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Abstract: In the oil industry, many reservoirs produce from partially penetrated wells, either to 

postpone the arrival of undesirable fluids or to avoid problems during drilling operations. The 

majority of these reservoirs are heterogeneous and anisotropic, such as naturally fractured 

reservoirs. The analysis of pressure-transient tests is a very useful method to dynamically 

characterize both the heterogeneity and anisotropy existing in the reservoir. In this paper, a new 

analytical solution for a partially penetrated well based on a fractal approach to capture the 

distribution and connectivity of the fracture network is presented. This solution represents the 

complexity of the flow lines better than the traditional Euclidean flow models for single-porosity 

fractured reservoirs, i.e., for a tight matrix. The proposed solution takes into consideration the 

variations in fracture density throughout the reservoir, which have a direct influence on the 

porosity, permeability, and the size distribution of the matrix blocks as a result of the fracturing 

process. This solution generalizes previous solutions to model the pressure-transient behavior of 

partially penetrated wells as proposed in the technical literature for the classical Euclidean 

formulation, which considers a uniform distribution of fractures that are fully connected. Several 

synthetic cases obtained with the proposed solution are shown to illustrate the influence of 

different variables, including fractal parameters. 

Keywords: fractal analytical solution; partially penetrated well; single-porosity; naturally fractured 

reservoir; well test analysis 

 

1. Introduction 

In the literature, several analytical solutions for modeling the behavior of pressure-transient 

tests of partially penetrated wells have been proposed [1–10]. Some of these works have proposed 

the use of point and line source solutions derived in the Laplace space, considering finite and infinite 

systems, with homogeneous and naturally fractured reservoirs [2,5,6,8,10]. Other studies considered 

gas anisotropic reservoirs using a uniform flow solution [9]. All of these works assumed reservoirs 

with Euclidean geometry, that is, they used traditional mass conservation and flow equations. 

Starting from mass conservation and flow equations with fractal characteristics, the authors of 

[11–14] analyzed the behavior of the pressure-transient tests of single and double porosity reservoirs 

with fractal geometry. These studies established the existence of a power-law behavior during the 

transient period instead of the classical semi-logarithmic behavior that exists in reservoirs with 

Euclidean geometry. It has been demonstrated that the radial flow regime is a special case of more 

general fractal behavior. All these studies considered vertical fully penetrated wells. Up to date, no 

study has been presented that considers the pressure-transient behavior of partially penetrated wells 

produced from anisotropic heterogeneous reservoirs with fractal properties. 
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In this study, a single-porosity system was considered, which can be represented by a naturally 

fractured reservoir with a tight matrix, where the porosity and permeability of the system are due to 

the fracture network. Additionally, it was considered that there was a folding where the density of 

fractures was greater at the top of the anticline and decreased toward the flanks. Thus, there was a 

heterogeneous and anisotropic reservoir where the radial and vertical permeabilities were functions 

of the radial and vertical position, respectively. Due to the complexity of this fracture network, it was 

convenient to consider fractal geometry, instead of assuming a uniform distribution of fractures, and 

all fractures as being interconnected, as is considered in the traditional formulation with Euclidean 

geometry. 

The purpose of this work was to obtain an analytical solution that represented the behavior of 

pressure-transient tests in vertical wells partially penetrating heterogeneous and anisotropic 

reservoirs with fractal geometry. The heterogeneity and anisotropy were due to a fracture network 

caused by the thrust of a salt dome. 

