
fractal and fractional

Article

Fractal Image Interpolation: A Tutorial and
New Result

Chi Wah Kok † and Wing Shan Tam *,†

Canaan Semiconductor Limited, Hong Kong, China; eekok@ieee.org
* Correspondence: wstam@ieee.org
† These authors contributed equally to this work.

Received: 16 December 2018; Accepted: 20 February 2019; Published: 23 February 2019
����������
�������

Abstract: This paper reviews the implementation of fractal based image interpolation, the associated
visual artifacts of the interpolated images, and various techniques, including novel contributions,
that alleviate these awkward visual artifacts to achieve visually pleasant interpolated image.
The fractal interpolation methods considered in this paper are based on the plain Iterative Function
System (IFS) in spatial domain without additional transformation, where we believe that the benefits
of additional transformation can be added onto the presented study without complication. Simulation
results are presented to demonstrate the discussed techniques, together with the pros and cons of
each techniques. Finally, a novel spatial domain interleave layer has been proposed to add to the IFS
image system for improving the performance of the system from image zooming to interpolation
with the preservation of the pixel intensity from the original low resolution image.

Keywords: image interpolation; super-resolution; fractal

1. Introduction

The Fractal Image Interpolation refers to image interpolation that makes use of the Partitioned Fractal
Image (PFI) representation based on an Iterative Function System (IFS). When PFI representation is
first introduced in the 1980s, there was a great deal of hope and excitement over the application of
fractals to compress natural images, and fractals have spurred a considerable amount of research
activities in that period of time. Although fractal image coding is no longer considered to be
a competitive method to compress images because the compression ratio is not good enough, it is
worth studying it as an alternate type of an image interpolation scheme because of the natural looking
interpolation results. Within the IFS framework, images are modeled as deterministic fractal objects
approximated by different parts of the same image, which is a direct result of the image being self-similar.
The word “partition” comes in from the fact that the image is partitioned into blocks, and the search of
self-similar fractal objects are performed over all the partitioned blocks that covers the whole image.
As a consequence of the self-similarity, the fractal objects are scale independent. In the IFS framework,
the fractal objects are described with a simple recursion, such that images with different sizes (scales)
can be generated from the associated fractal codes using the same recursion. This property makes
changing image resolutions in PFI very easy [1].

Despite the mathematical simplicity in scaling images in PFI, the PFI is a block based image
processing algorithm, therefore, just like other block based image interpolation algorithms presented
in literature, PFI based image interpolation suffers from a blocking artifact. All methods that deal
with the blocking artifact in other block based image interpolations are applicable in PFI based
image interpolation. Despite the very complex theoretical background of the PFI based image
interpolation method, the objective performance of the interpolated images may not be as good
as those images interpolated by other methods presented in literature. However, the PFI based

Fractal Fract. 2019, 3, 7; doi:10.3390/fractalfract3010007 www.mdpi.com/journal/fractalfract

http://www.mdpi.com/journal/fractalfract
http://www.mdpi.com
https://orcid.org/0000-0002-0751-8959
http://www.mdpi.com/2504-3110/3/1/7?type=check_update&version=1
http://dx.doi.org/10.3390/fractalfract3010007
http://www.mdpi.com/journal/fractalfract

Fractal Fract. 2019, 3, 7 2 of 21

image interpolation usually achieves good subjective performance, which is one of the reasons why
fractal image interpolation algorithms have been adopted into many commercial image enlargement
software, and is still actively investigated in literature [2–6]. It has been reported in [7,8] that, for some
image interpolation applications, such as medical image interpolation, the preservation of image shape
(structure) is far more important than the objective quality of the interpolated image. As a result, Ref. [7]
has proposed the application of IFS based image interpolation for medial image interpolation. Recently,
fractal image interpolation has also found applications in other fields, such as image encryption [9]
and depth map interpolation in 3D computer graphic [10], etc. Disregarding their very different
applications, the core of these algorithms are the basic PFI, which will be discussed in later sections in
this paper.

It is the purpose of this paper to review fractal image interpolation from the basics of IFS and
to present the mathematical analysis on various techniques that have been presented in literature
to alleviate various shortcomings of the fractal image interpolation. Furthermore, novel techniques
will be presented to show how to make use of fractal based interpolation to achieve natural looking
interpolated images of high visual quality. Finally, we shall propose the insertion of a spatial interleave
layer into the IFS decoder to enable the preservation of original low resolution image pixel intensity in
the interpolated image for both better objective and subjective interpolated image qualities.

The rest of this paper is arranged to present the basic theory of the IFS in Section 2, which will also
demonstrate the zoom-in property of the IFS. Section 2 will present the partitioned IFS (PIFS) and show
how to make it represent natural images. A particular implementation of the fractal image encoder
and decoder will be presented in Sections 3 and 4, respectively. A demonstration on how to make use
of the decoder function to zoom-in an image will be presented in Section 5. The technique that helps
to modify the PIFS zooming to PIFS interpolation will be presented in the same section. The block
overlap based image interpolation method will be presented in Section 6, which helps to alleviate the
blocking artifacts observed in the PIFS interpolated images. This paper concludes in Section 7.

2. Iterated Function System

The fractal can be defined in a number of ways depending on the applications. When applied
in image interpolation, we are interested in fractals defined by the IFS. We shall not go through
the complex mathematical derivation, and shall take it for granted that the contraction affine
transformation can generate fractals, and hence forms an IFS. By repeating the contraction affine
transformation an infinite number of times, any starting patterns will be transformed into the same
structure at any level of details. In other words, the IFS allows us to zoom (interpolate) into the details
of the structure. Having said that we shall skip the complex mathematics, the basic mathematical tools
and theorems about fractals defined by the IFS are revisited to make this review complete.

2.1. Fixed Point Theorem

The convergence of the IFS defined by a contraction transformation is the result of the “Fixed
Point Theorem”. In here, we shall discuss the most basic Fixed Point Theorem in analysis, which is
due to Banach and appeared in his Ph.D. thesis (1920, published in 1922) [11].

Theorem 1. Fixed Point Theorem: Given a complete metric space (X, d) and a transformation T : X → X
that satisfies

d(T(x), T(y)) ≤ c · d(x, y), (1)

for some 0 ≤ c < 1 and all x, y ∈ X. The transformation T has a unique fixed point x f in X, where given any
x0 ∈ X, the sequence that iterates on x0, T(x0), T(T(x0)), · · · converges to the fixed point x f of T.

