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Abstract: In this paper, we apply a new technique, namely, the local fractional Laplace homotopy
perturbation method (LFLHPM), on Helmholtz and coupled Helmholtz equations to obtain analytical
approximate solutions. The iteration procedure is based on local fractional derivative operators
(LFDOs). This method is a combination of the local fractional Laplace transform (LFLT) and the
homotopy perturbation method (HPM). The method in general is easy to implement and yields
good results. Illustrative examples are included to demonstrate the validity and applicability of the
new technique.
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1. Introduction

The theory of local fractional calculus was successfully utilized to describe the non-differentiable
problems arising in mathematical physics, such as Schrédinger equations [1], the gas dynamic
equation [2], the telegraph equation [3], the wave equation [4-7], Fokker-Planck equations [8,9],
Laplace equations [10], Klein-Gordon equations [11], Helmholtz equations [12], and the Goursat
problem [13] on Cantor sets.

Several analytical and numerical methods have been used to solve partial differential equations
(PDEs) with local fractional derivative operators (LFDOs), such as the Adomian decomposition
method [13-15], variational iteration method [16-22], differential transform method [23,24], series
expansion method [25], Sumudu transform method [26], Laplace transform method [27], reduced
differential transform method [28], Laplace variational iteration method [29], Fourier series method [30],
and homotopy perturbation method [31]. Our aim is to present the coupling method of local fractional
Laplace transform (LFLT) and homotopy perturbation method (HPM), which we call the local fractional
Laplace homotopy perturbation method (LFLHPM), and use it to solve differential Helmholtz and
coupled Helmholtz equations on Cantor sets within a local fractional operator.

This paper is organized as follows. In Section 2, the basic mathematical tools of local fractional
calculus are introduced. The analysis of the proposed method is given in Section 3. Then, in Sections 4
and 5, the proposed method is implemented to solve differential Helmholtz and coupled Helmholtz
equations on Cantor sets within a local fractional operator. Finally, concluding remarks are presented
in Section 6.
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2. Mathematical Fundamentals

Definition 1. The local fractional derivative of ¢ () of order 6 at the point g is given by [19,20,32,33]:

0© (10) = lim T'(1406)[p(u) —¢(uo)]

‘ ,0<6<1. 1)
H7Ho (4= o)’

Definition 2. Let ﬁ jéﬂ(p(y)((dp)é < k < oo. The local fractional Laplace transform of ¢(u) is given
by [19,20,32,33]:

LTilo(k)} = O w) = gy [ Bol-’wlplu) (@’ @
0

where the latter integral converges and w® € RP.

Definition 3. The inverse formula of the local fractional Laplace transform is given by the following:

Brico
LT3[, w)] = (1) = (Zi)é [ Esws) ) @), ©
Bico

where w® = B + iw; fractal imaginary unit i° and Re(w) = g > 0.

Definition 4. The Mittage-Leffler function and hyperbolic sine are, respectively, defined by [19,20,32,33]:

ko

Ny _#
Eé(y)—zkzor(l+k6),y€R,O<6Sl, )
Es(p®) — Es(—p®
sinhé(yé): (H)z (H),MER,O<5SL (5)
The properties for the local fractional Laplace transform used in the paper are given as follows:
1L LTs{ o) ()} = @ LTs{p(u) } ~ w120 (0) - - — p{=10) ().
I(1+ ks
2. LTO{ [Jké} = Eu(k—jr_l)b)'

3. Analysis of LFLHPM

The local fractional homotopy perturbation method (LFHPM) has been developed and applied
to solve a class of local fractional partial differential equations [31,34]. Based on it, we suggest a new
analytical method.

Let us consider the following partial differential equation with local fractional derivative:

Lop(u, ) + Rop(p, ) = f(, 1), 0<0 <1, (6)

where L5 = ;—]E, Ry is a linear local fractional operator, and f(u, 7) is the source term.
Applying the local fractional Laplace transform (LFLT) to Equation (6), it gives the following:

O, w) = wp(0,7) +w 29®(0,7) + - - + w K Vop(k-19)(0, 1) + w ™ LTs{f (1, 7)} — wLTs{Rsp(u,7)}.  (7)
Using the inversion of LFLT on Equation (7), we have the following:

(1) = G, 7) = LT3 [ P LTo{Rsp (1, 1)}, ®)
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where G(, ) represents the term arising from the source term and the prescribed initial conditions.
Now, we apply the LFHPM [31]:

(1) = ) P pui,v). ©)
n=0

Using Equation (9) in Equation (8), it yields the following result:

w_kéLTé{Ré Zp"%(m”. (10)
n=0

On equating the multipliers of same powers of the parameter p of Equation (10), it gives
the following:

Z pon(p, 1) = G(u, 1) —p LTS
n=0

P’ poluT) =Gl 1),
pl: o1(p,t) = —LTgl[w_kéLTé{Ré (po(y,’c)}],
p?: ooy, T) = —LTgl[w_kéLTé{Ré 1 (y,’c)}],
P p3(u,1) = -LT;w ™ ®LTo{Rs g2, 1)},

Proceeding in this same manner, the rest of the components ¢, (i, T) can be completely obtained
and the series solution is thus entirely determined. Finally, we approximate the analytical solution
@(u, 7) by truncated series as follows:

pu,7) = lim » o, (u,7). (11)

