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Abstract: In this paper, we introduce the concept of fractal random variables and their related distribution
functions and statistical properties. Fractal calculus is a generalisation of standard calculus which includes
function with fractal support. Here we combine this emerging field of study with probability theory,
defining concepts such as Shannon entropy on fractal thin Cantor-like sets. Stable distributions on fractal
sets are suggested and related physical models are presented. Our work is illustrated with graphs for
clarity of the results.

Keywords: fractal thin Cantor-like sets; fractal random variable; fractal Shannon entropy; fractal stable
distributions

1. Introduction

Fractals are geometrical shapes such that their fractal dimensions are more than their topological
dimensions; they have self-similar properties and are scale invariant [1–6]. Analysis on sets, vector spaces,
and manifolds plays an important role in physics, including in classical mechanics, quantum mechanics,
and general relativity. Recently, probability, measure theory, fractional spaces, and fractional calculus have
been used to build a theory of analysis on fractals [7–20].

Fractal calculus was introduced in the seminal papers [21–24] where it was originally applied for
functions on fractal sets and curves. This new framework, known as Fα-calculus or Fα-C, is simple,
algorithmic, and local. It has a natural geometrical meaning: The order of the derivatives is equal to
the dimension of the sets on which the function is defined. The locality of this framework is important
in physics, since measurements are local in physics and do not violate causality principles. It also has
physical meaning, since the γ-dimension and spectral dimension are connected to the physical properties
of fractals. In addition, the conjugacy of Fα-C between standard calculus leads to the same properties,
such as Leibniz’s rule and the chain rule for derivatives [21–27].

After its introduction in the papers cited above, fractal calculus has been applied in optics,
classical mechanics, electromagnetics, and quantum mechanics. Random walks on fractal sets and the
corresponding mean square displacements have been modelled by fractal calculus [28–35]. Non-local
analogues of fractional derivatives have been defined as a model for processes on fractal sets with memory
effect [36].

Shannon entropy has many applications in science and in engineering, especially information theory,
where it may be used to estimate the average minimum number of bits necessary to encode a string of

Fractal Fract. 2019, 3, 31; doi:10.3390/fractalfract3020031 www.mdpi.com/journal/fractalfract

http://www.mdpi.com/journal/fractalfract
http://www.mdpi.com
https://orcid.org/0000-0002-5008-0163
https://orcid.org/0000-0002-1491-1820
http://www.mdpi.com/2504-3110/3/2/31?type=check_update&version=1
http://dx.doi.org/10.3390/fractalfract3020031
http://www.mdpi.com/journal/fractalfract


Fractal Fract. 2019, 3, 31 2 of 13

symbols represented by frequencies. Applying Shannon entropy to continuous probability spaces is not
straightforward [37,38]. Shannon wavelets and their fractional derivatives were examined in [39–41].

Continuing the research along these lines, in the current work we define fractal random variables and
fractal stable distributions on thin Cantor-like sets. We analyse several examples of fractal random variables
and fractal distributions, and we explain physical models for fractal stable distributions. Shannon entropy
on totally discontinuous fractal sets is defined, which can also give the continuum cases.

The plan of the paper is as follows. We introduce preliminaries for the paper in Section 2. In Section 3
we define fractal random variables and distributions on thin Cantor-like sets, with various related features,
illustrated with several examples. In Section 4 we define what it means for a fractal distribution to be stable,
and present different kinds of stable distributions on fractal sets. Section 5 analyses a related physical
model, and Section 6 is devoted to giving the conclusions. Section 2 consists of review material concerning
the existing theory of fractal calculus, while Sections 3–5 contain our original research in this direction.

2. Basic Tools and Prerequisites

In this section, we give a brief summary of fractal calculus which is a generalisation of standard
calculus on Euclidean space.

One of the most fundamental fractal sets is the middle-β Cantor set, which is defined for any
1 < β < ∞ by applying the following algorithm [42]:

1. Delete an open interval of length (1/β) from the middle of I = [0, 1].
2. Remove an open interval of length (1/β) from the middle of each disjoint closed interval remaining

after step 1.
...

k. Remove an open interval of length (1/β) from the middle of each disjoint closed interval remaining
after step k− 1.