Fractal Fract. 2019, 3, 7 3 of 21

The Fixed Point Theorem is also known as the Banach Fixed Point Theorem, and Contraction
Transform Theorem. The transformation T that satisfies the Fixed Point Theorem is known as contraction
mapping. A contraction shrinks the distance by a uniform factor c of less than 1 for all pairs of points.
To get a grasp on the application of the Fixed Point Theorem, we shall review a high school problem of
finding a high accuracy approximation to the irrational number

√
5 by Newton’s method. Newton’s

method provides a scheme to construct the contraction transform where the associated fixed point is
the solution of a system of equations.

Example 1. The solution of the equation f (x) = 0, with f being differentiable can be approximated by Newton’s
method, finds an approximate solution x0 and then computes the following recursive sequence

xn = xn−1 −
f (xn−1)

f ′(xn−1)
. (2)

The contraction transform is given by

T(x) = x− f (x)
f ′(x)

. (3)

Starting from some initial point x0, the recursion will converge to T(x f) = x f , a fixed point of T(x). When that

happens, we shall have T(x f) = x f = x f −
f (x f)

f ′(x f)
, which implies f (x f) = 0. In other words, the fixed point x f

is a solution of f (x) = 0.
To use Newton’s method to estimate

√
5, we shall set f (x) = x2 − 5 and seek a (positive) root of f (x).

The Newton recursion is thus given by

xn = xn−1 −
x2

n−1 − 5
2xn−1

=
1
2

(
xn−1 +

5
xn−1

)
. (4)

Hence, the contraction transform is given as

T(x) =
1
2

(
x +

5
x

)
. (5)

The fixed point of T is
√

5. Table 1 listed xn obtained in each iteration of Equation (4) with different initial
value x0. All of the sequences with different x0 are observed to converge to 2.236068 ≈

√
5. On the other hand,

the number of iterations required for each sequence to converge are observed to be different. In fact, the number of
iterations required for the sequence to convergence depends on the distance between x0 and

√
5.

Table 1. Approximation of
√

5 by Newton’s method.

n xn xn xn

0 1 2 5
1 3.000000 2.250000 2.625000
2 2.333333 2.236111 2.264881
3 2.238095 2.236068 2.236251
4 2.236069 2.236068 2.236068
5 2.236068 2.236068 2.236068
6 2.236068 2.236068 2.236068

Example 1 not only forms an IFS that converges to
√

5. A closer examination will reveal the
fact that the number

√
5 is now represented by the contraction transform in Equation (5). In fact,

any number
√

a can be approximated with an IFS defined by Equation (5) with a simple change of
variable. If we use a polynomial representation system to describe the corresponding IFS, Equation (5)

Fractal Fract. 2019, 3, 7 4 of 21

can be rewritten as (0.5, (−1, a), (1, 1)), where the first coefficient 0.5 is the scaling, or magnitude
transformation. The following two-tuple list the order of x and the corresponding coefficients.
As an example, the tuple (−1, a) represent the term a

x . This polynomial representation provided
us an alternative way to describe the number

√
a, and is a more efficient (compact) way to store

the number
√

a, which by definition would require an infinite space to store all the decimal places.
Such representation also provides us a way to zoom into

√
a. The accuracy of approximation to√

a depends on the number of iterations applied to compute Equation (5). More details of
√

a can
be revealed if we allow Equation (5) to iterate a few more times. This detail “zoom-in” property is
what makes IFS an interesting image interpolation method. The image interpolation problem can
be casted as the problem of finding the contraction transform that forms an IFS with the associated
fixed point approximating a given image. After that, we can make use of the contraction transform
and the associated IFS to zoom into the details of the fixed point, which will provide us with
an interpolated image.

2.2. Partitioned Iterative Function System

The direct application of the IFS would suggest the representation of any given image as
a contraction transformation of itself. Among various methods that extend the Fixed Point Theorem
to handle digital images, the conventional PIFS consider linearizing the partitioned image block to
a vector of size N in RN , such that the contraction transform is a mapping from RN → RN . Among
various methods to construct the contraction transform, we are particularly interested in the Affine
Transform defined as

Definition 1. Affine Transform: The affine transform in RN → RN defined as T(x) = Ax + b with
x, b ∈ RN and A ∈ RN×N .

The contractivity of the Affine Transform is given by Theorem 2.

Theorem 2. The affine transform in T(x) : RN → RN is a contraction transform, with respect to the norm
RN that induces the matrix norm when

|T| < 1, (6)

with a given matrix norm.

Theorem 2 can be easily proved by considering x, y ∈ RN ; then, |T(x) − T(y)| = |A(x − y)| ≤
|A| · |x− y| = |A| · d(x, y), which implies T is contractive by Theorem 1. According to Hutchinson [12],
given a collection Ω of affine and contraction transforms Ti, with i = 1, 2, . . . , ` in a complete metric
space (RN , d), the following union of contraction transforms

T =
⋃̀
i=1

Ti, {Ti ∈ Ω} (7)

is also a contraction transform. The IFS fractal image representation makes use of the super-position
of all small fixed point of each contraction transform Ti to approximate a given image. Such system
represented by Ω is known as a Partitioned Iterated Function System (PIFS) because the image is being
partitioned into blocks and each partitioned blocks are being represented by a contraction transform
Ti. Such an image representation is shown to be more efficient. This is because natural images do not
satisfy self-similarity in a strict sense, many images (particularly photographs), such as the Cat image
as shown in Figure 1a which has some areas that are almost self-similar but also has some distinct areas.
The similarity of parts of an image provides the inspiration for the concept of a PIFS, which is a block
based fractal image representation scheme that exploits local self-similarities within the image [13].