2. Problem Statement 

The solution proposed in this study considered a closed cylindrical reservoir with a single 

porosity, i.e., a network of fractures may exist, but the matrix is compact and does not contribute to 

the reservoir response. The well was produced from a restricted interval of the formation. In the 

reservoir, there were fractal distributions of permeability and porosity in the radial and vertical 

directions, that is, it was a heterogeneous and anisotropic reservoir. Using the continuity equation in 

cylindrical coordinates: 
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considering a distribution of permeability in the fracture network like that existing in an anticline, 

where the radial permeability decreases as the radial distance from the center of the anticline 

increases, and the vertical permeability also decreases with the increment of vertical depth from the 

top of the anticline. Thus, the fractal distribution of permeability in the radial and vertical directions 

are given as follows: 
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where rwk  and zwk  represent the radial permeability at the center and the vertical permeability at 

the top of the anticline, respectively. Dr = 2 and Dz = 1 are the Euclidean dimensions in the horizontal 

and vertical directions, respectively. The fracture density is represented by the fractal dimensions 

frd  and fzd , in the radial and vertical directions, respectively. r and z  represent the 

connectivity indexes of the fracture network in the radial and vertical directions, respectively. The 

definition of radial permeability is similar to that used in References [11–14].  

The porosity of the fracture network is also a function of the radial distance from the center of the 

anticline and the vertical position from the top of the anticline. Thus, using the fractal definition of 

porosity proposed by Cossio et al. [15] in 2D (r and z), the fracture porosity is given by: 
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where 0  represents the average porosity in the near wellbore region at the top of the reservoir. In 

the following, we use 200   . 
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Assuming Darcy ś Law for the velocities in the radial and vertical directions and considering 

Equations (2)–(4) into Equation (1), the following equation can be obtained: 
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(5) 

It can be noted that instead of fractal derivatives, fractal definitions of the petrophysical 

properties are used in the derivation of this equation, following a similar path to that proposed in 

References [11–17]. Some applications of the use of fractional derivatives on the fluid flow in porous 

media are presented elsewhere [18–21]. Using the values of the Euclidean dimensions in the 

horizontal and vertical directions, Dr = 2 and Dz = 1, we obtained the following equation: 
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(6) 

Using the following definitions of dimensionless variables: 
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Considering a slightly compressible fluid of constant viscosity (µ), and small pressure 

gradients, we obtained: 
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In Figure 1, a diagram of the problem to be solved in cylindrical coordinates is shown. 
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Figure 1. Problem in cylindrical coordinates. 

Applying Newman’s method according to Razminia et al. [10], “the instantaneous Green 

function is equal to the product of the instantaneous Green functions in one and/or two directions”, 

in our case: 
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. (20) 

With the above, Equation (19) will be solved for the two directions independently. 

3. Analytical Solution of the Problem 

The solution was deduced by applying the methods of the Laplace’s transform, separation of 

variables, and Newman's product using instantaneous source functions. In Appendix A, the 

procedure for obtaining the solution in the radial direction for total penetration, Equation (A.7), can 

be found. This solution was used together with the solution in the vertical direction, Equation (B.18), 

obtained in Appendix B, to acquire the solution for a partially penetrated well through the use of the 

Newman's product. Thus, Equation (B.26) is written as follows: 
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where: 
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If this expression is evaluated for ℎ𝑝𝐷 = 1, 𝑧𝑤𝐷 = 0,  and ℎ𝑤𝐷 = 1 , we obtain the 

fully-penetrated well solution: 
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(23) 

where 𝜆𝑛 are the characteristic values given by the roots of Equation (B.10), and: 
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The second term of Equation (23) represents the pseudo-skin due to partial penetration 

considering fractal behavior in both radial and vertical directions. 

To include wellbore storage and mechanical skin effects, the following expression, given by Van 

Everdingen and Hurst [22], is applied: 

 
 

  SspssCs

Ssps
sp

DD

D
wD






2 . (25) 

where 𝑝̅𝐷(𝑠) is given by Equation (23). 

4. Results 

In this section, some results are presented with the proposed analytical solution given by 

Equations (23) and (25) in the case of wellbore storage and skin effects using Stehfest’s algorithm 

[23]. 

Figures 2–5 show the solution for a Euclidean isotropic case (dfr = 2.0, θr = 0, dfz = 1.0, θz = 0), 

where the upper part of the formation is open to production. Figure 2 shows results without 

mechanical skin damage, 𝑆 = 0, where only the thickness of the formation varies. The dashed lines in 

Figures 2–5 correspond to the pressure and pressure derivative given by Razminia et al. [10] for 

some Euclidian cases. In all cases, the agreement is excellent, so the proposed solution, Equation (23), 

is able to reproduce the Euclidian results as particular cases. 

