

  fractalfract-03-00015




fractalfract-03-00015







Fractal Fract 2019, 3(2), 15; doi:10.3390/fractalfract3020015




Article



Novel Fractional Models Compatible with Real World Problems



Ramazan Ozarslan *,†[image: Orcid], Ahu Ercan † and Erdal Bas †[image: Orcid]





Department of Mathematics, Faculty of Science, Firat University, Elazig 23119, Turkey









*



Correspondence: ozarslanramazan@gmail.com






†



These authors contributed equally to this work.









Received: 9 March 2019 / Accepted: 26 March 2019 / Published: 1 April 2019



Abstract

:

In this paper, some real world modeling problems: vertical motion of a falling body problem in a resistant medium, and the Malthusian growth equation, are considered by the newly defined Liouville–Caputo fractional conformable derivative and the modified form of this new definition. We utilize the σ auxiliary parameter for preserving the dimension of physical quantities for newly defined fractional conformable vertical motion of a falling body problem in a resistant medium. The analytical solutions are obtained by iterating this new fractional integral and results are illustrated under different orders by comparison with the Liouville–Caputo fractional operator.
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1. Introduction


Fractional differential equations were first suggested as an idea by Leibniz on generalizing the integer order derivative about three centuries ago. From this point of view, they introduced Riemann–Liouville and Liouville–Caputo fractional derivatives. Very recently, Jarad et al. [1] have introduced a new fractional derivative called the Liouville-Caputo fractional conformable derivative. Nowadays, fractional derivatives have been begun to be applied to real world modeling problems [2,3,4,5,6,7,8]. However, many new fractional derivative definitions have been introduced in recent years. Some of those are Atangana–Baleanu [9], Hilfer [10], Hadamard [11], Caputo–Fabrizio [12], etc. The Liouville-Caputo fractional conformable derivative is a fractional form of conformable derivative introduced by Abdeljawad [13]. On the other hand, Delgado et al. [2] used this new fractional definition for electrical circuits and they made contribution to this new definition by introducing the β-form of this new fractional definition. The β-form of conformable derivative has been introduced by Atangana [14]. However, the conformable derivative idea has been firstly suggested by Khalil et al. [15] and thereafter a different form of this definition called as proportional α-derivative has been defined in [16]. On the other hand, you can find new studies about this new generalized fractional conformable definition in [17,18,19,20]. Some studies about fractional differential equations and its applications are studied in [21,22,23,24,25].



In this paper, we consider firstly the vertical motion of a falling body problem in a resistant medium and it is defined as in the classical meaning as


mdvtdt=−mg−mkvt,










v0=v0,








where vt (m/s) is velocity, t (s) is time, g (m/s2) is a gravitational force, m (kg) is mass, and k (s−1) air drag. If we fractionalize the ordinary derivative, we must make use of the σ auxiliary parameter, which has time−1 ( s−1) dimension, for preserving the dimension of physical quantities, so we get


ddt→σ1−αβaCβDtα








where aCβDtα is Liouville-Caputo fractional conformable derivative operator introduced by Jarad et al. [1]. We consider a similar case with beta form of Liouville-Caputo fractional conformable derivative defined by Delgado et al. [2]. This approach will shed a light on future studies including fractional physical problems.



In population biology, we use the Malthusian growth model to define animal population or the growth of tumor and bacteria. Fractional models of these equations give more sensitive results than the integer order differential equations. The Malthusian growth model is used to guess approximately in the change of the population in time. It is also used to guess the approximate numbers of bacterial culture, approximate radioactive decay time, etc., and it is defined classically as


P′t=kPt,








where Pt is the population, k is the change rate.




2. Preliminaries


Definition 1.

[21] The Riemann-Liouville derivative of order α is defined as


aRLDxαfx=1Γn−αdndtn∫axftx−tn−α−1dt,n−1<α<n.













Definition 2.

[21] The Liouville–Caputo derivative definition of order α is defined as


aCDxαft=1Γn−α∫axdndtnftx−tn−α−1dt,n−1<α<n.













Definition 3.

[21] Let z,β∈C,Re(α)>0. Then Mittag–Leffler function with two parameters is defined as


Eα,βz=∑k=0∞zkΓαk+β.