Applying this algorithm for infinitely many steps yields the thin Cantor-like set which is called the
middle-β Cantor set, and which we denote by Cβ. The Hausdorff dimension of this set, as defined
in [5,42], is

DH(Cβ) =
log(2)

log(2)− log(1− β)
. (1)

In Figure 1a we illustrate the algorithm mentioned above for establishing the middle-β Cantor set.
For a middle-β Cantor set, the flag function is defined [21,22] as follows

Λ(Cβ, J) =

{
1 if Cβ ∩ J 6= ∅

0 otherwise.
(2)

where J = [a1, a2] is an interval and Q[a1,a2]
= {a1 = t0, t1, t2, . . . , tn = a2} is a subdivision of J.

Then, for any η ∈ (0, 1], the quantity Υη [Cβ, J] is defined [21,22,26] by

Υη [Cβ, J] =
n

∑
i=1

Γ(η + 1)(ti − ti−1)
ηΛ(Cβ, [ti−1, ti]). (3)
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The mass function Kη(Cβ, a1, a2) is defined [21,22,26] by

Kη(Cβ, a1, a2) = lim
δ→0

(
inf

J[a1,a2 ]
:|J|≤δ

Υη [Cβ, J]

)
,

= lim
δ→0
Kη

δ (C
β, a1, a2) (4)

where the infimum is taken over all subdivisions Q of [a1, a2] satisfying |J| := max1≤i≤n(ti − ti−1) ≤ δ for
every J = [ti−1, ti] within Q.

The integral staircase function Sη

Cβ(t) of order η for the fractal set Cβ is defined [21,22] by

Sη

Cβ(t) =

{
Kη(Cβ, t0, t) if t ≥ t0,

−Kη(Cβ, t0, t) otherwise,
(5)

where t0 is a fixed arbitrary real number.
In Figure 1b we plot the integral staircase function for the middle-β Cantor set by letting β = 2.
The γ-dimension of Cβ ∩ [a1, a2] is

dimγ(Cβ ∩ [a1, a2]) = inf{η : Kη(Cβ, a1, a2) = 0}
= sup{η : Kη(Cβ, a1, a2) = ∞}. (6)

We use the notation α = α(β) to denote the γ-dimension of the fractal set Cβ. The γ-dimension of the
middle-β Cantor set is equal to its Hausdorff dimension DH(Cβ) given by Equation (1) [21,22], so we have
the following expression for the function α(β)

α(β) =
log(2)

log(2)− log(1− β)
. (7)

Figure 1c presents approximate Kη
δ2

/Kη
δ1

, where δ2 < δ1 (specifically, δ1 = 0.1 and δ2 = 0.8× 10−4).
For a thin Cantor-like set, the fractal characteristic function is defined by

χCβ(t) =

{
1

Γ(α+1) , t ∈ Cβ;

0, otherwise,
(8)

where α is the γ-dimension defined by Equation (7). In Figure 1d we plot the characteristic function for
the thin Cantor-like set by choosing β = 2.

Suppose h : Cβ → < and t ∈ Cβ. Then l is said to be the Cβ-limit of h, or the limit of h through the
points of Cβ, as z→ t, if we have(

z ∈ Cβ and |z− t| < δ
)
⇒ |h(z)− l| < ε. (9)

If l exists, then we write this relation as follows

l = Cβ
− lim

z→t
h(z). (10)
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(a) (b)

(c) (d)

Figure 1. Figures for Section 2. (a) The thin Cantor-like set with β = 2; (b) staircase function corresponding
to the thin Cantor-like set with β = 2; (c) the γ-dimension is α = 0.5 for the thin Cantor-like set with β = 2;
(d) fractal characteristic function for the thin Cantor-like set with β = 2.

Cβ-continuity. A function h : Cβ → < is defined to be Cβ-continuous at t ∈ Cβ if

h(t) = Cβ
− lim

z→t
h(z). (11)

Cβ-differentiation. If Cβ is a β-perfect set, then the Cβ-derivative to order η of a function h is defined on
Cβ at a point t if the following limit exists [21,22,26]

Dη

Cβ h(t) =

Cβ
− limz→t

h(z)−h(t)
Sη

Cβ (z)−Sη

Cβ (t)
, if z ∈ Cβ,

0, otherwise.
(12)

Cβ-integration. The Cβ-integral to order η of h on [a1, a2] is notated by
∫ a2

a1
h(t)dη

Cβ t and is approximately
given in [21,22,26] by the following sum

∫ a2

a1

h(t)dη

Cβ t ≈
n

∑
i=1

hi(t)(S
η

Cβ(tj)− Sη

Cβ(tj−1)). (13)

3. Distributions on Thin Cantor-Like Sets

In this section we define random variables and their features on fractals [43,44].
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Random variables on fractal sets. A random variable on a thin Cantor-like set, which we shall call an
RVC, is defined by a mapping