Fractal Fract. 2019, 3, 7 5 of 21

The PIFS is similar to an IFS, except that the contraction transforms have restricted domains that exploit
the inherent local self-similarities of the image. The flexibility of PIFS permits the construction of a more
general measures such that the image to be transformed does not have to be strictly self-similar [14].
In practice, this means that an image f can be represented by PIFS with Nr partitioned small regions,
or also known as range blocks, ri, that spans the image f ,

f =
Nr⋃

i=1

ri. (8)

Each of the ri is matched as closely as possible to the affine transform of one of several larger regions,
known as domain blocks, dj : j = 1, . . . , Nd of the image. It should be noted that each range block can
be considered as sub-images, in which the indices i and j refer to the order of the range blocks and
domain blocks in their corresponding collections, respectively. It is assumed that the blocks are ordered
according to their appearance in the original image following by row and then column. Each range
block will be matched against all the domain blocks in the original image. The best match result yields
the contraction transformation, Ti, that maps part of the original image onto that range block ri. A PIFS
encodes Nr sub-images ri, where the fixed point associated contraction transform Ti for each ri will
then be super-imposed to produce a single image. As a result, the union of the contraction transforms
is sufficed to represent the fixed point image, which in turn is an approximation of the original image.

f ≈ f f =
Nr⋃

i=1

Ti(dα(i)), (9)

where α(i) is the mapping that gives the best domain block index for the i-th range block. With reference
to the contractive mapping fixed point theorem, the union of contractive mappings in Equation (9)
has a unique fixed point, f f , called the attractor of the PIFS. Therefore, if we can find a PIFS such that
its attractor is as close to the image f as possible, we can obtain a good approximation of the image
f and represent it with a union of affine transforms. Furthermore, the Fixed Point Theorem tells us
that the iterations of finding fk+1 =

⋃Nr
i=1 Ti(dk,α(i)) is a convergent series, where dk,j is the j-th domain

block extracted from the image fk obtained at the k-th iteration. Starting with any arbitrary initial f0,
the series will converge to the unique fixed point f f . A natural solution to find Ti and α(i) for the
PIFS representation of f with the contraction transform constrained to be affine transform defined in
Theorem 2 can be obtained by rewriting Equation (9) as

f f =
Nr⋃

i=1

(Aidα(i) + bi)

=
Nr

∑
i=1

Pi(Aidα(i) + bi)

=
Nr

∑
i=1

Pi

([
Nd

∑
j=1

(AiSi,j) f f

]
+ bi

)
= A f f + b

(A− I) f f = b

f f = (A− I)−1b, (10)

where Pi(·) is the translation operator that putting the affine transformed domain block to the i-th
range block position, and Si,j is the domain block extraction operator that extracts the α(i)-th domain
block with Si,j = 1 when j = α(i), otherwise, Si,j = 0 when j 6= α(i). The matrix A gathered all the
matrix products of Pi(AiSi,j) together, and b is a matrix that lumped all the translated scalar Pi(bi)

together to form a matrix in the size same as that of the image matrix f . If the fixed point f f converges

Fractal Fract. 2019, 3, 7 6 of 21

to the original image f exactly, Equation (10) can be rewritten as f = (A− I)−1b. In other words,
the PIFS is now posed as an inverse problem for finding A and b as shown in Equation (10), where
(A, b) serves as the fractal representation for f . However, solving this inverse problem is difficult.
In particular, most real-world objects are rarely entirely self-similar. As a result, f f 6= f , and hence
the inverse problem in Equation (10) is ill-posed. Fortunately, Barnslay shows that we don’t have to
solve the inverse problem. A good PIFS representation with f f that approximates f can be found by
the application of Collage Theorem [14].

Theorem 3. Collage Theorem: Given an IFS with contraction transform T in the complete metric space
(X, d), contraction factor c ∈ (0, 1), and fixed point X f . Let X and ε > 0 be chosen such that

d(X, T(X)) ≤ ε, (11)

then

d(X, X f) ≤
ε

1− c
. (12)

According to the Collage Theorem, the closer is the collage T(f) (first-order approximation of
the fixed point) to the original image f , the better is the constructed PIFS, and hence the attractor f f
is closer to the original image f . In other words, when constructing the PIFS (the fractal encoding
process), one can focus on minimizing the d(f , T(f)), and this will result in minimizing the d(f , f f),
which is the goal of fractal representation of the original image f . The quantitative distance measure
metric d(f , T(f)) is called the collage error. The computational complexity of fractal representation
is significantly reduced by the minimization of the collage error instead of the distance between the
original image and the attractor (the fixed point f f), i.e., d(f , f f). With respect to each range block
ri ∈ f , the PIFS is constructed by finding the domain block dj and the corresponding affine transform
matrix Ai and bi that satisfies

d(ri, T(dj)) = min
j,Ai ,bi

d(ri, Aidj + bi). (13)

The above is a direct application of the Collage Theorem, a simple consequence of the Fixed Point
Theorem, which ensures the fixed point f f is close to f if the distortion ∑Nr

i=1 d(ri, T(dj)) between
the original image and its collage T(dj) is small. A union of these contraction transforms for all the
partitioned blocks will form the PIFS. In other words, the PIFS is formed by the set of surjective
functions that maps the j-th domain block to the i-th range block. The procedure that achieves the best
match is known as the fractal encoding.

The mapping between i and j, the affine transform Ai and the shift bi are sufficient to define the
IFS. The collection of the i, j, Ai, bi froms the fractal codes of the PIFS. However, this solution does not
give the optimal results. It is vivid that the larger the block size of ri, the fewer the number of bits are
required to store the fractal code and hence provides higher coding gain. On the other hand, the larger
the block size, the poorer the fractal approximation (the fixed point) of the original image, and, hence,
the lower the quality of the fractal encoded image. For the purpose of image interpolation, the fractal
code is used to zoom into the image, where better fractal approximation is desired. Therefore, a small
block size is preferred. However, the structural property advantages of fractal image representation
can only be observed with large block size. This creates a design dilemma in choosing the right
block size for better original image resemblance or better structural quality of the zoomed image.
The subsequent section will show you that a block size of 4× 4 and 8× 8 will be sufficient depending
on the interpolation ratio r.

The fractal image encoding method in Equation (13) is a simplified implementation of the first
fully automatic method for fractal encoding presented by Jacquin [13], which forms the basis for many
fractal encoding methods. All other methods can be treated as improvements to the Jacquin’s method.

Fractal Fract. 2019, 3, 7 7 of 21

However, there are still a few practical issues left unaddressed before we can successfully implement
a Jacquin fractal encoding method. The problems to be addressed include what kind of partitioning for
the image should be used, and how does one find the best matching block pairs from the partitioned
blocks and the associated grayscale transform that will optimally transform these best matching blocks
for each range block. The above problems will be addressed in the following sections.

3. Encoding

In the ideal case, the partition of the image should be performed according to the image structure
to optimize encoding. However, such an intelligent approach would need a human to drive it. A fully
automatic approach is only possible if a fixed partition of the image is applied. In a simple PIFS
image encoder, the image is partitioned in two ways to generate the range blocks ri, often with uniform
size and non-overlapping; and the domain blocks di, with a larger size than that of the range blocks,
and usually overlapping.

