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Abstract: In the oil industry, many reservoirs produce from partially penetrated wells, either
to postpone the arrival of undesirable fluids or to avoid problems during drilling operations.
The majority of these reservoirs are heterogeneous and anisotropic, such as naturally fractured
reservoirs. The analysis of pressure-transient tests is a very useful method to dynamically characterize
both the heterogeneity and anisotropy existing in the reservoir. In this paper, a new analytical solution
for a partially penetrated well based on a fractal approach to capture the distribution and connectivity
of the fracture network is presented. This solution represents the complexity of the flow lines better
than the traditional Euclidean flow models for single-porosity fractured reservoirs, i.e., for a tight
matrix. The proposed solution takes into consideration the variations in fracture density throughout
the reservoir, which have a direct influence on the porosity, permeability, and the size distribution of
the matrix blocks as a result of the fracturing process. This solution generalizes previous solutions
to model the pressure-transient behavior of partially penetrated wells as proposed in the technical
literature for the classical Euclidean formulation, which considers a uniform distribution of fractures
that are fully connected. Several synthetic cases obtained with the proposed solution are shown to
illustrate the influence of different variables, including fractal parameters.

Keywords: fractal analytical solution; partially penetrated well; single-porosity; naturally fractured
reservoir; well test analysis

1. Introduction

In the literature, several analytical solutions for modeling the behavior of pressure-transient tests
of partially penetrated wells have been proposed [1–10]. Some of these works have proposed the
use of point and line source solutions derived in the Laplace space, considering finite and infinite
systems, with homogeneous and naturally fractured reservoirs [2,5,6,8,10]. Other studies considered
gas anisotropic reservoirs using a uniform flow solution [9]. All of these works assumed reservoirs
with Euclidean geometry, that is, they used traditional mass conservation and flow equations.

Starting from mass conservation and flow equations with fractal characteristics, the authors
of [11–14] analyzed the behavior of the pressure-transient tests of single and double porosity reservoirs
with fractal geometry. These studies established the existence of a power-law behavior during the
transient period instead of the classical semi-logarithmic behavior that exists in reservoirs with
Euclidean geometry. It has been demonstrated that the radial flow regime is a special case of more
general fractal behavior. All these studies considered vertical fully penetrated wells. Up to date,
no study has been presented that considers the pressure-transient behavior of partially penetrated
wells produced from anisotropic heterogeneous reservoirs with fractal properties.
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In this study, a single-porosity system was considered, which can be represented by a naturally
fractured reservoir with a tight matrix, where the porosity and permeability of the system are due to the
fracture network. Additionally, it was considered that there was a folding where the density of fractures
was greater at the top of the anticline and decreased toward the flanks. Thus, there was a heterogeneous
and anisotropic reservoir where the radial and vertical permeabilities were functions of the radial and
vertical position, respectively. Due to the complexity of this fracture network, it was convenient to
consider fractal geometry, instead of assuming a uniform distribution of fractures, and all fractures as
being interconnected, as is considered in the traditional formulation with Euclidean geometry.

The purpose of this work was to obtain an analytical solution that represented the behavior of
pressure-transient tests in vertical wells partially penetrating heterogeneous and anisotropic reservoirs
with fractal geometry. The heterogeneity and anisotropy were due to a fracture network caused by the
thrust of a salt dome.

2. Problem Statement

The solution proposed in this study considered a closed cylindrical reservoir with a single porosity,
i.e., a network of fractures may exist, but the matrix is compact and does not contribute to the reservoir
response. The well was produced from a restricted interval of the formation. In the reservoir, there were
fractal distributions of permeability and porosity in the radial and vertical directions, that is, it was a
heterogeneous and anisotropic reservoir. Using the continuity equation in cylindrical coordinates:

1
r
∂
∂r

(rρvr) +
∂
∂z

(ρvz) = −
∂(ρφ)

