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Abstract: We study a class of conformable time-fractional stochastic equation Ta
α,tu(x, t) = σ(u(x, t))Ẇt,

x ∈ R, t ∈ [a, T], T < ∞, 0 < α < 1. The initial condition u(x, 0) = u0(x), x ∈ R is a non-random function
assumed to be non-negative and bounded, Ta

α,t is a conformable time-fractional derivative, σ : R → R is
Lipschitz continuous and Ẇt a generalized derivative of Wiener process. Some precise condition for the
existence and uniqueness of a solution of the class of equation is given and we also give an upper bound
estimate on the growth moment of the solution. Unlike the growth moment of stochastic fractional heat
equation with Riemann–Liouville or Caputo–Dzhrbashyan fractional derivative which grows in time like
tc1 exp(c2t), c1, c2 > 0; our result also shows that the energy of the solution (the second moment) grows
exponentially in time for t ∈ [a, T], T < ∞ but with at most c1 exp(c2(t− a)2α−1) for some constants c1,
and c2.

Keywords: conformable time-fractional derivative; energy moment growth bounds; Gaussian noise;
generalized derivative; stochastic solution

1. Introduction

The use of fractional derivative, which is a generalization of derivative to any arbitrary order, has
received a tremendous attention due to its physical and modelling applications in Science, Engineering and
Mathematics, see [1] and the references. There are various definitions and generalizations of the fractional
derivative, not limited to the Riemann–Liouville fractional derivative and Caputo–Dzhrbashyan fractional
derivative, with their respective limitations, see [2]. One of the limitations of the above two fractional
derivatives, is that they do not satisfy the classical chain rule; hence, the need for a better definition
of fractional derivative. In [3], Khalil and his co-authors, introduced a better and a new well-behaved
definition of a fractional derivative known as the conformable fractional derivative, satisfying the usual
chain rule, the Rolle’s and the mean value theorem, conformable integration by parts, fractional power
series expansion and the conformal fractional derivative of the real function is zero, etc.; which has given
a new research direction. Thus conformable fractional derivative is a natural extension of the classical
derivative (since it can be expressed as a first derivative multiplied by a fractional factor or power) and
has many advantages over other fractional derivatives as enumerated above.

Conformable fractional derivatives are applied in certain classes of conformable differentiable linear
systems subject to impulsive effects and establish quantitative behaviour of the nontrivial solutions
(stability, disconjugacy, etc.), see [4,5]; and used to develop the Swartzendruber model for description of
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non-Darcian flow in porous media [5–7]. Conformable derivatives are also used to solve approximate long
water wave equation with conformable fractional derivative and conformable fractional differential
equations via radial basis functions collocation method [8,9]. Though there has been a significant
contribution in the study of class of stochastic heat equations with Riemann–Liouville (R–L) and
Caputo–Dzhrbashyan (C–D) fractional derivatives [10–17], but not much has been done in the study
of stochastic Cauchy equation with conformable fractional derivative, see [2], see also [18] for a recent
study on conformable fractional differential equations. The challenge in studying stochastic Cauchy
equation with conformable fractional derivative is that there is no singular kernel of the form (t− s)−α

generated for 0 < α < 1 which reflect the nonlocality and the memory in the fractional operator as in the
case of R–L and C–D fractional derivatives. Thus, despite the fact that conformable fractional derivative
combines the best characteristics of known fractional derivatives, seems more appropriate to describe the
behaviour of classical viscoelastic models under interval uncertainty, see [19] and gives models that agree
and are consistent with experimental data, see [20], it does not possess or satisfy a semigroup property
unlike the R–L and C–D fractional operators that have well-behaved semigroup properties.