3.1. Range Block Partition

The image can be partitioned by different ways to obtain the range blocks, and they can be
summarized into three major categories with the partitions shown in Figure 1 for the Cat image.
Showing in Figure 1b is uniform partition, where all the blocks have the same size. An example to
obtain the range block by uniformly partitioning the image array into distinct κ× κ block, and rearrange
them as a column vector for storage. The total number of distinct blocks being partitioned from a M×N
image array is given by M/κ×N/κ, and hence the total memory size required to store all range blocks
is given by

(κ × κ) · (M/κ × N/κ).

Uniform partition is computationally efficient, but inefficient in terms of coding performance. Figure 1c
is the quadtree partition, where the partitioned blocks are squares with adaptive sizes based on the
information content of the localized image region. However, the gain provided by the quadtree
partition in natural images is not compatible with the induced computational complexity, and is
therefore not commonly found in commercial implementation. Figure 1d is the HV partition [15].
This is an advanced and efficient partition method that partitions the image into quadrangle blocks
with adaptive sizes based on the information content of the localized image region. The HV partition
should be the most efficient way to generate the range blocks. However, the HV partition has the
deficiency of the possibility of leave out regions, such that a highly sophisticated algorithm is required
to ensure the non-overlap partitioned blocks will fully cover the image. Therefore, HV partition is
seldom used in practice. Other types of freely-shaped partitions [16] have also been applied to extract
range blocks to form PIFS. Among them, the non-regularly shaped partition methods do have the
same drawback as that of HV partition. The non-symmetrical (on either or both horizontal and vertical
axes) partition will require the contraction transform to include necessary horizontal, vertical and/or
diagonal flippings to order to create a codebook that can be shared by all the range blocks. One such
kind of partition is the triangular partition [17]. However, as pointed out in [18], the increase in
computational complexity and storage to extract the range without using uniform partition is simply
too high, which prohibited their deployment in real world applications. The following discussion
will concentrate on uniform partition, which provides sufficient information for us to investigate
the problems of the fractal image interpolation and various techniques to alleviate the fractal image
interpolation artifacts.

Fractal Fract. 2019, 3, 7 8 of 21(a) (b) (c) (d)
Figure 1. The original image of the Cat and the partitioned images with edge overlaying the partitions
by three different range block partition methods: (a) original image; (b) partitioned image by uniform
partition; (c) partitioned image by uniform partition quadtree partition; and (d) partitioned image by
HV partition.

3.2. Domain Block Partition

While the range block is obtained by uniform partition, the most frequently used domain block
partition strategy is uniform partition with overlap, which provides optimal partition result, but is also
extremely computational expensive. The domain blocks are usually assumed to be twice the length
and width (hence four times the size) of those of the range blocks, where the the size of each domain
block is (2× κ) · (2× κ). Since a domain block overlaps with its neighboring domain block with the
difference of one pixel only, therefore, the total number of domain blocks of a M× N image is given by
Nd = (M− 2× κ + 1) · (N − 2× κ + 1)), and they are all stored column-by-column. In other words,
the total number of columns is (M− 2× κ + 1) · (N − 2× κ + 1). Therefore, the total memory size
required to store all domain blocks is given by

(2× κ · 2× κ) · ((M− 2× κ + 1)× (N − 2× κ + 1)).

To simplify the encoding process, the affine transform will be performed on all the domain
blocks, and the transformed blocks will be stored in a domain pool (P). In this case, the PIFS image
encoding process will become the process of finding a surjective function dj → ri from a particular
block dj in the domain pool P to the range block ri under consideration. This surjective function will
find the best matching block from the domain pool P for each range block with respect to a given
matching criteria. Various matching criteria can be applied which essentially affects the complexity
and the quality of the fractal image representation. In the rest of the paper, the matching criteria
applied to illustrate the theory and implementation of PIFS encoding is the L 2 distance between ci
and ri. The mapping that provides the least squares distance will be the best matching pair. Naturally,
the larger the domain pool, the better the matching between the domain blocks and the range blocks
can be obtained. However, a large domain pool will require more memory to store the indices that
specifying the locations of the best matched block in the domain pool. A similar observation is also
reported in [6]. From a computation efficiency viewpoint, compromises between the domain pool size,
domain block size, range block size, and the fidelity must be established.

3.3. Domain Pool Generation

The domain pool P is a collection of domain blocks. Since all the blocks in the domain pool will be
compared with the range blocks, they should be size compatible. In other words, we have to either
interpolate the range block to make it as big as that of the domain blocks, or down-sample the domain
blocks to make it as small as that of the range blocks. It will be difficult if not impossible to prove either
method to be theoretically optimal. As a result, the one that has the lower computational complexity
will usually be adopted. The smaller the block size, the lower the computational complexity. Therefore,
we shall adopt the approach of down-sampling the domain blocks to generate the domain pool. There
exist a large number of image block down-sampling algorithms. To ease our discussions, we shall
adopt the bilinear down-sampling method. Besides the down-sampled domain blocks, the domain
pool can be enriched by incorporating various affine transformed down-sampled domain blocks as

Fractal Fract. 2019, 3, 7 9 of 21

the domain pool vectors. While there are infinitely many different types of affine transformations
that can be applied to enrich the content of the domain pool, the most frequently applied affine
transformations for domain pool generation are the isometric affine transformations, which include
four rotations, a horizontal flipping, a vertical flipping and two diagonal flippings, where all these
transformations are isometries of the original decimated domain blocks [19]. To simplify the discussion,
the implementation example to be presented will only concentrate on the domain pool generated
with domain blocks directly extracted from the given image without performing any isometric affine
transformation. In summary, the domain pool generation process begins with the partition of the
original image into a serial of domain blocks. All the domain blocks in the image have the same
block size.

The domain blocks are taken sequentially from the top-left corner of the image and slide through
the image in a row-then-by-column manner, until the last domain block with the top-left corner pixel
located at [(M− 2× κ + 1), (N − 2× κ + 1)] is taken, such that all the pixels in the original image are
covered. The top-left corner coordinate of the block extracted from the original image that forms the
domain block, together with the affine transformed contents (in our case, the down-sampled domain
blocks) will be stored in the domain pool P. As a result, a simple domain pool P that does not contain
any isometric affine transform blocks will have (M− 2× κ + 1)× (N − 2× κ + 1) entries, where the
total domain pool size is given by (κ × κ) · (M− 2× κ + 1) · (N − 2× κ + 1). It should be noted that,
when other isometric affine transformed blocks are also included in the domain pool, the number of
entries of the simple domain pool will be concatenated with the affine transformed vectors.