∂t
, (1)

considering a distribution of permeability in the fracture network like that existing in an anticline, where
the radial permeability decreases as the radial distance from the center of the anticline increases, and the
vertical permeability also decreases with the increment of vertical depth from the top of the anticline.
Thus, the fractal distribution of permeability in the radial and vertical directions are given as follows:

kr = krw

( r
rw

)d f r−θr−Dr
, (2)

kz = kzw

( z
rw

)d f z−θz−Dz
, (3)

where krw and kzw represent the radial permeability at the center and the vertical permeability at the
top of the anticline, respectively. Dr = 2 and Dz = 1 are the Euclidean dimensions in the horizontal
and vertical directions, respectively. The fracture density is represented by the fractal dimensions
d f r and d f z, in the radial and vertical directions, respectively. θr and θz represent the connectivity
indexes of the fracture network in the radial and vertical directions, respectively. The definition of
radial permeability is similar to that used in References [11–14].

The porosity of the fracture network is also a function of the radial distance from the center of the
anticline and the vertical position from the top of the anticline. Thus, using the fractal definition of
porosity proposed by Cossio et al. [15] in 2D (r and z), the fracture porosity is given by:

φ f =
φ0

2

[( r
rw

)d f r−Dr
+

( z
rw

)d f z−Dz
]
, (4)

where φ0 represents the average porosity in the near wellbore region at the top of the reservoir. In the
following, we use φ0 = φ0/2.
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Assuming Darcy´s Law for the velocities in the radial and vertical directions and considering
Equations (2)–(4) into Equation (1), the following equation can be obtained:

1
r
∂
∂r

(
rρ krw(r/rw)

d f r−θr−Dr

µ
∂p
∂r

)
+ ∂

∂z

(
ρ

kzw(z/rw)
d f z−θz−Dz

µ
∂p
∂z

)
= ∂

∂t

(
ρφ0

[(
r

rw

)d f r−Dr
+

(
z

rw

)d f z−Dz
])

. (5)

It can be noted that instead of fractal derivatives, fractal definitions of the petrophysical properties
are used in the derivation of this equation, following a similar path to that proposed in References [11–17].
Some applications of the use of fractional derivatives on the fluid flow in porous media are presented
elsewhere [18–21]. Using the values of the Euclidean dimensions in the horizontal and vertical
directions, Dr = 2 and Dz = 1, we obtained the following equation:

1
r
∂
∂r

rρ
krw(r/rw)

d f r−θr−2

µ

∂p
∂r

+ ∂
∂z

ρkzw(z/rw)
d f z−θz−1

µ

∂p
∂z

 = ∂
∂t

(
ρφ0

[( r
rw

)d f r−2
+

( z
rw

)d f z−1
])

. (6)

Using the following definitions of dimensionless variables:

rD = r/rw. (7)

zD = z/h. (8)

hD = h/rw. (9)

zwD = zw/h. (10)

zwmD = (zw + hp/2)/h. (11)

hwD = hw/h. (12)

hpD = hp/h. (13)

βr = d f r − θr − 1. (14)

βz = d f z − θz − 1. (15)

ε = kzw/krw. (16)

tD =
krwt

φ0µctr2
w

. (17)

pD =
2πkrwh(pi − p)

qBµ
. (18)

Considering a slightly compressible fluid of constant viscosity (µ), and small pressure gradients,
we obtained:

1
rD

∂
∂rD

(
rβr

D
∂pD

∂rD

)
+ εhβz−2

D
∂
∂zD

(
zD

βz
∂pD

∂zD

)
=

[
rD

d f r−2 + (hDzD)
d f z−1

]∂pD

∂tD
. (19)

In Figure 1, a diagram of the problem to be solved in cylindrical coordinates is shown.
Applying Newman’s method according to Razminia et al. [10], “the instantaneous Green function

is equal to the product of the instantaneous Green functions in one and/or two directions”, in our case:

S(rD, zD, tD) = Sr(rD, tD) · Sz(zD, tD). (20)

With the above, Equation (19) will be solved for the two directions independently.