We are motivated by the fact that the conformable fractional derivative can be used to solve fractional
differential equation more easily, see [18,21], and therefore consider the following class of conformable
fractional stochastic equation

Ta
α,tu(x, t) = σ(u(x, t))Ẇt, x ∈ R, 0 < a < t ≤ T < ∞, 0 < α < 1, (1)

with an initial condition u(x, 0) = u0(x); where Ta
α,t is a conformable fractional derivative, σ : R→ R is

a Lipschitz continuous function and Ẇt is a generalized derivative of Wiener process (Gaussian white
noise). The existence and uniqueness result is given and we also give the moment growth bound estimate
on the solution of the above equation. Similar models have been considered for Caputo derivatives [22–24]
where existence and uniqueness results were studied. To the best of our knowledge, we are the first to
consider this model for the conformable fractional derivative. We prove the existence and uniqueness
result and also give the moment growth bound estimate on the solution of the above equation.

The paper is outlined as follows. In Section 2, we give a brief overview of basic concepts used in
this paper. The problem formulation, the main results, their proofs are given in Section 3, and Section 4
contains some theoretical examples to illustrate our result. We end with a short conclusion in Section 5.

2. Preliminaries

We give the definition of conformable fractional derivative, see [1–3,18,25,26] and their references for
details on conformable fractional derivatives. Let D := [a, ∞)×R.

Definition 1. The conformable time-fractional derivative starting from a of a function u : D → R of order α is

Ta
α,tu(x, t) = lim

ε→0

u(x, t + ε(t− a)1−α)− u(x, t)
ε

.

If Ta
α,tu(x, t) exists on (a, b), then

Ta
α,tu(x, a) = lim

t→a
Ta

α,tu(x, t)

and if ut(x, t) exists then
Ta

α,tu(x, t) = (t− a)1−αut(x, t).
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Definition 2. The fractional integral starting from a of a function u : D → R of order α is

Ta
α,tu(x, t) =

∫ t

a
(s− a)α−1u(x, s)ds.

We first give a generalized derivative for a deterministic function w(t).

Definition 3. Given that g(t) is any smooth and compactly supported function, then we define the generalized
derivative ẇ(t) of w(t) (not necessarily differentiable) as∫ ∞

0
g(t)ẇ(t)dt = −

∫ ∞

0
ġ(t)w(t)dt.

Similarly, the generalized derivative Ẇt of Wiener process with a smooth function g(t) as follows:

∫ t

0
g(s)Ẇsds = g(t)Wt −

∫ t

0
ġ(s)Wsds.

We give the gamma function as follows

Γ(z) = γ(z, x) + Γ(z, x),

where γ(z, x) is an incomplete gamma function given by

γ(z, x) =
∫ x

0
e−ttz−1dt, x > 0

and Γ(z, x) is the complement of the incomplete gamma function given by

Γ(z, x) =
∫ ∞

x
e−ttz−1dt, x > 0.

Next, we give some estimates (bounds) on the incomplete gamma function.

Theorem 1 ([27]). The following inequalities

exp
(
−ax
a + 1

)
≤ a

xa γ(a, x) ≤ 1F1(a; a + 1;−x) ≤ 1
a + 1

(
1 + ae−x

)
hold, where 1F1(a; a + 1;−x) is a confluent hypergeometric (Kummer) function.

Also, for 0 < a ≤ 1,
1− e−x

x
≤ a

xa γ(a, x).

3. Main Results

Assume the following condition on σ; that is, σ is globally Lipschitz:

Condition 1. There exist a finite positive constant, Lipσ such that for all x, y ∈ R, we have

|σ(x)− σ(y)| ≤ Lipσ|x− y|,

with σ(0) = 0 for convenience.
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Also, the assumption on u:

Condition 2. The random solution u : D → R is L2-continuous (or continuous in probability).

Define the following L2(P) norm

‖u‖2,α,β :=
{

sup
a≤t≤T

sup
x∈R

e−
β
α (t−a)αE|u(x, t)|2

}1/2

.

Following similar idea in [18], we give the following results:

Lemma 1. Given that Condition 2 holds, then a function u in L2(P) is a solution of Equation (1) if and only if it is
a solution of the integral equation

u(x, t) = u0(x) + Ia
α,t[σ(u(x, t))Ẇt].