Y(ξ) : S → Cβ (14)

where the set S is the sample space.
Distribution function of an RVC. The distribution function of a random variable Y as above is defined
to be

FY(y) = P(Y(ξ) ≤ y), y ∈ Cβ. (15)

Probability density function of an RVC. Let Y(ξ) be an RVC and its distribution function FY(y) be
Cβ-continuous. The fractal probability density function is defined as

fY(y) = Dα
Cβ FY(y), (16)

where α is the γ-dimension of Cβ as defined in Equation (7). This also gives the relation

FY(y) =
∫ ∞

−∞
fY(y)dα

Cβ y. (17)

Mean and variance of an RVC. The mean of an RVC Y, denoted by µY or E(Y), is defined by

µY =
∫ ∞

−∞
y fY(y)dα

Cβ y (18)

The variance of Y, denoted by σ2
Y or Var(Y), is defined by

σ2
Y =

∫ ∞

−∞
(y− µY)

2 fY(y)dα
Cβ y. (19)

Moment of an RVC. For any m ∈ N, the m-th moment of an RVC Y is defined by

E(Ym) =
∫ ∞

−∞
ym fY(y)dα

Cβ y. (20)

Moment generating function. The moment generating function of an RVC Y is defined by

MY(t) = E(etY) =
∫ ∞

−∞
ety fY(y)dα

Cβ y. (21)

Characteristic function of an RVC. The characteristic function of an RVC Y is defined by

ΨY(ω) =
∫ ∞

−∞
eiωy fY(y)dα

Cβ y, (22)

where ω is a real number and i =
√
−1.

The fractal Shannon entropy of an RVC. The fractal Shannon entropy (fractal differential entropy) of an
RVC Y is defined by

HY(y) = −
∫

Y
fY(y) log( fY(y))dα

Cβ y. (23)
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Example 1. Consider a fractal Cauchy random variable Y with parameter a, whose probability density function is
as follows:

fY(y) =
a

π((yχCβ)2 + a2)
, −∞ < y < +∞ (24)

where a ∈ (0, ∞) is constant. In Figure 2a we plot this probability density Equation (24).

(a) (b)

(c) (d)

Figure 2. Figures for Example 1. (a) Probability density function of a fractal Cauchy random variable
with α = 0.5, β = 2, a = 0.2; (b) distribution function of a fractal Cauchy random variable with α = 0.5,
β = 2, a = 0.2; (c) characteristic function of a fractal Cauchy random variable with α = 0.5, β = 2, a = 0.2;
(d) entropy of a fractal Cauchy random variable with a = 0.2.

The distribution function of this fractal Cauchy random variable, by using Equation (17), is

FY(y) =
Γ(1 + α)

2
+

Γ(1 + α)

π
arctan

(
Sα

Cβ(y)

aΓ(1 + α)

)
, (25)

where again α is the γ-dimension given by Equation (7) of the thin Cantor set Cβ which is a compact set [21]. In
Figure 2b we sketch this distribution Equation (25).
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Using Equation (22) we have the characteristic function of the fractal Cauchy RVC Y as follows:

ΨY(ω) =
∫ ∞

−∞
eiωy a

π((yχCβ)2 + a2)
dα

Cβ y = Γ(1 + α)e
−a

∣∣∣∣∣ Sα

Cβ
(ω)

Γ(1+α)

∣∣∣∣∣. (26)

In Figure 2c we show this characteristic Equation (26).
The fractal Shannon entropy of the fractal Cauchy random variable, utilising Equation (23), is

HY(y) = −
∫ ∞

−∞

a
π((yχCβ)2 + a2)

log
(

a
π((yχCβ)2 + a2)

)
dα

Cβ y

= Γ(α + 1) log(4πa). (27)

In Figure 2d we draw this Equation (27).