Fractal Fract. 2019, 3, 23 4 of 17Fractal Fract. 2019, 3, 23 4 of 17 

 

 
Figure 1. Problem in cylindrical coordinates. 

Applying Newman’s method according to Razminia et al. [10], “the instantaneous Green 
function is equal to the product of the instantaneous Green functions in one and/or two directions”, 
in our case: 

),(),(),,( DDzDDrDDD tzStrStzrS ⋅= . (20) 

With the above, Equation (19) will be solved for the two directions independently. 

3. Analytical Solution of the Problem 

The solution was deduced by applying the methods of the Laplace’s transform, separation of 
variables, and Newman's product using instantaneous source functions. In Appendix A, the 
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where: 

n
r

n s λ
θ

ψ +







+

=
2

2
. (22) 

If this expression is evaluated for ℎ = 1, 𝑧 = 0,  and ℎ = 1 , we obtain the 
fully-penetrated well solution: 
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where 𝜆  are the characteristic values given by the roots of Equation (B.10), and: 

Figure 1. Problem in cylindrical coordinates.

3. Analytical Solution of the Problem

The solution was deduced by applying the methods of the Laplace’s transform, separation of
variables, and Newman’s product using instantaneous source functions. In Appendix A, the procedure
for obtaining the solution in the radial direction for total penetration, Equation (A7), can be found.
This solution was used together with the solution in the vertical direction, Equation (A25), obtained in
Appendix B, to acquire the solution for a partially penetrated well through the use of the Newman’s
product. Thus, Equation (A33) is written as follows:

pwD(s) =
2

h2
pD·s
·

∞∑
n=0

Kvr [ψn]
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2
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2
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]2 , (21)

where:
ψn =
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)√
s + λn. (22)

If this expression is evaluated for hpD = 1, zwD = 0, and hwD = 1, we obtain the fully-penetrated
well solution:
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)√
s
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s
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h2

pD·s
·
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z
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2
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2
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2
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2
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(23)

where λn are the characteristic values given by the roots of Equation (A17), and:

an =
2

2 + θz

√
λnh2+θz

D
ε

. (24)

The second term of Equation (23) represents the pseudo-skin due to partial penetration considering
fractal behavior in both radial and vertical directions.

To include wellbore storage and mechanical skin effects, the following expression, given by Van
Everdingen and Hurst [22], is applied:

pwD(s) =
spD(s) + S

s + CDs2
[
spD(s) + S

] . (25)

where pD(s) is given by Equation (23).



Fractal Fract. 2019, 3, 23 5 of 17

4. Results

In this section, some results are presented with the proposed analytical solution given by Equations
(23) and (25) in the case of wellbore storage and skin effects using Stehfest’s algorithm [23].

Figures 2–5 show the solution for a Euclidean isotropic case (dfr = 2.0, θr = 0, dfz = 1.0, θz = 0),
where the upper part of the formation is open to production. Figure 2 shows results without mechanical
skin damage, S = 0, where only the thickness of the formation varies. The dashed lines in Figures 2–5
correspond to the pressure and pressure derivative given by Razminia et al. [10] for some Euclidian
cases. In all cases, the agreement is excellent, so the proposed solution, Equation (23), is able to
reproduce the Euclidian results as particular cases.
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θz = 0.

In Figure 3, the magnitude of the open interval varies, including the case of the fully penetrated
well, keeping the thickness of the formation constant. In Figures 4 and 5, the mechanical skin damage
and wellbore storage vary, respectively, keeping the thickness of the formation and the open interval
constant. All these cases are Euclidean and serve to evaluate the accuracy of the fractal analytic solution
proposed for these cases.