Thus, the solution to Equation (1) is given as follows

u(x, t) = u0(x) +
∫ t

a
(s− a)α−1σ(u(x, s))Ẇsds

= u0(x) +
∫ t

a
(s− a)α−1σ(u(x, s))dWs.

Theorem 2. Suppose Cα,β,T < 1
Lip2

σ

for positive constant Lipσ together with both Conditions 1 and 2. Then there

exists solution u that is unique up to modification, with

Cα,β,T :=
(T − a)2α−1

2α(2α− 1)
(
1 + (2α− 1)e

β
α (T−a)).

We start by defining the operator

Au(x, t) = u0(x) +
∫ t

a
(s− a)α−1σ(u(x, s))dWs,

and the fixed point of the operator gives the solution of Equation (1).

The proof of the theorem is based on the following lemmas:

Lemma 2. Suppose u is a predictable random solution such that ‖u‖2,α,β < ∞ and Conditions 1 and 2 hold.
Then there exists a positive constant Cα,β,T such that

‖Au‖2
2,α,β ≤ c1 + Cα,β,TLip2

σ‖u‖
2
2,α,β.

Proof. By the assumption that u0 is bounded, we obtain

E|Au(x, t)|2 ≤ c1 + Lip2
σ

∫ t

a
(s− a)2(α−1)E|u(x, s)|2ds.
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Multiply through by e−
β
α (t−a)α

to obtain

e−
β
α (t−a)αE|Au(x, t)|2 ≤ c1e−

β
α (t−a)α

+ Lip2
σe−

β
α (t−a)α

∫ t

a
(s− a)2(α−1)e

β
α (s−a)α

e−
β
α (s−a)αE|u(x, s)|2ds

≤ c1e−
β
α (t−a)α

+ Lip2
σe−

β
α (t−a)α‖u‖2

2,α,β

∫ t

a
(s− a)2(α−1)e

β
α (s−a)α

ds

≤ c1 + Lip2
σ‖u‖

2
2,α,β

∫ t

a
(s− a)2(α−1)e

β
α (s−a)α

ds

since e−
β
α (t−a)α ≤ 1, a ≤ t ≤ T, that is, 0 ≤ t− a ≤ T − a⇒ − β

α (t− a) ≤ 0.
Thus taking sup over t ∈ [a, T] and x ∈ R and evaluating the integral we have

‖Au‖2
2,α,β ≤ c1 + Lip2

σ‖u‖
2
2,α,β

∫ t

a
(s− a)2(α−1)e

β
α (s−a)α

ds

≤ c1 + Lip2
σ‖u‖

2
2,α,β ×−

β

α
(t− a)2α

(
β

α

)−2α

(a− t)−2α

[
Γ(2α− 1)− Γ

(
2α− 1,

β

α
(a− t)

) ]
≤ c1 + Lip2

σ‖u‖
2
2,α,β ×−(−1)−2α

(
β

α

)1−2α[
Γ(2α− 1)− Γ

(
2α− 1,

β

α
(a− t)

) ]
≤ c1 + Lip2

σ

(
β

α

)1−2α

γ

(
2α− 1,

β

α
(a− t)

)
‖u‖2

2,α,β.

By the estimate on the incomplete gamma function in Theorem 1, we obtain

γ

(
2α− 1,

β

α
(a− t)

)
≤

(
β
α

)2α−1

2α(2α− 1)
(a− t)2α−1

(
1 + (2α− 1)e

β
α (t−a)

)

≤

(
β
α

)2α−1

2α(2α− 1)
(t− a)2α−1

(
1 + (2α− 1)e

β
α (t−a)

)
and therefore, since 0 < t− a < T − a, we have

‖Au‖2
2,α,β ≤ c1 +

Lip2
σ

2α(2α− 1)
(t− a)2α−1

(
1 + (2α− 1)e

β
α (t−a)

)
‖u‖2

2,α,β

≤ c1 +
Lip2

σ

2α(2α− 1)
(T − a)2α−1

(
1 + (2α− 1)e

β
α (T−a)

)
‖u‖2

2,α,β.