 

Figure 2. Euclidean case: 𝑧𝑤𝐷 = 0, ℎ𝑝𝐷 = 0.5, 𝑆 = 0, 𝐶𝐷 = 10, 𝜀 = 1, 𝑑𝑓𝑟 = 2, 𝜃𝑟 = 0, 𝑑𝑓𝑧 = 1,  

𝜃𝑧 = 0. 

In Figure 3, the magnitude of the open interval varies, including the case of the fully penetrated 

well, keeping the thickness of the formation constant. In Figures 4 and 5, the mechanical skin 

damage and wellbore storage vary, respectively, keeping the thickness of the formation and the 

open interval constant. All these cases are Euclidean and serve to evaluate the accuracy of the fractal 

analytic solution proposed for these cases.  
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Figure 3. Euclidean case: 𝑧𝑤𝐷 = 0, ℎ𝐷 = 10,000, 𝑆 = 0, 𝐶𝐷 = 10, 𝜀 = 1, 𝑑𝑓𝑟 = 2, 𝜃𝑟 = 0, 𝑑𝑓𝑧 = 1, 

𝜃𝑧 = 0. 

 

Figure 4. Euclidean case: 𝑧𝑤𝐷 = 0, ℎ𝐷 = 10,000, ℎ𝑝𝐷 = 0.3, 𝐶𝐷 = 10, 𝜀 = 1, 𝑑𝑓𝑟 = 2, 𝜃𝑟 = 0,  

𝑑𝑓𝑧 = 1, 𝜃𝑧 = 0. 

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
-1

10
0

10
1

10
2

Fractal Solution for Partial Penetration

t
D

p
D
, 
d

p
D
/d

[l
n

(t
D
)]

 

 

p
D

Derivative

h
pD

=0.3

h
pD

=0.5

h
pD

=1.0

Euclidian Solution (h
pD

=0.5)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
-1

10
0

10
1

10
2

Fractal Solution for Partial Penetration

t
D

p
D
, 
d

p
D
/d

[l
n

(t
D
)]

 

 

p
D

Derivative

Skin = 0

Euclidian Solution (Skin=5)

Skin = 5

Skin = 10



Fractal Fract. 2019, 3, 23 7 of 17 

 

 

Figure 5. Euclidean case: 𝑧𝑤𝐷 = 0, ℎ𝐷 = 10,000, ℎ𝑝𝐷 = 0.3, 𝑆 = 1, 𝜀 = 1, 𝑑𝑓𝑟 = 2, 𝜃𝑟 = 0, 𝑑𝑓𝑧 = 1, 

𝜃𝑧 = 0. 

The cases with fractal geometry are shown below. Figure 6 shows a case where the fractal 

dimension in the radial direction is varying, dfr ≤ 2, where the value of 2 represents the Euclidean 

case (θr = 0). Thus, the traditional Euclidean case is a special case of the fractal case. In the Euclidean 

case, the classical spherical flow with a slope of −0.5, before the radial period, is present. It can be 

observed that this period of flow is not present for the fractal cases, where instead of the 

semi-logarithmic period, a power-law behavior can be observed in both the pressure drop and its 

derivative at late times during the transient period. 

 

Figure 6. Fractal case: 𝑧𝑤𝐷 = 0.4, ℎ𝐷 = 10000, ℎ𝑝𝐷 = 0.2 𝑆 = 0, 𝐶𝐷 = 100, 𝜀 = 1, 𝜃𝑟 = 0, 𝑑𝑓𝑧 = 1, 

𝜃𝑧 = 0. 
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Figure 7 shows fractal cases where the connectivity index in the radial direction (θr) varies, and 

now all other parameters are kept constant, including the fractal dimension dfr = 2. Again, the 

Euclidean case occurs when θr = 0, i.e., radial flow exists at late times during the transient period, 

and when θr > 0, the power-law response is present at these times. 