The cases with fractal geometry are shown below. Figure 6 shows a case where the fractal
dimension in the radial direction is varying, dfr ≤ 2, where the value of 2 represents the Euclidean case
(θr = 0). Thus, the traditional Euclidean case is a special case of the fractal case. In the Euclidean case,
the classical spherical flow with a slope of −0.5, before the radial period, is present. It can be observed
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that this period of flow is not present for the fractal cases, where instead of the semi-logarithmic period,
a power-law behavior can be observed in both the pressure drop and its derivative at late times during
the transient period.
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Figure 7 shows fractal cases where the connectivity index in the radial direction (θr) varies, and
now all other parameters are kept constant, including the fractal dimension dfr = 2. Again, the Euclidean
case occurs when θr = 0, i.e., radial flow exists at late times during the transient period, and when
θr > 0, the power-law response is present at these times.
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Figure 7. Fractal case: zwD = 0.4, hD = 10, 000, hpD = 0.2, S = 0, CD = 100, ε = 1, d f r = 2, d f z = 1,
θz = 0.
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In Figures 8 and 9 the fractal dimension, dfz, and the connectivity index, θz, are varied in the
vertical direction, respectively, keeping the other parameters constant, including dfr = 2, and θr = 0.
The influence of dfz and θz is observed only in the period before the radial flow. In these cases, when
dfz = 1.0 and θz = 0, the traditional Euclidean case is obtained again, with the presence of spherical
flow before the radial period.
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Figure 8. Fractal case: zwD = 0.4, hD = 10, 000, hpD = 0.2, S = 0, CD = 100, ε = 1, d f r = 2.0, θr = 0,
θz = 0.
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Figure 9. Fractal case: zwD = 0.4, hD = 10, 000, hpD = 0.2, S = 0, CD = 100, ε = 1, d f r = 2.0, θr = 0,
d f z = 1.0.

In Figures 10 and 11, the influence of hpD and the mechanical skin is shown, respectively, keeping
the other parameters constant, including the fractal parameters. At large times within the transient
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period, the power-law behavior can be detected. In fact, in Figure 11, the presence of two power-law
periods is observed.
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Figure 11. Fractal case: zwD = 0.2, hpD = 0.6, hD = 10, 000, CD = 100, ε = 1, d f r = 1.8, θr = 0.3,
d f z = 1.0, θz = 0.2.

Figures 12 and 13 show the influence of the fractal parameters in the vertical direction, considering
a fractal condition in the radial direction. In Figure 12, it is observed that the effect of the fractal
dimension, dfz, is not very strong; however, it can be expected that with the arrival of undesirable
fluids to the producing well, this parameter could play an important role. In both figures, the presence
of two power-law periods is observed. Figure 13 shows that when the connectivity of fractures or
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pores in the vertical direction decreases, or even becomes null (i.e., θz = 1), the late power-law period
is delayed, which is an expected behavior.
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Figure 12. Fractal case: zwD = 0.2, hpD = 0.6, hD = 10, 000, S = 0, CD = 100, ε = 1, d f r = 1.8, θr = 0.3,
θz = 0.1.
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Figure 13. Fractal case: zwD = 0.2, hpD = 0.6, hD = 10, 000, S = 0, CD = 100, ε = 1, d f r = 1.8, θr = 0.3,
d f z = 0.8.

Considering the above results, it can be deduced that the new proposed analytical solution may
provide useful information for the proper development of a reservoir. However, it can be intuited that
to determine all the parameters involved in the proposed analytical solution, it is necessary to use
a robust optimizer, since a visual adjustment is expected to be very difficult to apply for a complex
model such as the one proposed in this work.
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5. Discussion

Taking into account the above results, and those presented by Posadas and Camacho [14], and the
fact that there are many unknown parameters (S, CD, ε, d f r, θr, d f z, θz, kr) to fully characterize this
system, it is necessary to use robust optimization software in the type–curve matching process of both
the pressure and its semi-logarithmic pressure derivative in order to obtain all of these parameters
from well test data.