Example 2. Consider a fractal Laplace random variable Y with the following probability density function

fY(t) =
1
2c

exp
(
−
|tχCβ − ν|

c

)
, (28)

where c ∈ (0, ∞) and ν ∈ < are constant parameters.
This fractal Laplace random variable has distribution function

FY(t) =
Γ(1 + α)

2
+

Γ(1 + α)

2
sgn(t− ν)

(
1− exp

(
Sα

Cβ(t)− νΓ(1 + α)

cΓ(1 + α)

))
, (29)

mean E[Y] = Γ(1 + α)ν, variance Var[Y] = 2(cΓ(1 + α))2, fractal Shannon entropy

HY(t) = log(2cΓ(1 + α)e), (30)

and characteristic function

ΨY(ω) =
Γ(1 + α) exp

(
Γ(1 + α)νiSα

Cβ(ω)
)

1 + (cΓ(1 + α))2 Sα
Cβ(ω)2

. (31)

In Figure 3 we provide the graphs of the fractal probability density function (Figure 3a), fractal distribution function
(Figure 3b), fractal characteristic function (Figure 3c), and fractal Shannon entropy (Figure 3d) of the Laplace
random variable Y.
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(a) (b)

(c) (d)

Figure 3. Figures for Example 2. (a) Probability density function of a fractal Laplace random variable
with c = 1, α = 0.5, β = 2, ν = 0; (b) distribution function of a fractal Laplace random variable with
c = 1, α = 0.5, β = 2, ν = 0; (c) characteristic function of a fractal Laplace random variable with
c = 1, α = 0.5, β = 2, ν = 0; (d) entropy of a fractal Laplace random variable with c = 1.

4. Hierarchy of Stable Distributions on Fractal Sets

In this section, we define stable distributions on thin Cantor-like sets and present examples such as
fractal Cauchy and Gaussian stable distributions.

Definition of stable distributions. Let X1(t) and X2(t) be independent and identically distributed
(iid) random variables on a thin Cantor-like set (t ∈ Cβ) with mean µ ∈ (−∞, ∞) and variance σ ∈ (0, ∞).
A fractal random variable X(t) with cumulative distribution function (CDF) FX(t) on the same fractal set
is defined by [45]

X(t) =
a1X1 + a2X2 − b

a
, (32)

for constants a, a1, a2 ∈ (0,+∞) and b ∈ (−∞,+∞). This X has the same CDF as X1 and X2, for given
a, b, a1, a2, if the following condition holds

FX

(
t

a1

)
FX

(
t

a2

)
= FX

(
t− b

a

)
, t ∈ Cβ. (33)

In this case, FX(t) is called a ’stable’ fractal distribution function [46,47]. However, in general,
the Equation (33) is difficult to solve for the function FX, and so this is not a practical way to find
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stable fractal random variables. Therefore, we define the analogue of a characteristic function for a stable
fractal random variable X as follows [46,47]

ΨX(ω; λ, c, ν, µ) = exp(iµSα
F(ω)−Φ), (34)

where the quantity Φ is defined as

Φ =

{
|cSα

F(ω)|λ(1− iν sgn(Sα
F(ω)) tan πλ

2 ), λ 6= 1;
|cSα

F(ω)|λ(1 + iν 2
π sgn(Sα

F(ω)) log |Sα
F(ω)|), λ = 1.

(35)

where i =
√
−1, λ ∈ (0, 2] is a stability parameter, ν ∈ [−1, 1] is a skewness parameter, c ∈ (0, ∞) is a scale

parameter, µ ∈ (−∞,+∞) is a location parameter, and

sgn(ω) =


1, Sα

F(ω) > 0;
0, Sα

F(ω) = 0;
−1, Sα

F(ω) < 0.
(36)

In view of the upper bound Sα
F(ω) ≤ ωα we have

ΨX(ω; λ, c, ν, µ) ∼
{

exp
(

iµωα − |(cω)α|λ(1− iν sgn(ωα) tan πλ
2 )
)

, λ 6= 1/α;

exp
(
iµωα − |(cω)α|λ(1 + iν( 2

π sgn(ωα) log |ωα|)
)

, λ = 1/α.
(37)

If we choose µ = 0 and ν = 0, then we get the asymptotic behavior of Equation (37) as follows:

ΨX(ω; λ, c, 0, 0) ∼ exp
[
−|(cω)α|λ

]
, 0 < λ ≤ 2

α
. (38)

Here, if λ < 0, then it would mean ΨX(ω) = 1 as |ω| → ∞, and so there would be no fractal inverse
Fourier transformation. In addition, λ > 2

α would lead to the negative fX(t).
We consider some examples of fractal stable distributions.

