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Abstract: In this paper, we apply the local fractional Laplace variational iteration method (LFLVIM)
and the local fractional Laplace decomposition method (LFLDM) to obtain approximate solutions for
solving the damped wave equation and dissipative wave equation within local fractional derivative
operators (LFDOs). The efficiency of the considered methods are illustrated by some examples.
The results obtained by LFLVIM and LFLDM are compared with the results obtained by LFVIM.
The results reveal that the suggested algorithms are very effective and simple, and can be applied for
linear and nonlinear problems in sciences and engineering.

Keywords: LFDOs; LFLVIM; LFLDM; damped wave equation; dissipative wave equation

1. Introduction

The local fractional calculus was successfully utilized to describe the non-differentiable problems
arising in mathematical physics, such as the diffusion equations [1–4], the gas dynamic equation [5],
the telegraph equation [6], wave equation [7], Fokker Planck equation [8,9], Laplace equation [10],
Klein–Gordon equations [11,12], Helmholtz equation [13,14], Goursat Problem [15] and other
differential equations [16–18] on Cantor sets. The existence and uniqueness of solutions for local
fractional differential equations [19,20]. Recently, the dissipative wave equation with LFDOs was given
by [21]:

∂2ϑ ϕ(η, κ)

∂κ2ϑ
− ∂ϑ ϕ(η, κ)

∂κϑ
− ∂2ϑ ϕ(η, κ)

∂η2ϑ
− ∂ϑ ϕ(η, κ)

∂ηϑ
− f1(η, κ) = 0, 0 < ϑ ≤ 1, (1)

ϕ(η, 0) = ψ1(η),
∂ϑ ϕ(η, 0)

∂κϑ
= ψ2(η),

as well as the damped wave equation with LFDOs was given by [21]:

∂2ϑ ϕ(η, κ)

∂κ2ϑ
− ∂ϑ ϕ(η, κ)

∂κϑ
− ∂2ϑ ϕ(η, κ)

∂η2ϑ
− f2(η, κ) = 0, 0 < ϑ ≤ 1, (2)

ϕ(η, 0) = φ1(η),
∂ϑ ϕ(η, 0)

∂κϑ
= φ2(η).

The authors in [21] proposed the LFVIM to consider the dissipative wave equation and the
damped wave equation with LFDOs. The main target of this paper is to use LFLVIM and LFLDM to
implement the dissipative wave equation and the damped wave equation in fractal strings.
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The theory of fractal strings has been developed over the past years by Lapidus and co-workers
in a series of papers [22,23]. A standard fractal string is a bounded open subset of the real number line.
Such a set is a disjoint union of open intervals, the lengths of which form a sequence  = {`i}∞

i=1 which
we typically assume to be infinite [23].

In recent years, a variety of numerical and analytical methods have been applied to solve
the PDEs with LFDOs, such as local fractional differential transform method [24], local fractional
series expansion method [25], local fractional reduce differential transform method [26] and other
methods [27,28].The paper has been organized as follows. In Section 2, the basic mathematical tools are
reviewed. In Section 3, we give analysis of the methods used. In Section 4, we consider two illustrative
examples. Finally, in Section 5, we present our conclusions.

2. Analysis of LFLVIM

Let us consider the following local fractional partial differential equation with LFDOs:

Lϑ ϕ(η, κ) + Rϑ ϕ(η, κ) + Nϑ ϕ(η, κ) = ω(η, κ), (3)

where Lϑ =
∂mϑ

∂κmϑ
denotes the linear LFDO, Rϑ is the remaining linear operator, Nϑ represents the

general nonlinear differential operator, and ω is the source term.
According tothe rule of LFVIM [27–29]:

ϕn+1(κ) = ϕn(κ) +0 I(ϑ)κ

[
σ(κ − ξ)ϑ (Lϑ [ϕn(ξ)] + Rϑ [ϕ̃n(ξ)] + Nϑ [ϕ̃n(ξ)]−ω(ξ))

]
, (4)

where σ(κ − ξ)ϑ is a fractal Lagrange multiplier.
For the initial value problems of (3), we can start with:

u0(η, κ) = u(η, 0) +
κϑ

Γ(1 + ϑ)
u(ϑ)(η, 0) + · · ·+ κ(m−1)ϑ

Γ(1 + (m− 1)ϑ)
u((m−1)ϑ)(η, 0). (5)

We now take local fractional Laplace transform for (4), we get:

L̃ϑ {ϕn+1(κ)} = L̃ϑ {ϕn(κ)}+ L̃ϑ

{
σ(κ)ϑ

}
×

L̃ϑ {Lϑ [ϕn(ξ)] + Rϑ [ϕ̃n(ξ)] + Nϑ [ϕ̃n(ξ)]−ω(ξ)} . (6)

Taking the LF variation of (6):

δϑ
(

L̃ϑ {ϕn+1(κ)}
)
= δϑ

(
L̃ϑ {ϕn(κ)}

)
+

δϑ
(

L̃ϑ

{
σ(κ)ϑ

}
L̃ϑ {(Lϑ [ϕn(κ)] + Rϑ [ϕ̃n(κ)] + Nϑ [ϕ̃n(κ)]−ω(κ))}

)
. (7)

By using computation of (7), we get:

δϑ
(

L̃ϑ {ϕn+1(κ)}
)

= δϑ
(

L̃ϑ {ϕn(κ)}
)
+ L̃α

{
σ(κ)ϑ

}
δϑ
(

L̃ϑ {Lϑ [ϕn(κ)]}
)

= 0. (8)

Hence, from (8) we get:
1 + L̃ϑ

{
σ(κ)ϑ

}
smϑ = 0, (9)
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where

δϑ
(

L̃ϑ {Lϑ [ϕn(κ)]}
)

= δϑ
(

smϑ L̃ϑ {ϕn(κ)} − s(m−1)ϑ ϕn(0)− · · · − ϕ
((m−1)ϑ)
n (0)

)
= smϑδϑ

(
L̃ϑ {ϕn(κ)}

)
. (10)

Therefore, we have

L̃ϑ

{
σ(κ)ϑ

}
= − 1

smϑ
. (11)

Taking the inverse of into (11), we obtain:

σ(κ)ϑ = L̃−1
ϑ

(
− 1

smϑ

)
= − κ(m−1)ϑ

Γ(1 + (m− 1)ϑ
. (12)

Hence, we have the following iteration algorithm:

L̃ϑ {ϕn+1(κ)} = L̃ϑ {ϕn(κ)} −
1

smϑ
L̃ϑ {Lϑ [ϕn(κ)] + Rϑ [ϕn(κ)] + Nϑ [ϕn(κ)]−ω(κ)}

= L̃ϑ {ϕn(κ)} −
1

smϑ
L̃ϑ

{
smϑ ϕn(κ)− · · · − ϕ

((m−1)ϑ
n (0)

}
− 1

smϑ
L̃ϑ {Rϑ [ϕn(κ)] + Nϑ [ϕn(κ)]−ω(κ)}

=
1
sϑ

ϕn(0)−
1

s2ϑ
ϕ
(ϑ)
n (0)− · · · − 1

smϑ
ϕ
((m−1)ϑ
n (0)

− 1
smϑ

L̃ϑ {Rϑ [ϕn(κ)] + Nϑ [ϕn(κ)]−ω(κ)} . (13)

Therefore, the solution of (3) is

ϕ(η, κ) = lim
n→∞

L̃−1
ϑ

(
L̃ϑ {ϕn(η, κ)}

)
. (14)

3. Analysis of the Local Fractional Laplace Decomposition Method

We now consider the local fractionaloperator equation in the following form:

Lϑ ϕ(η, κ) + Rϑ ϕ(η, κ) = h(η, κ). (15)

Taking LFLT on (15), we obtain

L̃ϑ {Lϑ ϕ(η, κ)}+ L̃ϑ {Rϑ ϕ(η, κ)} = L̃ϑ {h(η, κ)} . (16)

By applying the LFLT differentiation property, we have

smϑ L̃ϑ {ϕ(η, κ)} − s(m−1)ϑ ϕ(η, 0)− s(m−2)ϑ ϕ(η, 0)− · · · − u((m−1)ϑ)(η, 0)

+ L̃ϑ{Rα ϕ(η, κ)} = L̃ϑ{h(η, κ)}, (17)

or equivalently

L̃ϑ {ϕ(κ)} =
1
sϑ

ϕ(0) +
1

s2ϑ
ϕ(ϑ)(0) + · · ·+ 1

smϑ
ϕ((m−1)ϑ)(0)

+
1

smϑ
L̃ϑ {h(κ)} −

1
smϑ

L̃ϑ {Rϑ ϕ(κ)} . (18)
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Taking the inverse of LFLT on (18), we have

ϕ(κ) = ϕ(0) + · · ·+ κ(m−1)ϑ

Γ(1 + (m− 1)ϑ)
ϕ(ϑ)(0)

+L̃−1
ϑ

(
1

smϑ
L̃ϑ{h(η, κ)}

)
− L̃−1

ϑ

(
1

smϑ
L̃ϑ {Rϑ ϕ(η, κ)}

)
. (19)