6. Conclusions

The novel analytical solution presented in this paper considers for the first time the application
of fractal geometry to the problem of partial penetration. This is relevant because it allows the
consideration of the variation of petrophysical properties with the scale or it takes into account the
tortuosity of the flow lines in a cylindrical system. The solution was deduced by applying the methods
of the Laplace’s transform, separation of variables, and Newman’s product using instantaneous source
functions. Considering the results presented in this article, we can conclude the following:

1. The new fractal analytical solution for a constant rate describes the pressure-transient behavior
for partially penetrating wells in a single-porosity naturally fractured reservoir and includes the
traditional Euclidean solution as a special case.

2. The proposed fractal solution generates a power-law response at late times during the transient
period after the wellbore storage, mechanical skin, and partial penetration effects have ended.
This behavior occurs when the radial fractal parameters are different from the Euclidean values,
i.e., dfr < 2 and θr > 0.

3. A different behavior to the power-law response occurs when dfz < 1 and θz > 0. The effect of
these parameters is shown only during the partial penetration period, and after this period, the
traditional radial behavior (if dfr = 2 and θr = 0) or a power-law behavior (when dfr < 2 and/or θr

> 0) can be present.
4. The typical spherical flow regime due to partial penetration is only present when the fractal

parameters in the radial direction have the Euclidean values, i.e., dfr = 2 and θr = 0.
5. An expression is provided to evaluate the pseudo-skin due to the partial penetration effects that

consider fractal behavior in both the radial and vertical directions.
6. To determine the pseudo-damage due to restricted penetration, horizontal permeability, vertical

to horizontal permeability ratio, mechanical skin, and the four fractal parameters, it is necessary
to resort to a type–curve matching process of the pressure data and its semi-logarithmic
derivative using a robust optimizer that minimizes the difference between the real data and the
analytical solution.
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Nomenclature

ct Compressibility [psi−1]
C Wellbore storage constant [bbl/psi]
CD Dimensionless wellbore storage constant
dfr Fractal dimension in the radial direction (1 ≤ dfr ≤ 2)
dfz Fractal dimension in the vertical direction (0 ≤ dfz ≤ 1)
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h Formation thickness [ft]
hp Producing interval [ft]
hpD Dimensionless producing interval
hwD Dimensionless depth at bottom of producing interval
kr Permeability in the radial direction, [mD]
kz Permeability in the vertical direction, [mD]
krw Reference radial permeability at the wellbore, [mD]
kzw Reference vertical permeability at the top of the anticline, [mD]
Kν Modified Bessel function of order ν
Jν Bessel function of order ν
p Pressure, [psi]
pi Initial pressure, [psi]
pwD Dimensionless wellbore pressure
q Production rate, [bpd]
rw Wellbore radius, [ft]
rD Dimensionless radius
s Laplace domain parameter
S Mechanical skin factor
t Time, [hours]
tD Dimensionless time
z Vertical depth from the top of the dome, [ft]
zD Dimensionless vertical depth
zw Top position of open interval, [ft]
zwD Dimensionless depth at top of open interval
zwmD Dimensionless depth at medium of open interval
µ Fluid viscosity, [cp]
ø Porosity
θr Connectivity index in the radial direction (0 ≤ θr ≤ 1)
θz Connectivity index in the vertical direction (0 ≤ θz ≤ 1)
ξ(s) Pseudo-skin due to partial penetration considering fractal behavior

Appendix A. Solution in the Radial Direction

The flow in the radial direction is obtained from Equation (19) as follows:

1
rD

∂
∂rD

(
rβr

D
∂Sr

∂rD

)
= rD

d f r−2 ∂Sr

∂tD
. (A1)

where βr = d f r − θr − 1.
Using the Laplace transform:

∂2Sr

∂r2
D

+
βr

rD

∂Sr

∂rD
− srD

θr Sr = 0. (A2)

Applying the Levedev [24] technique, we are able to obtain the solution in terms of the modified
Bessel functions:

Sr(rD) = r
1−βr

2
D

{
AIvr

[( 2
2 + θr

)
√

srD
2+θr

2

]
+ BKvr

[( 2
2 + θr

)
√

srD
2+θr

2

]}
, (A3)

where:

vr =

(
1− βr

2 + θr

)
. (A4)

Using the following boundary conditions in the radial direction:

lim
rD →∞

Sr(rD, s) = 0, (A5)

(
rD
∂Sr

∂rD

)
rD=1

= −
1
s

. (A6)
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It is found that the solution in the radial direction for total penetration in the Laplace space is given by:

Sr(rD, s) =
r

1−βr
2

D Kvr

[(
2

2+θr

)√
srD

2+θr
2

]
s ·

[
√

s
(

1
2

)[
Kvr−1

[(
2

2+θr

)√
s
]
+ Kvr+1

[(
2

2+θr

)√
s
]]
−

(
1−βr

2

)
Kvr

[(
2

2+θr

)√
s
]] . (A7)

Appendix B. Solution in the Vertical Direction

From Equation (19), the continuity equation in the vertical direction is given by:

zβz

D
d2Sz

dz2
D

+ βzzβz−1
D

dSz

dzD
−

h2+θz
D zD

d f z−1

ε

∂Sz

∂tD
= 0, (A8)

where βz = d f z − θz − 1. Applying separation of variables in Equation (A8):

Sz(zD, tD) = w(zD)u(tD). (A9)

Thus, the solution for u(tD) is given by:

u(tD) = Ee−λtD , (A10)

and the solution for w(zD) is obtained from:

z2
D

d2w
dz2

D

+ βzzD
dw
dzD

+
λh2+θz

D zD
2+θz

ε
w = 0. (A11)

Applying the Levedev [24] technique, we are able to obtain the solution for w (zD), in terms of the
Bessel functions:

w(zD) = z
1−βz

2
D

C · Jvz

 2
2 + θz

√
λh2+θz

D
ε

z
2+θZ

2
D

+ D ·Yvz

 2
2 + θz

√
λh2+θz

D
ε

z
2+θZ

2
D


, (A12)

where:

vz =
1− βz

2 + θZ
. (A13)

Substituting Equations (A10) and (A12) into Equation (A9), the general solution for the problem in the
vertical direction is given by:

Sz(zD, tD) = Ee−λtD z
1−βz

2
D

C · Jvz

 2
2 + θz

√
λh2+θz

D
ε

z
2+θZ

2
D

+ D ·Yvz

 2
2 + θz

√
λh2+θz

D
ε

z
2+θZ

2
D


. (A14)

Considering the following boundary conditions in the vertical direction:

∂Sz(zD = 0, tD)

∂zD
= 0, (A15)

∂Sz(zD = 1, tD)

∂zD
= 0. (A16)

We obtain from Equation (A15), D = 0. From Equation (A16) we obtain:

0 =

√
λh2+θz

D
ε

(1
2

)Jvz−1

 2
2 + θz

√
λh2+θz

D
ε

− Jvz+1

 2
2 + θz

√
λh2+θz

D
ε


+

(
1− βz

2

)
Jvz

 2
2 + θz

√
λh2+θz

D
ε

. (A17)

From the roots of Equation (A17) the characteristic values λ are obtained.
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Applying the superposition principle with Equation (A17) we obtain the following expression:

Sz(zD, tD) =
∞∑

n=0

Cn · e−λntD z
1−βz

2
D · Jvz

 2
2 + θz

√
λnh2+θz

D
ε

z
2+θZ

2
D

. (A18)

Considering an instantaneous source plate with its center in zwmD, which agrees with the midpoint of the
producing interval, the following expression is obtained:

H
[
zD −

(
zwmD − hpD/2

)]
−H

[
zD −

(
zwmD + hpD/2

)]
= H[zD − zwD] −H[zD − hwD] = Cn

∞∑
n=0
·z

1−βz
2

D · Jvz

[
2

2+θz

√
λnh2+θz

D
ε z

2+θZ
2

D

]
. (A19)