Definition 4.

[15] Let f:a,∞→R. The conformable derivative of ft is defined as follows


Dtαft=limε→0ft+εt1−α−ftε








for all t>0,α∈0,1. If ft is α− differentiable in some 0,a,a>0 and if limε→0+fαt exists, then define limt→0+fαt=fα0.





Definition 5.

[13] Let f:a,∞→R. The left and right conformable derivative of ft is defined as follows respectively


aDtαft=limε→0ft+ε(t−a)1−α−ftε,tDbαft=limε→0ft+ε(b−t)1−α−ftε,








for all t>0,α∈0,1.





Definition 6.

[13,15] The left and right conformable integrals are defined as


aIαfx=∫axt−aα−1ftdt,x≥a,0<α≤1



(1)






Ibαfx=∫xbb−tα−1ftdt,x≤b.













Definition 7.

[1] Fractional conformable integral is defined as, β∈R,Reβ>0,


aβIαfx=1Γβ∫axx−aα−t−aααβ−1ftt−a1−αdt.



(2)









Theorem 1.

[1] Let Reβ≥0,n=Reβ+1,f∈Cα,ana,b. Then, Riemann-Liouville fractional conformable derivatives are defined as follows,


aβDαfx=anDαftΓn−β∫axx−aα−t−aααn−β−1ftt−a1−αdt,



(3)




and


βDbαfx=−1nnDbαftΓn−β∫xbb−xα−b−tααn−β−1ftb−t1−αdt,



(4)




where anDα and nDbα are the left and right conformable derivatives.





Proof. 

You can find the proof of this theorem in [1]. □





Theorem 2.

[1] Let Reβ≥0,n=Reβ+1,f∈Cα,ana,b. Then, Liouville–Caputo fractional conformable derivatives are given by,


aCβDαfx=1Γn−β∫axx−aα−t−aααn−β−1anDαftt−a1−αdt,



(5)




and


CβDbαfx=−1nΓn−β∫xbb−xα−b−tααn−β−1nDbαftb−t1−αdt.



(6)









Proof. 

You can find the proof of this theorem in [1]. □





Definition 8.

[14] Let f:−aΓα,∞→R, then a different type of conformable derivative of ft is defined as


0ADαfx=limε→0ft+εt+1Γα1−α−ftε.








The different type of left conformable integral is defined as


0AIαfx=∫0tfxx+1Γα1−α,0<α≤1.













Theorem 3.

[2] Let Reβ≥0,n=Reβ+1,f∈Cα,ana,b. Then a different type of Liouville–Caputo fractional conformable derivatives are defined as follows,


aACβDαfx=1Γn−β∫−aΓαxx+aΓαα−t+aΓαααn−β−1aAnDt−αftt+aΓα1−αdt,



(7)




and


ACβDbαfx=−1nΓn−β∫x−bΓαbΓα+tα−bΓα+xααn−β−1tAnDb−αftbΓα+t1−αdt.



(8)









Proof. 

You can find the proof of this theorem in [2]. □





Theorem 4.

[2] Let Reβ≥0,n=Reβ+1,f∈Cα,ana,b. Then a different type of Riemann-Liouville fractional conformable derivatives are defined as follows,


aARβDαfx=aAnDαΓn−β∫axx+aΓαα−t+aΓαααn−β−1ftt+aΓα1−αdt,



(9)




and


ARβDbαfx=−1nAnDbαΓn−β∫xbbΓα+tα−bΓα+xααn−β−1ftbΓα+t1−αdt.



(10)









Proof. 

You can find the proof of this theorem in [2]. □





Theorem 5.

[2] Let f∈Cα,ana,b,β∈R. Then the following property is valid,


aβIαaACβDαft=ft−∑k=0n−1akDtαfat−aαkαkk!,








and


aβIαaACβDαft=ft−∑k=0n−1−1ktkDbαfbb−tαkαkk!.













Proof. 

You can find the proof of this theorem in [2]. □






3. Main Results


In this section, we find exact analytical solutions of vertical motion of falling body problem in the resistant medium, and fractional Malthusian growth model with newly defined Liouville-Caputo fractional conformable derivative.