 

Figure 7. Fractal case: 𝑧𝑤𝐷 = 0.4, ℎ𝐷 = 10000, ℎ𝑝𝐷 = 0.2 S = 0, 𝐶𝐷 = 100, 𝜀 = 1, 𝑑𝑓𝑟 = 2, 𝑑𝑓𝑧 = 1, 

𝜃𝑧 = 0. 

In Figures 8 and 9 the fractal dimension, dfz, and the connectivity index, θz, are varied in the 

vertical direction, respectively, keeping the other parameters constant, including dfr = 2, and θr = 0. 

The influence of dfz and θz is observed only in the period before the radial flow. In these cases, when 

dfz = 1.0 and θz = 0, the traditional Euclidean case is obtained again, with the presence of spherical 

flow before the radial period. 
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Figure 8. Fractal case: 𝑧𝑤𝐷 = 0.4, ℎ𝐷 = 10,000, ℎ𝑝𝐷 = 0.2, 𝑆 = 0, 𝐶𝐷 = 100, 𝜀 = 1, 𝑑𝑓𝑟 = 2.0,  

𝜃𝑟 = 0, 𝜃𝑧 = 0. 

 

Figure 9. Fractal case: 𝑧𝑤𝐷 = 0.4, ℎ𝐷 = 10,000, ℎ𝑝𝐷 = 0.2, 𝑆 = 0, 𝐶𝐷 = 100, 𝜀 = 1, 𝑑𝑓𝑟 = 2.0,  

𝜃𝑟 = 0, 𝑑𝑓𝑧 = 1.0. 

In Figures 10 and 11, the influence of hpD and the mechanical skin is shown, respectively, 

keeping the other parameters constant, including the fractal parameters. At large times within the 

transient period, the power-law behavior can be detected. In fact, in Figure 11, the presence of two 

power-law periods is observed. 

 

Figure 10. Fractal case: 𝑧𝑤𝐷 = 0, ℎ𝐷 = 10,000, 𝑆 = 0, 𝐶𝐷 = 100, 𝜀 = 1, 𝑑𝑓𝑟 = 1.5, 𝜃𝑟 = 0, 𝑑𝑓𝑧 = 1.0, 

𝜃𝑧 = 0. 
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Figure 11. Fractal case:  𝑧𝑤𝐷 = 0.2, ℎ𝑝𝐷 = 0.6 , ℎ𝐷 = 10,000 , 𝐶𝐷 = 100,𝜀 = 1 ,  𝑑𝑓𝑟 = 1.8 , 𝜃𝑟 = 0.3 , 

𝑑𝑓𝑧 = 1.0, 𝜃𝑧 = 0.2. 

Figures 12 and 13 show the influence of the fractal parameters in the vertical direction, 

considering a fractal condition in the radial direction. In Figure 12, it is observed that the effect of the 

fractal dimension, dfz, is not very strong; however, it can be expected that with the arrival of 

undesirable fluids to the producing well, this parameter could play an important role. In both 

figures, the presence of two power-law periods is observed. Figure 13 shows that when the 

connectivity of fractures or pores in the vertical direction decreases, or even becomes null (i.e., θz = 

1), the late power-law period is delayed, which is an expected behavior. 
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Figure 12. Fractal case: 𝑧𝑤𝐷 = 0.2, ℎ𝑝𝐷 = 0.6, ℎ𝐷 = 10,000, 𝑆 = 0, 𝐶𝐷 = 100, 𝜀 = 1, 𝑑𝑓𝑟 = 1.8,  

𝜃𝑟 = 0.3, 𝜃𝑧 = 0.1. 

 

Figure 13. Fractal case:  𝑧𝑤𝐷 = 0.2, ℎ𝑝𝐷 = 0.6, ℎ𝐷 = 10,000, 𝑆 = 0, 𝐶𝐷 = 100, 𝜀 = 1, 𝑑𝑓𝑟 = 1.8,  

𝜃𝑟 = 0.3, 𝑑𝑓𝑧 = 0.8. 