Multiplying Equation (A19) by x = z
2+θz

2
D and then applying the orthogonality property, we obtain:

zwmD+
hpD

2∫
zwmD−

hpD
2

z
d f z+θz

2
D Jvz

 2
2 + θz

√
λnh2+θz

D
ε

z
2+θz

2
D

dzD = Cn ·

1∫
0

x(
2+θz

2

)
Jvz

 2
2 + θz

√
λnh2+θz

D
ε

x



2

dx. (A20)

To evaluate the term of the integral on the right-hand side of Equation (A20), Abramowitz and Stegun [25] is
used, obtaining the following expression:

1∫
0

2x
(2 + θz)

Jvz

 2
2 + θz

√
λnh2+θz

D
ε

x



2

dx =
1

(2 + θz)

[
Jvz−1(an) −

vz

an
Jvz

(an)
]2

, (A21)

where an = 2
2+θz

√
λnh2+θz

D
ε . To evaluate the term of the integral on the left-hand side of Equation (A20), we use

Gradshteyn and Ryzhik [26], which is expressed as:∫
x1−vz · Jvz [an · x]dx = −

x1−vz Jvz−1(anx)
an

. (A22)

Obtaining the following:

(
2

2+θz

) (zwmD+
hpD

2 )
(2+θz)/2∫

(zwmD−
hpD

2 )
(2+θz)/2

x1−vz · Jvz [an · x]dx =
(

2
2+θz

)
1
an

(zwmD −
hpD
2

) d f z
2

Jvz−1

(
an

(
zwmD −

hpD
2

)(2+θz)/2
)
−

(
zwmD +

hpD
2

) d f z
2

Jvz−1

(
an

(
zwmD +

hpD
2

)(2+θz)/2
). (A23)

Substituting Equations (A21) and (A23) into Equation (A20), we obtain:

Cn =

2
{

z
d f z

2
wD Jvz−1

(
anz

(2+θz)
2

wD

)
− h

d f z
2

wD Jvz−1

(
anh

(2+θz)
2

wD

)}
an

[
Jvz−1(an) −

vz
an

Jvz
(an)

]2 . (A24)

Substituting Equation (A24) into Equation (A18), the following solution is obtained:

Sz(zD, tD) = 2 ·
∞∑

n=0

e−λntD z
1−βz

2
D · Jvz

[
anz

2+θZ
2

D

]{
zwD

d f z
2 Jvz−1

(
anzwD

(2+θz)
2

)
− hwD

d f z
2 Jvz−1

(
anhwD

(2+θz)
2

)}
an

[
Jvz−1(an) −

vz
an

Jvz
(an)

]2 . (A25)

According to Razminia et al. [10] the instantaneous source function for a partial penetration is defined as a
function of the instantaneous source function for total penetration, such as:

S(rD, tD) =
1

hpD
S(rD, tD) f =

1
hpD

∂pD f (rD, tD)

∂tD
. (A26)
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Using the method of Newman’s product, the instantaneous source function for partial penetration can be
obtained as follows:

S(rD, zD, tD) = Sr(rD, tD) · Sz(zD, tD). (A27)

Thus, using Equations (A25) and (A26) into Equation (A27):

S(rD, zD, tD) =
2

hpD

∂pD f (rD, tD)

∂tD
·

∞∑
n=0

e−λntD z
1−βz

2
D Jvz

[
anz

2+θZ
2

D

]{
z

d f z
2

wD Jvz−1

(
anz

(2+θz)
2

wD

)
− h

d f z
2

wD Jvz−1

(
anh

(2+θz)
2

wD

)}
an

[
Jvz−1(an) −

vz
an

Jvz
(an)

]2 . (A28)