We are going to represent the solution in an infinite series given below:

ϕ(η, κ) =
∞

∑
n=0

ϕn(η, κ). (20)

Substituting (20) into (19), which gives us this result

∞

∑
n=0

ϕn(η, κ)

= ϕ(η, 0) + · · ·+ L̃−1
(

1
smϑ

Lϑ{h(η, κ)}
)
− L̃−1

ϑ

(
1

smϑ
L̃

{
Rϑ

∞

∑
n=0

ϕn(η, κ)

})
. (21)

When we compare the left and right hand sides of (21) we obtain

ϕ0(η, κ) = ϕ(η, 0) +
κϑ

Γ(1 + ϑ)
ϕ(ϑ)(η, 0) + · · ·+ L̃−1

(
1

smϑ
L̃ϑ{h(η, κ)}

)
, (22)

ϕn+1(η, κ) = −L̃−1
ϑ

(
1

smϑ
L̃ϑ {Rϑ ϕn(η, κ)}

)
. (23)

4. Illustrative Examples

Example 1. Consider dissipative wave equation with local fractional derivative operators:

∂2ϑ ϕ

∂κ2ϑ
− ∂ϑ ϕ

∂κϑ
− ∂2ϑ ϕ

∂η2ϑ
− ∂ϑ ϕ

∂ηϑ
− κϑ

Γ(1 + ϑ)
= 0, 0 < ϑ ≤ 1, (24)

with the initial conditions:

ϕ(η, 0) =
ηϑ

Γ(1 + ϑ)
,

∂ϑ ϕ(η, 0)
∂κϑ

= 0. (25)

Now,

L̃ϑ {ϕn+1(η, κ)} = L̃ϑ {ϕn(η, κ)} −
1

s2ϑ
L̃ϑ

{
∂2ϑ ϕn

∂κ2ϑ
− ∂ϑ ϕn

∂κϑ
− ∂2ϑ ϕn

∂η2ϑ
− ∂ϑ ϕn

∂ηϑ
− κϑ

Γ(1 + ϑ)

}
= L̃ϑ {ϕn(η, κ)} − 1

s2ϑ

(
s2ϑ L̃ϑ {ϕn(η, κ)} − sϑ ϕn(η, 0)− ϕ

(ϑ)
n (η, 0)

)
+

1
s2ϑ

L̃ϑ

{
∂2ϑ ϕn(η, κ)

∂η2ϑ
+

∂ϑ ϕn(η, κ)

∂ηϑ
+

∂ϑ ϕn(η, κ)

∂κϑ
+

κϑ

Γ(1 + ϑ)

}
=

1
sϑ

ϕn(η, 0) +
1

s2ϑ
ϕ
(ϑ)
n (η, 0) +

1
s4ϑ

+

1
s2ϑ

L̃ϑ

{
∂2ϑ ϕn(η, κ)

∂η2ϑ
+

∂ϑ ϕn(η, κ)

∂ηϑ
+

∂ϑ ϕn(η, κ)

∂κϑ

}
. (26)

The initial value reads:

ϕ0(η, κ) =
ηϑ

Γ(1 + ϑ)
. (27)
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Hence, we get the first approximation, namely:

L̃ϑ {ϕ1(η, κ)} =
1
sϑ

ϕ0(η, 0) +
1

s2ϑ
ϕ
(ϑ)
0 (η, 0) +

1
s4ϑ

+

1
s2ϑ

L̃ϑ

{
∂2ϑ ϕ0(η, κ)

∂η2ϑ
+

∂ϑ ϕ0(η, κ)

∂ηϑ
+

∂ϑ ϕ0(η, κ)

∂κϑ

}
=

1
sϑ

ηϑ

Γ(1 + ϑ)
+

1
s3ϑ

+
1

s4ϑ
.

Thus, we have

ϕ1(η, κ) = L̃−1
ϑ

(
1
sϑ

ηϑ

Γ(1 + ϑ)
+

1
s3ϑ

+
1

s4ϑ

)
.

The second approximations reads:

L̃ϑ {ϕ2(η, κ)} =
1
sϑ

ϕ1(η, 0) +
1

s2ϑ
ϕ
(ϑ)
1 (η, 0) +

1
s4ϑ

+

1
s2ϑ

L̃ϑ

{
∂2ϑ ϕ1(η, κ)

∂η2ϑ
+

∂ϑ ϕ1(η, κ)

∂ηϑ
+

∂ϑ ϕ1(η, κ)

∂κϑ

}
=

1
sϑ

ηϑ

Γ(1 + ϑ)
+

1
s3ϑ

+
1

s4ϑ
+

1
s4ϑ

+
1

s5ϑ
.