Lemma 3. Suppose u and v are predictable random solutions such that ‖u‖2,α,β + ‖v‖2,α,β < ∞ and Conditions 1
and 2 hold. Then there exists a positive constant Cα,β,T such that

‖Au−Av‖2
2,α,β ≤ Cα,β,TLip2

σ‖u− v‖2
2,α,β.

Remark 1. By Fixed point theorem we have u(x, t) = Au(x, t) and

‖u‖2
2,α,β = ‖Au‖2

2,α,β ≤ c1 + Cα,β,TLip2
σ‖u‖

2
2,α,β
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which follows that

‖u‖2
2,α,β

[
1− Cα,β,TLip2

σ

]
≤ c1 ⇒ ‖u‖2,α,β < ∞⇔ Cα,β,T <

1
Lip2

σ

.

Similarly,
‖u− v‖2

2,α,β = ‖Au−Av‖2
2,α,β ≤ Cα,β,TLip2

σ‖u− v‖2
2,α,β,

thus ‖u− v‖2
2,α,β

[
1− Cα,β,TLip2

σ

]
≤ 0 and therefore ‖u− v‖2,α,β < 0 if and only if Cα,β,T < 1

Lip2
σ

.

The existence and uniqueness result follows by Banach’s contraction principle.

Next, we give the growth moment bound (upper bound estimate) on the solution:

Theorem 3. Given that Conditions 1 and 2 hold, then for t ∈ [a, T], 0 < T < ∞ we have

sup
x∈R

E|u(x, t)|2 ≤ c1 exp
(
c2(t− a)2α−1)

for some positive constant c1 and c2 =
Lip2

σ
2α−1 , α 6= 1

2 .

Proof. Assume that the initial condition u0(x) is bounded, then by Itó isometry, we have

E|u(x, t)|2 ≤ |u0(x)|2 +
∫ t

a
(s− a)2(α−1)E|σ(u(x, s))|2ds

≤ c1 + Lip2
σ

∫ t

a
(s− a)2(α−1)E|u(x, s)|2ds.

Let g(t) := supx∈R E|u(x, t)|2. Then by Gronwall’s inequality,

g(t) ≤ c1 + Lip2
σ

∫ t

a
(s− a)2(α−1)g(s)ds ≤ c1 exp

[
Lip2

σ

∫ t

a
(s− a)2(α−1)ds

]
= c1 exp

[
Lip2

σ

2α− 1
(t− a)2α−1

]
and the result follows.

4. Some Examples

Here, we give some theoretical examples.

1. Consider the following stochastic conformable fractional equation

Ta
2
3 ,tu(x, t) = σ(u(x, t))Ẇt

with a bounded initial function u0(x) = 1
1+e−λx λ > 0, then the solution is given as

u(x, t) =
1

1 + e−λx +
∫ t

a
(s− a)−1/2σ(u(x, s))dWs

and the growth bound of
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E|u(x, t)|2 ≤ sup
x∈R

E|u(x, t)|2 ≤ exp
(
3Lip2

σ
3
√

t− a
)
.

The initial condition u0(x) can take any of the following functions u0(x) = tan−1(x) or
u0(x) = fα(x) = 1

1+xα−1 , α > 0.

2. Consider also the conformable fractional equation

Ta
1
4 ,tu(x, t) = σ(u(x, t))Ẇt

with a bounded initial function u0(x) = tan−1(x), then we give the solution as

u(x, t) = tan−1(x) +
∫ t

a
(s− a)−3/4σ(u(x, s))dWs

with the growth bound estimate of

E|u(x, t)|2 ≤ sup
x∈R

E|u(x, t)|2 ≤ π

2
exp

(
−

2Lip2
σ√

t− a

)
.

5. Conclusions

A class of conformable time-fractional stochastic equation was given, the existence and uniqueness
result obtained under some precise conditions and we gave the second moment energy bound of the
solution. The result showed that our solution grows exponentially in time with a precise rate of at most
c1 exp(c2(t− a)2α−1), t ∈ [a, T], T < ∞ and 0 < α < 1.
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