It is believed that a large domain pool will result in very good PIFS image representation quality.
However, a large domain pool will cost high computational complexity to find the best match block
within the domain pool for a given range block. It has been shown in [6,20] that allowing more
rotations and shrinking factors or more domain blocks will not improve the performance of the fractal
image representation significantly.

3.4. Grayscale Scaling

To complete the encoding of the image, the range block ri is matched with the domain block in
P. To find the best match domain block dj for a given domain block, we have to scale and offset the
domain block, where the optimal scaling and graylevel offset can be obtained with direct application
of the Collage Theorem in Equation (11). The Collage error ei,j of the domain block dj in the P for the
range block ri given by

e2
i,j = min

ai,j ,bi,j

∥∥ri − (ai,j · dj + bi,j)
∥∥2 . (14)

The parameter pair (ai,j, bi,j) performs graylevel scaling and offset on the domain block dj to minimize
the squares distance with the given range block ri. It should be noted that the ai,j and bi,j are both
scalar and they are degenerated from A and b, respectively. These parameters can be easily found by
solving the least squares problem with the optimal grayscale transform pair given by the solution of
the linear equations (assuming a unique solution exists)

ai,j =
(κ × κ)∑m,n(ri[m, n]dj[m, n])− (∑m,n ri[m, n])(∑m,n dj[m, n])

(κ × κ)∑m,n d2
j [m, n]− (∑m,n dj[m, n])2

, (15)

bi,j =
∑m,n ri[m, n]− ai,j ∑m,n dj[m, n]

κ × κ
. (16)

There is one complication, however, about the contractivity of the fractal transform operator T is
dependent on the scaling coefficient ai,j. There is no simple relationship between the L 2 contractivity
factor, ai,j, and bi,j because of the local nature of the surjective mapping. However, in the L ∞ norm,
contractivity is guaranteed if all the grayscale scaling factors ai,j associated with all range blocks satisfy

Fractal Fract. 2019, 3, 7 10 of 21

the condition |ai,j| < 1. For this reason, most fractal coding algorithms “clamp” the coefficients ai,j to
be a = sign(ai,j) ·min(|ai,j|, 1). As a result, the associated fractal transform is contractive in L ∞, hence
almost always contractive in L 2, due to the equivalence of the norms in finite pixel space.

The optimal grayscale transform of each range block is computed for each domain block inside
the simple domain pool P in order to find the closest domain block to each range block. This optimality
search is performed by storing all Collage errors ei,j for all dj in the P with a given range block ri. These
stored Collage errors will be compared and the minimum is chosen where the associated surjective
mapping i 7→ j forms the contraction transform. These surjective mapping pair (i, j) for all i that cover
the image, together with the grayscale scaling parameter pair (ai,j, bi,j), will form the complete PIFS to
describe the input image. The 4-tuple (i, j, ai,j, bi,j) is also known as the fractal code. With the 4-tuples
are stored in predetermined orders associated with i, it is possible to simplify the 4-tuples to a 3-tuples
(j, a, b). In particular, the 3-tuples are what we needed to construct the PIFS representation for the
given image.

Figure 2 is the summary of the fractal encoding process. The original image is partitioned into
a serial of range blocks. For simplicity, the ordering of the range blocks are made exactly the same
as that of the domain blocks, but the block size of the range block is smaller than that of the domain
blocks. All entries in the simple domain pool P will be considered in the encoding for each of the range
block ri. However, in the example, the size of the row and column dimensions of the domain block are
both twice those of the range block, the block content of the domain block is down-sampled to form dj,
which has the same block size as that of the range block ri. Both ri and dj are applied in the generation
of the graylevel scaling ai,j and offset bi,j parameters. The adjusted cj will be compared with rj for the
Collage error e2

i,j. The encoding of that particular ri will be accomplished when the minimum e2
i,j is

achieved. The row coordinate and column coordinate of dj gives minimum e2
i,j for ri will be stored

in the i-th element in the column vectors i and j, respectively. The corresponding ai,j and bi,j will be
stored in the i-th element in the column vectors a and b, respectively. The four column vectors that
contain i, j, a and b are the fractal codebook. It should be noted that the i-th elements in the fractal
codebook will be updated when a smaller e2

i,j comes in. The encoding process for range block ri will be
done when all entries in the simple domain pool P are considered and the encoding will proceed to
the next range block. The result of the fractal encoding process is presented in the form of the fractal
code (i, j, ai,j, bi,j) for all range blocks. The collection of all the fractal codes is known as Fractal codebook.
There are a lot of things that can be done with this fractal codebook. In the following sections, we shall
first discuss how to reconstruct an approximated image f from the fixed point described by the fractal
code (i, j, ai,j, bi,j). We shall then extend the reconstruction result to create an interpolated image g with
interpolation ratio of 2.

min?

Range Block

+ X

a i , jr i

Compute e i , j

2

0 m1 n1

0 m2 n2

...

...

...
T

dj

Compute a , bi , j i , j

b i , j

.

.

.

.

.

.

.

.

.

.

.

.

i a bj

Fractal Codebook

k

k

Next domain block
in domain pool

Update Fractal Codebook
for the -th vector []i i j a b, , ,i,j i,j

Domain Pool

Figure 2. Fractal encoding by matching range blocks with grayscale transformed domain blocks from
the domain pool.

Fractal Fract. 2019, 3, 7 11 of 21

4. Decoding

The fractal code generated by the PIFS encoding process described the relations between different
parts of the image, which is independent from the size and resolution of the image. With a given
fractal code that defines the collection of contraction transforms

⋃
T (the affine transform described

by the j-th domain block (dj) and the associated grayscale scaling and offset by (ai,j, bi,j) for the i-th
range block), the fixed point f f can be obtained by simple iteration of the union of the contraction
transforms. Starting with an arbitrary image f0, one forms the iteration sequence fk+1 =

⋃
T(fk).

With the contraction transform constrained to be simple affine transform as considered in previous
section, the decoding procedure can be constructed by recovering the range blocks of the (k + 1)-th
decoded image fk+1 from the simple domain pool P of the decoded image fk. A decoding loop of the
above procedure will be performed until a specified quality parameter is fulfilled, and is detailed in
the following steps.