Therefore, we get

ϕ2(η, κ) = L̃−1
ϑ

(
1
sϑ

ηϑ

Γ(1 + ϑ)
+

1
s3ϑ

+
1

s4ϑ
+

1
s4ϑ

+
1

s4ϑ
+

1
s5ϑ

)
.

The other approximations are written as:

L̃ϑ {ϕ3(η, κ)} =
1
sϑ

ϕ2(η, 0) +
1

s2ϑ
ϕ
(ϑ)
2 (η, 0) +

1
s4ϑ

+

1
s2ϑ

L̃ϑ

{
∂2ϑ ϕ2(η, κ)

∂η2ϑ
+

∂ϑ ϕ2(η, κ)

∂ηϑ
+

∂ϑ ϕ2(η, κ)

∂κϑ

}
=

1
sϑ

ηϑ

Γ(1 + ϑ)
+

1
s3ϑ

+
1

s4ϑ
+

1
s4ϑ

+
1

s5ϑ
+

1
s5ϑ

+
1

s6ϑ
.

Therefore, we have

ϕ3(η, κ) = L̃−1
ϑ

(
1
sϑ

ηϑ

Γ(1 + ϑ)
+

1
s3ϑ

+
1

s4ϑ
+

1
s4ϑ

+
1

s5ϑ
+

1
s5ϑ

+
1

s6ϑ

)
.

The same manner, we get

L̃ϑ {ϕn(η, κ)} =
1

s2ϑ
L̃ϑ

{
∂2ϑ ϕn−1(η, κ)

∂η2ϑ
+

∂ϑ ϕn−1(η, κ)

∂ηϑ
+

∂ϑ ϕn−1(η, κ)

∂κϑ

}
=

1
sϑ

ηϑ

Γ(1 + ϑ)
+

[
1

s3ϑ
+

1
s4ϑ

+
1

s5ϑ
+ · · ·+ 1

s(n+2)ϑ

]
+[

1
s4ϑ

+
1

s5ϑ
+ · · ·+ 1

s(n+3)ϑ

]
.
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Consequently, the local fractional series solution is:

ϕ(η, κ) = lim
n→∞

L̃−1
ϑ

(
L̃ϑ {ϕn(η, κ)}

)
=

ηϑ

Γ(1 + ϑ)
+ 2Eϑ(κ

ϑ)−
1

∑
r=0

κrϑ

Γ(1 + rϑ)
−

2

∑
r=0

κrϑ

Γ(1 + rϑ)
, (28)

which is exactly the same as that obtained by LFVIM [16].
Now, we solve problem (24) by using the LFLDM. From (22)–(25), the iteration algorithm can be written

as follows:

ϕ0 =
ηα

Γ(1 + ϑ)
+

κ3ϑ

Γ(1 + 3ϑ)
, (29)

ϕn+1 = L̃−1
ϑ

[
1

s2ϑ
L̃ϑ

{
∂2ϑ ϕn(η, κ)

∂η2ϑ
+

∂ϑ ϕn(η, κ)

∂ηϑ
+

∂ϑ ϕn(η, κ)

∂κϑ

}]
. (30)

Therefore, from (29) and (30) we give the components as follows:

ϕ1 = L̃−1
ϑ

[
1

s2ϑ
L̃ϑ

{
∂2ϑ ϕ0

∂η2ϑ
+

∂ϑ ϕ0

∂ηϑ
+

∂ϑ ϕ0

∂κϑ

}]
= L̃−1

ϑ

(
1

s3ϑ
+

1
s5ϑ

)
,

ϕ2 = L̃−1
ϑ

[
1

s2ϑ
L̃ϑ

{
∂2ϑ ϕ1

∂η2ϑ
+

∂ϑ ϕ1

∂ηϑ
+

∂ϑ ϕ1

∂κϑ

}]
= L̃−1

ϑ

(
1

s4ϑ
+

1
s6ϑ

)
.

...

Consequently, we obtain

ϕ(η, κ) =
ηϑ

Γ(1 + ϑ)
+ 2Eϑ(κ

ϑ)−
1

∑
r=0

κrϑ

Γ(1 + rϑ)
−

2

∑
r=0

κrϑ

Γ(1 + rϑ)
, (31)

which is exactly the same as that obtained by LFLVIM and LFVIM [21].