4. Application of LFLHPM for Helmholtz Equations

Example 1. Let us consider the local fractional Helmholtz equation with local fractional derivative operator:

Ppp,1) | Pp(u,7) w2
/)= , 0<o6<1 12
Ju2o am TP = Tare 0F (12)
with fractal initial boundary conditions
) i
= = <. 1
¢(0,7) =0, ¢(0,7) T110) (0<t<) (13)

Applying the LFLT on both sides (12), subject to initial condition (13), we have the following:

5 5 ) 920
o By [P(0)
+w LT&{F(l—i—é) F(1+6)} w LT5{ 52 +g0(y,’f)}. (14)

T(S
T(1+0)

O, w) = w

The inversion of LFLT implies that

[Llé T(S [JBD T6

156)T(1+0) | T(1435) T(119)

20
- LTgl[w_z‘sLTé{a;PT—(;;’T) +o(u, T)}]. (15)

q0<1u’ T) = 1—-(
Now, applying LEFHPM, we obtain the following:

5 5 3

H§OP”<PH(H'T) = r(1H+ STA TS T T T3 r(lri 5 P LT(;l[w‘Z‘SLTO{;T_ZM( EOPHW(H'T)) + EOP"(Pn(H/T)}]- (16)

n=|
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Comparing the coefficients of like power of p, we get the following:
”6 0 N u36 0
1+6)T(1+6) T(+35)T(1+06)

) azb
pt: @1(u, ) = -LT;! w‘ZbLTa{ﬁ Po(u, 1) + @o(M)}

P0:polp,7) = o

<

~

: o |
p*: @a(u,7) = -LT;! w_zéLTé{ﬁ P1(u,7) + @1(#“)}

<

S |
P’ @a(u, 1) = -LT;! W‘%LTa{ﬁ P2(p, 7) + (pz(w)}

Hence, we have:

o ) 30 )
0. I T H T
P’ oo, 1) = + ,
T(1+0)T(1+6)  T(1+306)T(1+0)
Pt pr(pT) = - b A “
' T(1+30)T(1+06) T(1+50)T(1+0)
56 ) 76 )
u T % T
p*: pa(u, 1) = + ,
T(1+56)T(1+0)  T(1+75)T(1+0)
H76 Té ‘u96 Té

P alp ) = T(1+78)T(1+06) T(1495)T(1+06)

Therefore, the series solution of Equation (12) is given by the following:

il 0

N

The result is the same as the one which is obtained by the local fractional variational iteration method [35].

5. Application of LFLHPM for Coupled Helmholtz Equations

Example 2. Let us consider the coupled Helmholtz equations with local fractional derivative operators:

920 3 920 3
LA 1+ 0 g, T) = 0,

240 | U () -0 -
subject to the initial boundary conditions
¢(0,7) =0, p®(0,7) = Eé(’l’b), (0<t<)
P(0,7) =0, p(0,7) = —Es(7°). (0 < T <1). 19)
Applying the LFLT on both sides (18), subject to initial condition (19), we have the following:
O, w) = w2 Ey(t?) + w2 LTl (1) - LY, .

) - 8] e - 23]

o720
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The inversion of LFLT implies that

20 L
(D) = riy 6)155( )+LTgl[w‘25LT5{<P(u,T)—a a‘i(zif)}],

: (21)
— _ Pp(ust
ll}((ur T) = r(] +0) Eé( ) + LT(sl[w 26LT6{¢(H/ T) - (;PT(zg )}]
Now, applying LFHPM, we obtain the following:
¢ t) = X plon(p 1),
" (22)

Y1) = Eop"wn(m)-

Using Equation (22) in Equation (21), it yields the following result:

[ 5 =S} )
;Op"q)n(m) = g Eo() +p LTg1[w‘2‘5LTo{ ;OP"(pn(#,T) - 3%( Zop”tlln(w))}],
o g T o . 2% (oo p
oo p (1) = i Eal) + p LT3 [ P LTS T p"n (1, 7) ~ Zs(To "o (1, )]
Comparing the coefficients of like power of p, we get the following:
. ,U6 ) .
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Hence, we have:
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and so on, and the other components can be found in a similar manner. Therefore, the series solutions can be
written in the following form:

N
im Y @n(u,7)

¢lu,7) = lim P
B [J(S 2#35 4u56
N Eé(Té)[m(Jr 5) 7; rite) T(+to) ]
sinhs( V2u®
= Es(0)—————.
N V2
(1) = lim ,Eo Pu(p,7)
B [Jé 2#36 4M56
T Eé(Té)[m +o) (Tt Tatoe) ]

sinhs( V2u°
_ _Eé(fs)—é(vE «)

The result is the same as the one which is obtained by the local fractional variational iteration transform
method [36].

6. Conclusions

In this work, the LFLHPM was successfully applied to finding the approximate solution of
Helmbholtz and coupled Helmholtz equations involving LFDOs. A comparison was made to show
that the method has a small computational size in comparison with the computational size required
in other numerical methods, such as the local fractional variational iteration method and the local
fractional variational iteration transform method. The method is very powerful and efficient in finding
analytical as well as numerical solutions for wide classes of linear and nonlinear local fractional PDEs.
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