3.1. The Fractional Vertical Motion of a Falling Body Problem in a Resistant Medium


3.1.1. The Vertical Motion of a Falling Body Problem in a Resistant Medium with Liouville–Caputo Fractional Conformable Derivative


Let us consider Liouville-Caputo fractional conformable derivative, and obtain the analytical solution of the vertical motion of a falling body problem in a resistant medium. Taking the initial value problem


mσ1−αβ0CβDtαvt=−mg−mkvt,



(11)






v0=v0.



(12)







Solution 1.

We apply Picard successive approximation method for obtaining the analytical solution of the problem (11)–(12). So, let us apply the inverse operator of aCβDtα to Equation (11), we get


0βItα0CβDtαvt=−σαβ−10βItαg−σαβ−10βItαkvt.








Considering the Theorem 2 and the initial condition (12), we have


vt=v0−σαβ−10βItαg−kσαβ−10βItαvt.








Then


vi+1t=v0−0βItαgσαβ−1−kσαβ−10βItαvit,i=0,1,2,…








For i=0, we can write


v1t=v0−0βItαgσαβ−1−kσαβ−10βItαv0t



(13)




where


0βItαv0t=v0tΓβ∫0ttα−xααβ−1dxx1−α








Using the change of variable u=x−at−aα, we have


0Itαv0=v0tαβαβΓβ+1



(14)




Substituting Equation (14) into (13), we have


v1t=v0−gtαβσαβ−1αβΓβ+1−kσαβ−1v0tαβαβΓβ+1.








For i=1, we get


v2t=v0−0βItαgσαβ−1−kσαβ−1aβItαv1t=v0−gtαβσαβ−1αβΓβ+1−kσαβ−10βItαv0−gtαβσαβ−1αβΓβ+1−kσαβ−1v0tαβαβΓβ+1=v0−gtαβσαβ−1αβΓβ+1−kσαβ−1v0tαβαβΓβ+1+kσαβ−12gt2αβα2βΓ2β+1+kσαβ−12v00βItαtαβαβΓβ+1



(15)




where 0βItαt−aαβ=Γβ+1t2αβαβΓ2β+1, then we can rewrite Equation (15)


v2t=v01−kσαβ−1tαβαβΓβ+1+kσαβ−12t2αβα2βΓ2β+1−σαβ−1gtαβαβ1βΓβ−kσαβ−1tαβαβ2βΓ2β








Proceeding inductively we have


vit=v01−kσαβ−1tαβαβΓβ+1+kσαβ−12t2αβα2βΓ2β+1−…−σαβ−1gtαβαβ1βΓβ−kσαβ−1tαβαβ2βΓ2β+…=v0∑z=0i−1zkσαβ−1ztzαβαzβΓzβ+1−σαβ−1gtαβαβ∑z=0i−1zkσαβ−1ztzαβαzβz+1βΓzβ+β.








Therefore, as i→∞, we find the velocity as follows,


vt=v0Eβ−kσαβ−1αβtαβ−σαβ−1gtαβαβ∑z=0∞−kσαβ−1tαβzαzβz+1βΓzβ+β,








from here we get vertical distance of falling body in a resistant medium as follows


Xt=h+v0tEβ,2−kσαβ−1αβtαβ−σαβ−1gtαβ+1αβ∑z=0∞−kσαβ−1tαβzz+1αβ+1αzβz+1βΓzβ+β,



(16)




where Eβ,2t is Mittag-Leffler function [21].





Now, let’s consider the different type of Liouville–Caputo fractional conformable derivatives defined in [2]. We obtain the analytical solution of the vertical motion of a falling body problem in a resistant medium. Considering the initial value problem


aACβDαvt=−mg−mkvt,v0=v0.











Solution 2.

If we apply similar arguments used in the proof of Problem (11)–(12), then we have


Xt=h+v0(t+aΓα)Eβ,2−kσαβ−1αβ(t+aΓα)αβ−σαβ−1g(t+aΓα)αβ+1αβ∑z=0∞−kσαβ−1(t+aΓα)αβzz+1αβ+1αzβz+1βΓzβ+β.