Considering that:

pD f (rD, zD, tD) =

tD∫
0

S(rD, zD, τ)dτ, (A29)

the solution in the Laplace space is given by:

pD(rD, zD, s) = 2
hpD·s
·

∞∑
n=0

(s+λn)pD f (rD,s+λn)z
1−βz

2
D Jvz

anz
2+θZ

2
D


z

d f z
2

wD Jvz−1

anz
(2+θz)

2
wD

−h
d f z

2
wD Jvz−1

anh
(2+θz)

2
wD




an

[
Jvz−1(an)−

vz
an

Jvz (an)
]2 . (A30)

Substituting Equation (A7) into Equation (A30), the final solution is given as follows:

pD(rD, zD, s) = 2
hpD·s
·

∞∑
n=0

r
1−βr

2
D Kvr

[
( 2

2+θr )
√

s+λnrD
2+θr

2

]
z

1−βz
2

D Jvz

anz
2+θZ

2
D


z

d f z
2

wD Jvz−1

anz
(2+θz)

2
wD

−h
d f z

2
wD Jvz−1

anh
(2+θz)

2
wD


[√

s+λn( 1
2 )[Kvr−1[( 2

2+θr )
√

s+λn]+Kvr+1[( 2
2+θr )

√
s+λn]]−

( 1−βr
2

)
Kvr [( 2

2+θr )
√

s+λn]
]
an

[
Jvz−1(an)−

vz
an

Jvz (an)
]2 , (A31)

where λn are the roots of Equation (A17). The evaluation at the wellbore is obtained by evaluating Equation (A31)
for rD = 1 in the producing interval, using:

pwD(s) =
1

hpD

hwD∫
zwD

pD f (rD = 1, zD, s)dzD. (A32)

Finally, the following expression is obtained for the wellbore pressure drop:

pwD(s) =
2

h2
pD · s

·

∞∑
n=0

Kvr [ψn]

{
z

d f z
2

wD Jvz−1

(
anz

(2+θz)
2

wD

)
− h

d f z
2

wD Jvz−1

(
anh

(2+θz)
2

wD

)}2

[
√

s + λn
(

1
2

)[
Kvr−1[ψn] + Kvr+1[ψn]

]
−

(
1−βr

2

)
Kvr [ψn]

]
a2

n

[
Jvz−1(an) −

vz
an

Jvz
(an)

]2
, (A33)

ψn =
( 2

2 + θr

)√
s + λn. (A34)

If Equation (A33) is evaluated for hpD = 1, zwD = 0 and hwD = 1, we obtain the fully penetrated well solution,
given by:

pwD(s) =
Kvr [( 2

2+θr )
√

s]

s
[√

s( 1
2 )[Kvr−1[( 2

2+θr )
√

s]+Kvr+1[( 2
2+θr )

√
s]]−

( 1−βr
2

)
Kvr [( 2

2+θr )
√

s]
]

+ 2
h2

pD·s
·

∞∑
n=1

Kvr [ψn]

z
d f z

2
wD Jvz−1

anz
(2+θz)

2
wD

−h
d f z

2
wD Jvz−1

anh
(2+θz)

2
wD




2

[√
s+λn( 1

2 )[Kvr−1[ψn]+Kvr+1[ψn]]−
( 1−βr

2

)
Kvr [ψn]

]
a2

n

[
Jvz−1(an)−

vz
an

Jvz (an)
]2

(A35)

Thus, the pseudo-skin due to partial penetration considering fractal behavior is given by:

ξ(s) =
2

h2
pD · s

·

∞∑
n=1

Kvr [ψn]

{
z

d f z
2

wD Jvz−1

(
anz

(2+θz)
2

wD

)
− h

d f z
2

wD Jvz−1

(
anh

(2+θz)
2

wD

)}2

[
√

s + λn
(

1
2

)[
Kvr−1[ψn] + Kvr+1[ψn]

]
−

(
1−βr

2

)
Kvr [ψn]

]
a2

n

[
Jvz−1(an) −

vz
an

Jvz
(an)

]2
. (A36)
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