In Figures 1 and 2, the 3-dimensional plots of the approximate solutions of (24) with

initialcondition (25) are shown for different values of ϑ =
1
4

and ϑ =
ln(2)
ln(3)

respectively.
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Example 2. Consider the following damped wave equation with LFDOs

∂2ϑ ϕ

∂κ2ϑ
− ∂ϑ ϕ

∂κϑ
− ∂2ϑ ϕ

∂η2ϑ
− ηϑ

Γ(1 + ϑ)
= 0, 0 < ϑ ≤ 1, (32)
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with the initialvalue condition as follows:

ϕ(η, 0) = 0,
∂ϑ ϕ(η, 0)

∂κϑ
= − ηϑ

Γ(1 + ϑ)
. (33)

In view of (13) and (32):

L̃ϑ {ϕn+1} = L̃ϑ {ϕn} −
1

s2ϑ
L̃ϑ

{
∂2ϑ ϕn

∂κ2ϑ
− ∂ϑ ϕn

∂κϑ
− ∂2ϑ ϕn

∂η2ϑ
− ηϑ

Γ(1 + ϑ)

}
=

1
sϑ

ϕn(η, 0) +
1

s2ϑ
ϕ
(ϑ)
n (η, 0) +

1
s3ϑ

ηϑ

Γ(1 + ϑ)
+

1
s2ϑ

L̃ϑ

{
∂2ϑ ϕn(η, κ)

∂η2ϑ
+

∂ϑ ϕn(η, κ)

∂κϑ

}
. (34)

The initial value reads:

ϕ0 = − ηϑ

Γ(1 + ϑ)

κϑ

Γ(1 + ϑ)
. (35)

Hence, we get the first approximation, namely:

L̃ϑ {ϕ1} = − 1
s2ϑ

ηϑ

Γ(1 + ϑ)
.

Thus, we have

ϕ1(η, κ) = − ηϑ

Γ(1 + ϑ)

κϑ

Γ(1 + ϑ)
.

The second approximations reads:

L̃ϑ {ϕ2(η, κ)} = − 1
s2ϑ

ηϑ

Γ(1 + ϑ)
.

L̃ϑ {ϕn(η, κ)} = − 1
s2ϑ

ηϑ

Γ(1 + ϑ)
,

and

ϕn(η, κ) = − ηϑ

Γ(1 + ϑ)

κϑ

Γ(1 + ϑ)
.

Hence, the solution is:

ϕ(η, κ) = − ηϑ

Γ(1 + ϑ)

κϑ

Γ(1 + ϑ)
, (36)

which is exactly the same as that obtained by LFVIM [21].
Now, we solve problem (32) by using the LFLDM. From (22), (23), (32) and (33) the iteration algorithm

can be written as follows:

ϕ0(η, κ) = − ηϑ

Γ(1 + ϑ)

κϑ

Γ(1 + ϑ)
, (37)

ϕn+1(η, κ) = L̃−1
ϑ

[
1

s2ϑ − sϑ
L̃ϑ

{
∂2ϑ ϕn(η, κ)

∂η2ϑ

}]
. (38)
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Therefore, from (37) and (38) we give the components as follows:

ϕ1(η, κ) = L̃−1
ϑ

[
1

s2ϑ − sϑ
L̃ϑ

{
∂2ϑ ϕ0(η, κ)

∂η2ϑ

}]
= 0,

ϕ2(η, κ) = L̃−1
ϑ

[
1

s2ϑ − sϑ
L̃ϑ

{
∂2ϑ ϕ1(η, κ)

∂η2ϑ

}]
= 0,

ϕ3(η, κ) = L̃−1
ϑ

[
1

s2ϑ − sϑ
L̃ϑ

{
∂2ϑ ϕ2(η, κ)

∂η2ϑ

}]
= 0,

...

Consequently, we obtain

ϕ = − ηϑ

Γ(1 + ϑ)

κϑ

Γ(1 + ϑ)
, (39)

which is exactly the same as that obtained by LFLVIM and LFVIM [21].

In Figures 3 and 4, the 3-dimensional plots of the approximate solutions of (32) with initial

condition (33) are shown for different values of ϑ =
1
4

and ϑ =
ln(2)
ln(3)

respectively.
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ln(2)
ln(3)

.

5. Conclusions

The LFLVIM and LFLDM have been successfully applied to finding the approximate analytical
solutions for dissipative wave equation and damped wave equation with LFDOs. In comparison with
local fractional variational iteration method and local fractional Adomian decomposition method, these
methods give analytical approximate solutions in series form which converges rapidly. The reliability
and the reduction in the size of computational work is certainly a sign of a wider applicability of
the methods.
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