1. Gaussian stable distribution on fractal sets. In Equation (34) if we choose λ = 2, ν = 0 and σ2 = 2c2,
then we have

ΨX(ω, 2, c, 0, µ) = exp
[

iµSα
F(ω)− 1

2
σ2|Sα

F(ω)|2
]

. (39)

The asymptotic behavior of Equation (39) gives

ΨX(ω, 2, c, 0, µ) ∼ exp
[

iµωα − 1
2

σ2ω2α

]
, (40)

where σ and µ are the variance and mean respectively. The corresponding probability distribution
function, which is the inverse Fourier transformation of Equation (39), is as follows:

p(t, 2, c, 0, µ) =
1√

2πσ2
exp

[
(tχCβ − µ)2

2σ2

]
. (41)

2. Cauchy stable distribution on fractal sets. If we choose λ = 1, then Equation (34) gives

ΨX(ω, 1, 1, 0, µ) = exp [iµSα
F(ω)− |Sα

C(ω)|] . (42)



Fractal Fract. 2019, 3, 31 10 of 13

The corresponding probability distribution function is

p(t, 1, 1, 0, µ) =
1

π(tχCβ − µ)2 + 1)
. (43)

3. Levy α-stable distribution on fractal sets. If we choose λ = 1/2, then Equation (34) gives

ΨX(ω, 1/2, 1, 1, µ) = exp
[
iµSα

F(ω)− |Sα
F(ω)|1/2(1− i sgn Sα

F(ω))
]

. (44)

In view of asymptotic behavior of Equation (44) one can write

ΨX(ω, 1/2, 1, 1, µ) ∼ exp
[
iµωα − |Γ(1 + α)ωα|1/2(1− i sgn ωα)

]
. (45)

The corresponding probability distribution function is

p(t, 1/2, 1, 1, µ) =

√
1

2π(tχCβ − µ)3 exp
[

−1
2(tχCβ − µ)

]
. (46)

Remark 1. We can summarise the above results as follows.

1. If we choose λ = 2/α, in Equation (34) then the stable distribution has the mean and variance limited.
2. If we let 0 < λ < 1/α in Equation (34) , then the mean and variance are infinite.
3. If we substitute 1/α < λ < 2/α into Equation (34), then the mean is finite and the variance is infinite (a

heavy-tailed distribution).

Remark 2. If X is a random variable on a fractal set, having stable distribution with exponent Equation (34) if we
set 1/α < λ < 2/α, then 1/Xλ also has a stable distribution with exponent 1/λ.

5. Physical Models for Fractal Stable Distributions

In this section, we suggest a physical model that can have a fractal stable distribution.
If we consider a random walk on a fractal thin Cantor-like set, then the fractal first passing time

(FFPT), defined as the time when the walker hits a point b ∈ Cβ, is a random variable. We suggest the
following conditional probability distribution function [48] for the walker hitting b in the time interval
(t, t + dt):

p(t, b|0) =
Sα

Cβ(b)√
4πDt3

exp

[
−Sα

Cβ(b)2

4Dt

]
, (47)

where D is constant.
If we have two particles which have random walks on a fractal set with positions X1, X2 ∈ Cβ,

then the new fractal random variable Y = X1/X2 has fractal Cauchy distribution. Here each X1, X2 has
fractal Gaussian distribution.
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To prove this, we suppose the probability distribution of Y is denoted ρ(y, t) and work as follows

ρ(y, t) =
∫ ∞

−∞
dα

Fx1

∫ ∞

−∞
dα

Fx2
1

4πDt
exp

[
(−x2

1 − x2
2)χCβ

4Dt

]
δα

F

(
(y− x1

x2
)χCβ

)

=
∫ ∞

−∞
dα

Fx2
|x2χCβ |
4πDt

exp

[
−x2

2(1 + y2)χCβ

4Dt

]

= 2
∫ ∞

0
dα

Fx2
x2χCβ

4πDt
exp

[
−x2

2(1 + y2)χCβ

4Dt

]

=
1

π(1 + Sα
F(y)

2)
. (48)

Then, the asymptotic behavior of Equation (48) is given by

ρ(y, t) ∼ 1
π(1 + y2α)

. (49)

In Figure 4 we have plotted ρ(|y|, t) for the different values of α.

Figure 4. Graph of ρ(|y|, t) versus α.

Remark 3. The red lines in the graphs above have shown the case with continuous support and α = 1. In this case,
we recall standard results and the examples work out using conjugacy of fractal calculus and standard calculus.

6. Conclusions

In this paper, we have defined fractal random variables on fractal sets which are called thin Cantor-like
sets. Fractal random variables with stable distribution have been given and corresponding models were
discussed. Stable distributions on fractals give new conditions and orders related to the dimension of
the set they have defined on them. The suggested random variables are not differentiable in the sense of
ordinary calculus provided that they also appear in the reference list here.
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