Considering the above results, it can be deduced that the new proposed analytical solution may 

provide useful information for the proper development of a reservoir. However, it can be intuited 

that to determine all the parameters involved in the proposed analytical solution, it is necessary to 

use a robust optimizer, since a visual adjustment is expected to be very difficult to apply for a 

complex model such as the one proposed in this work.  

5. Discussion 

Taking into account the above results, and those presented by Posadas and Camacho [14], and 

the fact that there are many unknown parameters (S, CD, 𝜀, 𝑑𝑓𝑟, 𝜃𝑟, 𝑑𝑓𝑧, 𝜃𝑧, kr) to fully characterize 

this system, it is necessary to use robust optimization software in the type–curve matching process 

of both the pressure and its semi-logarithmic pressure derivative in order to obtain all of these 

parameters from well test data. 

6. Conclusions 

The novel analytical solution presented in this paper considers for the first time the application 

of fractal geometry to the problem of partial penetration. This is relevant because it allows the 

consideration of the variation of petrophysical properties with the scale or it takes into account the 

tortuosity of the flow lines in a cylindrical system. The solution was deduced by applying the 

methods of the Laplace’s transform, separation of variables, and Newman's product using 

instantaneous source functions. Considering the results presented in this article, we can conclude the 

following: 

1. The new fractal analytical solution for a constant rate describes the pressure-transient behavior 

for partially penetrating wells in a single-porosity naturally fractured reservoir and includes the 

traditional Euclidean solution as a special case. 

2. The proposed fractal solution generates a power-law response at late times during the transient 

period after the wellbore storage, mechanical skin, and partial penetration effects have ended. 

This behavior occurs when the radial fractal parameters are different from the Euclidean values, 

i.e., dfr < 2 and θr > 0. 
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3. A different behavior to the power-law response occurs when dfz < 1 and θz > 0. The effect of these 

parameters is shown only during the partial penetration period, and after this period, the 

traditional radial behavior (if dfr = 2 and θr = 0) or a power-law behavior (when dfr < 2 and/or θr > 

0) can be present. 

4. The typical spherical flow regime due to partial penetration is only present when the fractal 

parameters in the radial direction have the Euclidean values, i.e., dfr = 2 and θr = 0. 

5. An expression is provided to evaluate the pseudo-skin due to the partial penetration effects that 

consider fractal behavior in both the radial and vertical directions. 

6. To determine the pseudo-damage due to restricted penetration, horizontal permeability, 

vertical to horizontal permeability ratio, mechanical skin, and the four fractal parameters, it is 

necessary to resort to a type–curve matching process of the pressure data and its 

semi-logarithmic derivative using a robust optimizer that minimizes the difference between the 

real data and the analytical solution. 

Nomenclature 

ct Compressibility [psi−1] 

C Wellbore storage constant [bbl/psi] 

CD Dimensionless wellbore storage constant 

dfr Fractal dimension in the radial direction (1 ≤ dfr ≤ 2) 

dfz Fractal dimension in the vertical direction (0 ≤ dfz ≤ 1) 

h Formation thickness [ft] 

hp Producing interval [ft] 

hpD Dimensionless producing interval 

hwD Dimensionless depth at bottom of producing interval 

kr Permeability in the radial direction, [mD] 

kz Permeability in the vertical direction, [mD] 

krw Reference radial permeability at the wellbore, [mD] 

kzw Reference vertical permeability at the top of the anticline, [mD] 

Kν Modified Bessel function of order ν 

Jν Bessel function of order ν 

p Pressure, [psi] 

pi Initial pressure, [psi] 

pwD Dimensionless wellbore pressure 

q Production rate, [bpd] 

rw Wellbore radius, [ft] 

rD Dimensionless radius 

s Laplace domain parameter 

S Mechanical skin factor 

t Time, [hours] 

tD Dimensionless time 

z Vertical depth from the top of the dome, [ft] 

zD Dimensionless vertical depth 

zw Top position of open interval, [ft] 

zwD Dimensionless depth at top of open interval 

zwmD Dimensionless depth at medium of open interval 

μ Fluid viscosity, [cp] 

ø Porosity 

θr Connectivity index in the radial direction (0 ≤ θr ≤ 1) 

θz Connectivity index in the vertical direction (0 ≤ θz ≤ 1) 

ξ(s) Pseudo-skin due to partial penetration considering fractal behavior 
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Appendix A. Solution in the Radial Direction 

The flow in the radial direction is obtained from Equation (19) as follows: 
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where  𝛽𝑟 = 𝑑𝑓𝑟 − 𝜃𝑟 − 1.  