1. Constructs the simple domain pool P using the down-sampled domain blocks from the previously
decoded image. The domain pool generation routine should be the same as that used in the PIFS
encoder. Furthermore, if there is no previously decoded image, the “previously decoded image”
can be initialized by any image, including the dark image (i.e., all pixels have intensity equal
zero). For image interpolation, the initial image can be the original image f , such as to reduce the
decoding time (i.e., f0 = f).

2. Form the i-th range block from the j-th domain block extracted from the initial image with
graylevel scaling by a and addition of brightness shift b on each pixel, where the parameters
j, a and b are retrieved from the fractal code one-by-one from the codebook and generate the
attractor image f , where each range blocks in f1 are generated by applying grayscale scaling a
and shifting b to the j-th domain block.

3. Glue all the range blocks together to form the fractal decoded image at the k-th iteration.
4. If the number of iteration is smaller than a predefined number, and, if the differences between

the images in consecutive loops is larger than a specified tolerance, then go back to step 1 for the
(k + 1)-th fractal decoding iteration using the k-th fractal decoded image g as the start image.

This iterative decoding procedure does not require exhaustive search, nor matrix inverse
computation, therefore, it is vivid that the decoding procedure requires a fraction of the computational
complexity when compared to the fractal encoding procedure. Most of the computation time will be
used to construct the simple domain pool P from the decoded image g in each loop.

Figure 3 shows the decoded images with fractal encoding using a domain pool with block size of
κ = 8 without isometric transform of a 256× 256 8-bit grayscale Cat image. The fractal nature of the
decoded image is vivid from Figure 3a, which is the decoded image obtained from the 3rd iteration.
Blocks with similar features as that of the original image are being put together, and it is possible to
identify the Cat image from Figure 3a. The image in Figure 3b is obtained with two more iterations.
The Cat image is almost completely reconstructed from the PIFS decoding iterations. The decoded
image obtained from the 7th iteration as shown in Figure 3c has already faithfully reconstructed the
Cat image, and only a minimal difference can be found between the 7th iteration PIFS decoded image
and that obtained from the 20th iteration PIFS decoded image as shown in Figure 3d.

Compared with the classical DCT based coder, the image Figure 4a obtained from fractal decoding
with the Cat image encoded with κ = 8, at the 20th iteration has a compression ratio compatible to that
of the DCT image coding with 8× 8 DCT block size and retaining only the 4× 4 low frequency sub-block
as shown in Figure 4b. Observed from Figure 4a, the fractal PIFS is superior in encoding edges as
well as low frequency image content but lack perceivable texture. Due to the exploitation of scaling
invariance (the domain blocks are scaled down by a factor of 2), the modeling of image areas with high
frequency details is inferior when compared to that obtained from the DCT based coder. However,
such details are irregular in nature as a result, such kind of impairments are visually concealed, given
that there is no well-known, recognizable geometrical pattern within the photo, such as, for examples,

Fractal Fract. 2019, 3, 7 12 of 21

text characters or geometrical figures. As a result, the Human Visual System (HVS) will perceive the
decoded image from fractal coder to have no or minor artifacts as long as the decoded image content
is similar to the original. This makes fractal image coding more attractive for natural image coding.(a) (b) (c) (d)

Figure 3. Cat image of size 256× 256 encoded with 8× 8 range block fractal and decoded under
different iterations an initial image of a zero matrix: (a) the 3rd iteration; (b) the 5th iteration; (c) the
7th iteration; and (d) the 20th iteration.

From Fractal decoded
image with block size of 8

From original image

From zero padded
DCT interpolated image

with block size of 8

(a) (b)

Figure 4. Comparison of Cat image of size 256× 256 by (a) fractal decoding with 20 iterations and
(b) zero padded DCT interpolation with only the low frequency 4× 4 DCT coefficients block being
retained, where the same block size of 8× 8 is adopted in both methods.

Finally, we shall investigate the effect of the initial image on the fixed point image. Figure 5
shows the 20th iteration fractal decoded image obtained from the same fractal codebook but with
different initial images. Figure 5a is obtained with a dark initial image (where all pixel values
equal zero), while Figure 5b is obtained with the 256× 256 Cat image as the initial image. It can be
observed that two images are indistinguishable subjectively. Furthermore, the objective performance
of both decoded images are the same, with the PSNR equaling 26.54 dB and SSIM equaling 0.726.
The only difference is the number of iterations required to obtain the fixed point image as shown in
Figure 5a,b, where 15 iterations are required for the initial dark image to converge to the fixed point
Cat image, while it takes nine iterations for the Cat image to converge to the fixed point Cat image.
These observations can be conjectured from the discussions presented in Example 1.

Fractal Fract. 2019, 3, 7 13 of 21

(a) (b)

Figure 5. Comparison of Fractal decoded Cat image of size 256× 256 obtained from the same fractal
codebook but with different initial images at the 20th iteration, where the same block size of 8 × 8
is applied in the decoding: (a) a zero matrix as an initial image and (b) the original Cat image
as initial image, where both the decoded images have the same PSNR and SSIM at 26.54 dB and
0.726, respectively.

Does Size Matter?

Both the PIFS representation quality and the computational complexity of the PIFS encoding
process depend on the block size of the range block. We encoded the Cat image using the discussed
fractal encoder and decode the image by decoding the obtained fractal code with a zero matrix initial
image. Such encode and decode processes are performed with the block size of the range block at
4× 4 and 8× 8, separately, where the corresponding particulars are summarized in Tables 2 and 3,
respectively. It can be observed that the increase in the range block size does increase the memory
consumption exponentially with respect to the ratio of the two range block sizes. However, the number
of domain blocks in the domain pool are still comparable (which is basically comparable to the total
number of pixels in the image). As a result, as long as the computational devices have enough memory,
it is expected that the encoding time should be comparable with respect to the domain pool size. On the
other hand, the larger the range block size, the smaller the number of range blocks required to be
encoded, and the reduction should be comparable to the ratio of the two range block sizes. As a result,
an overall reduction in the encoding time of the fractal encoding process with range block size of 8× 8
by a factor of almost 5 is observed when compared to that with range block size of 4× 4. When we
examine the computational performance gain of fractal encoding with range block size equals 8× 8,
it can be observed that the larger the range block size, the smaller the encoded fractal codes, and the
reduction follows directly from the range block size ratio.