3.1.2. Vertical Motion of Falling Body Problem in a Resistant Medium with Liouville–Caputo Fractional Derivative


Now, let’s consider to the model of the vertical motion of a falling body problem in a resistant medium with the Liouville–Caputo fractional operator in [22] for comparing to Solution (16),


mσ1−α0CDtαvt=−mg−mkvt,v0=v0.








Taking direct and inverse Laplace transform to the equation above, we have analytical solutions


vt=−gk+v0+gkEα−kσα−1tα,










Xt=h−gtk+v0+gktEα,2−kσα−1tα.








We observe the vertical motion of a falling body in the resistant medium with Liouville–Caputo conformable fractional derivative taking v0=5 m/s, k=0.01 s−1, g=9.8 m/s2,h = 31,400 m in Figure 1, Figure 2, Figure 3 and Figure 4.





3.2. Fractional Malthusian Growth Model


3.2.1. Malthusian Growth Model with Liouville–Caputo Fractional Conformable Derivative


Let us consider the Liouville-Caputo fractional conformable derivative, and obtain the analytical solution of Malthusian growth model. Considering the initial value problem


aCβDtαPt=kPt,α>0,0<β≤1,



(17)






Pa=P0.



(18)




where Pt denote the population at time t, k is a positive constant.



Solution 3.

Let’s apply the Picard successive approximation method for obtaining the analytical solution of the problem (17) and (18). So, applying the inverse operator of aCβDtα to Equation (17), we get


aβItαCβDtαPt=aβItαkPt.








Considering the Theorem 2 and the initial condition (18), we have


Pt=Pa+aβItαkPt.








Then


Pn+1t=P0+k0βItαPnt,n=0,1,2,…








For n=0, we can write


P1t=P0+k0βItαP0t



(19)




where


aβItαP0=P0Γβ∫att−aα−x−aααβ−1dxx−a1−α.








Applying the change of variable u=x−at−aα, we have


ItαP0=P0t−aαβαβΓβ+1



(20)




Substituting Equation (20) into (19), we have


P1t=P0+kP0t−aαβαβΓβ+1.








For n=1, we get


P2t=P0+kaβItαP1=P0+kaβItαP0+kP0t−aαβαβΓβ+1=P0+kP0t−aαβαβΓβ+1+k2P0αβΓβ+1aβItαt−aαβ,



(21)




where aβItαt−aαβ=Γβ+1t−a2αβαβΓ2β+1, then we can rewrite Equation (21)


=P0+kP0t−aαβαβΓβ+1+k2P0t−a2αβα2βΓ2β+1=P01+kt−aαβαβΓβ+1+k2t−a2αβα2βΓ2β+1.








Proceeding inductively we have


Pnt=P01+kt−aαβαβΓβ+1+k2t−a2αβα2βΓ2β+1+…=P0∑z=0nkzt−azαβαzβΓzβ+1.








Therefore, as n→∞, we find


Pt=P0Eβkαβt−aαβ.



(22)









Now, let’s consider the different type of Liouville–Caputo fractional conformable derivatives defined in [2]. We obtain the analytical solution of Malthusian growth model. Considering the initial value problem


aACβDαPt=kPt,α>0,0<β≤1,Pa=P0.











Solution 4.

If we apply similar arguments used in the proof of Problem (17)–(18), then we have


Pt=P0Eβkαβ(t+aΓα)αβ.














3.2.2. Malthusian Growth Model with Liouville–Caputo Fractional Derivative


Now, let us consider the Malthusian growth model with the Liouville–Caputo fractional operator in [23] for comparing to Solution (22)


aCDtαPt=kPt,0<α≤1,P0=P0.








Taking direct and inverse Laplace transform to the equation above, we have the analytical solution


xt=P0Eαktα.








We observe Malthusian growth model with Liouville–Caputo conformable fractional derivative taking x0=500,k=0.5 in the Figure 5, Figure 6, Figure 7 and Figure 8.






4. Conclusions


The vertical motion of a falling body in a resistant medium and the Malthusian growth model with a newly defined fractional conformable derivative are analyzed. The σ auxiliary parameter is introduced for fractionalizing truly in view of physical comment of the vertical motion of a falling body problem. Analytical solutions of these modeling problems are found and shown by figures comparatively with the Liouville–Caputo fractional versions.