Using the Laplace transform: 
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Applying the Levedev [24] technique, we are able to obtain the solution in terms of the 

modified Bessel functions:  
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Using the following boundary conditions in the radial direction: 
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It is found that the solution in the radial direction for total penetration in the Laplace space is 

given by: 
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Appendix B. Solution in the Vertical Direction 

From Equation (19), the continuity equation in the vertical direction is given by: 
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where 𝛽𝑧 = 𝑑𝑓𝑧 − 𝜃𝑧 − 1. Applying separation of variables in Equation (B.1): 

     DDDDz tuzwtzS ,
.
 (B.2) 
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Thus, the solution for  Dtu  is given by: 
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and the solution for  Dzw  is obtained from: 
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Applying the Levedev [24] technique, we are able to obtain the solution for w (zD), in terms of 

the Bessel functions: 
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where: 
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Substituting Equations (B.3) and (B.5) into Equation (B.2), the general solution for the problem 

in the vertical direction is given by: 
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Considering the following boundary conditions in the vertical direction: 
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We obtain from Equation (B.8), D = 0. From Equation (B.9) we obtain: 
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(B.10) 

From the roots of Equation (B.10) the characteristic values λ are obtained. 

Applying the superposition principle with Equation (B.7) we obtain the following expression: 
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Considering an instantaneous source plate with its center in wmDz , which agrees with the 

midpoint of the producing interval, the following expression is obtained: 
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Multiplying Equation (B.12) by 2

2 z

Dzx



  and then applying the orthogonality property, we 

obtain: 



Fractal Fract. 2019, 3, 23 15 of 17 

 






































 























 1

0

2
22

2

2

22

2

2

2

2

22

2
dxx

h
J

x
Cdzz

h
Jz

z

z

pD
wmD

pD
wmD

zz

z

zfz

Dn

z

v

z

n

h
z

h
z

DD
Dn

z

v

d

D












. 
(B.13) 

To evaluate the term of the integral on the right-hand side of Equation (B.13), Abramowitz and 

Stegun [25] is used, obtaining the following expression: 
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(B.13), we use Gradshteyn and Ryzhik [26], which is expressed as: 
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Obtaining the following: 
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Substituting Equations (B.14) and (B.16) into Equation (B.13), we obtain: 
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Substituting Equation (B.17) into Equation (B.11), the following solution is obtained: 
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According to Razminia et al. [10] the instantaneous source function for a partial penetration is 

defined as a function of the instantaneous source function for total penetration, such as: 
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Using the method of Newman’s product, the instantaneous source function for partial 

penetration can be obtained as follows: 

),(),(),,( DDzDDrDDD tzStrStzrS  . (B.20) 

Thus, using Equations (B.18) and (B.19) into Equation (B.20): 
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Considering that: 



Fractal Fract. 2019, 3, 23 16 of 17 

 


Dt

DDDDDDf dzrStzrp
0

),,(),,(  ,
 (B.22) 

the solution in the Laplace space is given by: 
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Substituting Equation (A.7) into Equation (B.23), the final solution is given as follows: 
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where 𝜆𝑛 are the roots of Equation (B.10). The evaluation at the wellbore is obtained by evaluating 

Equation (B.24) for rD = 1 in the producing interval, using: 
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Finally, the following expression is obtained for the wellbore pressure drop: 
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If Equation (B.26) is evaluated for 1pDh , 0wDz  and 1wDh , we obtain the fully 

penetrated well solution, given by: 
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Thus, the pseudo-skin due to partial penetration considering fractal behavior is given by: 
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