Table 2. Fractal image representation of the 256× 256 Cat image with range block size of 4× 4 and
8× 8, respectively, with fractal encoder running in MATLAB R2016b on an MS Windows 7 PC with
Quad Core Xeon E5520 @ 2.27 GHz and 8 GB RAM. The fractal domain pool is computed with the
pixel location of the top left hand corner of the matched domain block being stored as 8-bit data.
Furthermore, each component in the scalar transform (a, b) is quantized to 16-bit data.

Block Size 4 × 4 8 × 8

Time to Encode 15 min 3 min
Size of pool 16 × 62,001 double 64×58,081 double
Fractal Code Size 0.375 byte/pixel 0.07 byte/pixel

Fractal Fract. 2019, 3, 7 14 of 21

Table 3. 256× 256 Cat image reconstructed from fractal image representation using range block size
of 4× 4 and 8× 8, respectively, with the decoding process begins with a zero matrix initial reference
image running in MATLAB R2016b on MS Windows 7 PC with Quad Core Xeon E5520 @ 2.27GHz and
8 GB RAM.

Block Size 4 × 4 Double 8 × 8 Double

Size of pool 16 × 62,001 double 64 × 58,081 double
No of Iterations 30 20
Time to decode 50 mins 5 mins
PSNR 30.9964 dB 26.5392 dB

If we further investigate the fractal decoding process, we shall find that the domain pool size
required in the fractal decoder should be of the same size as that in the fractal encoder. As a result,
the decoding complexity will depend on the number of range blocks, which partially explained the
long decoding time of the PIFS decoding with range block size of 4× 4 when compared to that with
a size of 8× 8. Another reason related to the long PIFS decoding time for the case with a range block
size of 4× 4 is caused by the slow convergence, where almost double the number of iterations are
required before the decoding algorithm converges. The fast convergence of the PIFS decoding with
a range block size of 8× 8 is because of the fact that some of the range blocks with details are not
fractal. When they are considered as fractal objects, the image details within these blocks will be
washed out. As a result, the PIFS decoding converges quickly with large range block size. On the
other hand, most of the small range block (4× 4) are fractal blocks, and will require long convergence
time. The pro of a small range block is that the preservation of image details as observed in Figure 6,
which is also reflected in the PSNR of the decoded images as listed in Table 3. It will be difficult to
find a balance between the range block size and the other performance parameters. In the rest of this
paper, we shall keep using a range block size 8× 8 (κ = 8) because of the computational complexity
advantages, and also because it does not affect us presenting the theories and concepts that we desired.

From decoded image
with block size of 8x8

From original image

From decoded image
with block size of 4x4

(a) (b)

Figure 6. Cat image of size 256× 256 with 8× 8 range block fractal encoding and (a) decoded with
8× 8 range block size at the 20th iterations, and the associated zoom-in image block of the eye of the
Cat in (b) the same image decoded with 4× 4 range block size at the 30th iterations, where a zero
matrix initial image are adopted in both decoding processes.

5. Decoding with Interpolation

The main idea of the fractal image interpolation is rather simple. It is based on the assumption that
the fractal coding is really a fractal process, and the fractal code’s attractor is a fractal object, such that,
by iterating a deterministic transformation on some initial image, a deterministic fractal image will be

Fractal Fract. 2019, 3, 7 15 of 21

obtained. The transforms that build the fractal code describes relations between different parts of the
image, which is independent from the size and resolution of the image being processed. This means
that the image can be decoded to any resolution, higher or lower than that of the original image.

The ability of using a fractal code to interpolate image has been developed in [15,21,22] and is
known as “fractal zoom”. It is known as “zoom” because the fractal decoded and enlarged image does
not necessarily preserve the pixel intensity correspond to the low-resolution image. In other words,
the “zoom” algorithm is not an interpolation algorithm, but a fitting algorithm. For magnification,
the range block size κ × κ in the decoded image has to be increased. In particular, for image zooming
to double its size, the κ should be doubled.

Finally, although the initial image can be an arbitrary image (in the following, we choose a zero
matrix initial image in the following simulation), it has to be the same size as the interpolated image
when applied to the PIFS transform. Putting these all together, the fractal zoom-in Cat image of size
512× 512 obtained from a PIFS encoded 256× 256 Catimage with κ = 8 is shown in Figure 7. It should
be noted that the fractal zooming does not preserve the pixel values and hence performs very bad in
traditional objective measures, where PSNR and SSIM are 25.2695 dB and 0.7659, respectively. On the
other hand, the fractal zoom-in image performs very good with subjective assessments. Visually,
it is vivid that the fractal zoom-in image can provide acute preservation of edges without serration
effects and increased brilliance when compared to other image interpolation methods in literature.
In summary, the fractal zoom-in image is observed to process the following properties:

1. When edges are well approximated at the original resolution, they are sharp and fairly well
preserved in the interpolated image.

2. Edges do not always match well at block boundaries.
3. The non-fractal blocks are less visually satisfactory, where “notches” are created by non-fractal

blocks, which are propagated by iterations onto neighboring blocks.

(a) (b)

Figure 7. Fractal zoom-in Cat image in (a) the same size as that of original image (i.e., 256× 256) and
(b) an enlargement to the size of 512× 512, with both images decoded with identical range block
size of 8× 8, zero image as initial image, and the number of iterations of 20 (PSNR = 25.2695 dB,
SSIM = 0.7659).

The loss of details of the non-fractal blocks is mostly caused by the fact that the fractal coding is
a lossy process, and the coding error is magnified in the decoding stage during zooming. As a result,

Fractal Fract. 2019, 3, 7 16 of 21

a special treatment of this error would be necessary to enable the fractal image interpolation to compete
with the classical interpolation methods with respect to objective performance assessments.