We observe the solution of the vertical motion of a falling body approaches to the classical case while α and β approach to 1 in Figure 1 and Figure 2. Besides, we show the comparison of this problem with the Liouville–Caputo and classical cases while α,β approach to 1, and so, we observe that the solution converges to the Liouville–Caputo and classical case in Figure 3 and Figure 4.



We observe the solution of the Malthusian growth model approaches to the classical case while α and β approach to 1 in Figure 5 and Figure 6, we show the comparison of this problem with the Liouville–Caputo and classical cases while α,β approach to 1, and we observe that the solution converges to the Liouville–Caputo and classical case in Figure 7 and Figure 8.
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Figure 1. Analysis of the vertical motion of a falling body in a resistant medium under different orders while β=0.9. 
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Figure 2. Comparative analysis of the vertical motion of a falling body with different types of derivatives while α=0.95,β=0.95. 
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Figure 3. Comparative analysis of the vertical motion of a falling body with different types of derivatives while α=0.8,β=1. 
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Figure 4. Analysis of the vertical motion of a falling body in a resistant medium under different orders while α=0.9. 






Figure 4. Analysis of the vertical motion of a falling body in a resistant medium under different orders while α=0.9.



[image: Fractalfract 03 00015 g004]







[image: Fractalfract 03 00015 g005 550]





Figure 5. Analysis of the Malthusian growth model under different orders while β=0.9. 
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Figure 6. Analysis of the Malthusian growth model under different orders while α=0.9. 
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Figure 7. Comparative analysis of the Malthusian growth model with different types of derivatives while α=0.8,β=1. 
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Figure 8. Comparative analysis of the Malthusian growth model with different types of derivatives while α=β=0.95. 
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[image: Fractalfract 03 00015 g008]








© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
----- Caputo Conformable Classical

Caputo

Pt
10000

8000

6000

4000

2000






media/file4.png
----- Caputo Conformable ——— Caputo ——— Classical

15000 |
10000 |

5000






nav.xhtml


  fractalfract-03-00015


  
    		
      fractalfract-03-00015
    


  




  





media/file16.png
----- Caputo Conformable ——— Caputo ——— Classical

8000
6000
4000

2000






media/file2.png
— a=0.3 — a=0.5 — a=0.7 — a=0.9 — Classical

25000 —
20000 —
15000 —
10000 —

5000 —

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 J t
0 20 40 60 80 100





media/file5.jpg
Classical

Caputo

Xty
30000

25000

20000

15000

10000

5000

700!





media/file3.jpg
~ Caputo Conformable

Xt

Classical

Caputo

30000

25000

20000

15000

10000

5000

700"





media/file1.jpg
a=0.3 a=0.5 a=0.7 a=0.9 Classical

Xty
30000

25000

20000

15000

10000

5000

() 20 40 60 80 100





media/file7.jpg
p=0.3 B=0.5 p=0.7 p=0.9 Classical
X()
30000,

25000
20000
15000
10000

5000

0 20 0 60 80 100





media/file10.png
— =0.5 — a=0.7 — a=0.9 — Classical

P(t)
10000 -

8000
6000
4000

2000






media/file12.png
P(t)
5000

4000
3000
2000

1000

— =05 — p=0.7 — p=0.9 — Classical






media/file9.jpg
a=0.5

a=0.7

a=0.9

Pl
10000

8000

6000

4000

2000

Classical

t
10





media/file0.png





media/file14.png
----- Caputo Conformable ——— Caputo ——— Classical

8000
6000
4000

2000






media/file8.png
— p=03 — B=0.5 — B=0.7 — B=0.9 — Classical
X(t)

30000 F
25000 -
20000 -
15000 -
10000 —

5000 -

1 1 1 1 1 1 1 1 1 1 1 1 1 1 t
0 20 40 60 80 100





media/file11.jpg
B=0.5 B=0.7 B=0.9 Classical

Al
5000

4000

3000

2000






media/file6.png
----- Caputo Conformable ——— Caputo ——— Classical

15000 |
10000 |

5000 |

It
100





media/file15.jpg
~===~ Caputo Conformable Classical

Caputo

Pt
10000

8000

6000

4000

2000






