left generalized fractional
derivative. The converging-input converging-state of the fractional mass-damper and the fractional
spring-damper were discussed. We also addressed the Mittag–Leffler stability of the unforced fractional
mass-damper and the unforced fractional spring-damper. The present manuscript contributes to the
application of fractional calculus in real-life problem. Here, we proved that the generalized fractional
derivatives are an excellent compromise to study the behaviors of the mass-spring-damper systems.
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