From Fitting to Interpolation

Although the PIFS image representation is based on the assumption that the image can be
treated as a fractal object, almost all real world images do not satisfy the self-similarity property.
The consequence is that the PIFS decoded image will be lossy, and the interpolated image obtained
from the application of PIFS cannot guarantee the preservation of the original pixel values. As a result,
the traditional fractal zooming can only be considered as fitting instead of interpolation. When that
happens, a back propagation algorithm [19] can be employed to recover the original pixel values
in the interpolated image. The back propagation obtains a low resolution error image e[m, n] by
subsampling the fractal zoomed image and subtract the original low resolution image, such that
e = gk ↓ 2− f . However, as we understand that the fractal decoding depends on the invariant of
the affine transformation performed by the fractal encoding process, instead of the underlying image.
We have demonstrated this property by initializing the PIFS decoding process with an initial image
having all its pixels equal to zero (i.e., a zero matrix), and bilinear interpolated original images, where
the fractal decoding algorithm converges to images that are almost exactly the same. As a result,
instead of considering the adjustment of the fractal decoded image by iterative fractal interpolation of
difference images, we can modify the fractal decoded image in each iteration with an interleave layer,
which will enforce all intermediate fractal decoded image to have the same pixel values of f and make
it equals f in the corresponding pixel locations. The interleave layer is given by

gk[p, q] =

{
f [m, n] for p = 2m and q = 2n,

gk[p, q], otherwise.
(17)

The fractal image zooming method will be applied to obtain a high-resolution error image h, such that
the corrected high resolution image gk+1 is given by gk+1 = gk + h. By iterative application of the back
propagation error correction technique a number of times, all pixels in gk are the corresponding pixel
of the origin low resolution image f will be able to maintain its intensity. In other words, gk ↓ 2 = f ,
such that all pixels correspond to the original image are replaced by that of the original image in the
intermediate decoded interpolated image in each iteration

Similar algorithms have been considered in [23] where an enhancement layer is introduced in the
fractal decoding process within the IFS space. Even though the concept is similar, the enhancement
layer considered in [23] cannot guarantee the convergence of the IFS decoding process. On the other
hand, the interleave layer introduced in the spatial domain is equivalent to the modification of the
contraction transform. Since the underlying transform of the IFS is contractive, the convergence
of the system is guaranteed. To show that this method will form a converging IFS, let us consider
a downsampling matrix SD with the same size as that of the range block and with element 0 at all the
matrix location corresponding to the low-resolution image pixel location, and 1 at all other locations.
With the interleave layer, the i-th range block is obtained as

ri = SD ⊗ Pi(aidα(i) + bi) + SU ⊗ fi

= Pi(SD ⊗ aidα(i) + SD ⊗ bi + SU ⊗ fi)

= Pi(âi f SD ⊗ dα(i) + b̂i), (18)

where ⊗ is the Kronecker product, SU is the upsampling matrix with zero padded into the upsampled
location, fi is the low-resolution image block with size κ × κ extracted at the corresponding location
of the i-th range block in the high-resolution image, furthermore, f =

⋃Nr
i=1 fi. The lumped matrix b̂i

is thus a constant matrix with respect to the given image f and the fractal code bi. The Kronecker
product of a downsampling matrix SD is contractive. As a result, the contractivity of the range block

Fractal Fract. 2019, 3, 7 17 of 21

obtained from Equation (18) is guaranteed. The interpolated Cat image achieved by the above IFS
with an interleave layer is shown in Figure 8, where it is obvious that the interpolated image has
more details and less artifacts than that obtained by Fractal zoom as shown in Figure 7 with improved
objective performance where PSNR = 26.41 dB and SSIM = 0.8642, due to the error minimization by
back propagation. It should be noted that the proposed pixel replacement scheme does not follow
the self-similar property of fractal image representation, which may end up with distinct pixel values
(also known as shot noise) to be observed in the interpolated image. Such artifacts will affect the
performance of the constructed domain pool for the next iteration, and hence the final image object
quality. Furthermore, this pixel replacement procedure in the decoding process does not alter the block
processing nature of the PIFS image representation, and hence the interpolated image is still observed
to be blocky. (a) (c)(b) (d)(e) (f)(g)

Figure 8. Fractal interpolated Cat image by a factor of 2 to 512 × 512 at the 15th iteration with
range block size of 8× 8 interleaved with low-resolution Cat image pixel layer (PSNR = 26.41 dB,
SSIM = 0.8542): (a) the full interpolated image; zoom-in portion of the whiskers of (b) the original
Cat image, (d) the interpolated image by fractal decoding with κ = 16× 16, and (f) the interpolated
image by fractal interpolation with interleaving; zoom-in portion of the eye of (c) the original Cat image,
(e) the interpolated image by fractal decoding with κ = 16× 16, and (g) the interpolated image by
fractal interpolation with interleaving.

6. Overlapping

Fractal image representation technique is a block based technique and hence blocking artifact is
observed to be heavy and considered to be the most important visual artifact in the Fractal decoded
image. The blocking artifact is observed to behave like random white noise in nature but is translation
variant. In other words, the blocking error depends on where the blocks are extracted from the image
to perform the PIFS, and the locations to glue these blocks together. There are a number of ways to
ensure the continuity of brightness between blocks. In [2], the means of each range blocks are extracted
and the overlaps of the four adjacent blocks are smoothed by a spatial filter with kernel. The smoothing
filter assumes translation invariant of the mean brightness across a block boundary, which, however, is
not always correct, and might end up blurring the image features when the block boundary co-aligns
with the edges of the image features. As a result, instead of considering the translation invariant
property of the mean brightness, we shall consider the translation variant property of the blocking
artifact random noise, which suggests alleviating the blocking artifacts through averaging interpolated
images having different range block boundaries. Such method can be considered as a smoothing
filter too. However, this time, the smooth is performed per pixel and hence will not blur the image.
Figure 9a shows the “non-shifted”, and Figure 9b,c, d shows the “horizontal shifted”, “vertical shifted”,
and “diagonal shifted” images. As a result, the fractal image interpolation results obtained from
images that are shifts of one another such that they have different range block boundaries that are

Fractal Fract. 2019, 3, 7 18 of 21

averaged to alleviate the discontinuities around the range block boundaries [16,24]. Besides image
averaging, overlapping the range block is also able to alleviate the block discontinuities problem [4] to
alleviate the block discontinuities. However, range block overlapping is a low-pass filtering operation,
which is compared with the median filtering process realized by image averaging, and the median
filtering process is more efficient in removing shot noise.

8

8

4

4

4
4

4

4
8

8

8

8 8

8

(a) f (b) F1 (c) F2 (d) F3

Figure 9. Illustration of different block partition methods: (a) the original “non-shifted” image f ;
(b) the “horizontal shifted” image F1; (c) the “vertical shifted” image F2; and (d) the “diagonal shifted”
image F3.

A common selected shift is half of the range block size. The PIFS image coding results of each
shifted image will generate one interpolated image. After rectifying the fractal interpolated shifted
image (by padding the boundary with the fractal decoded image of the non-shifted image) to be the
same size as that obtained from the non-shifted image, all the images will be averaged to produce the
final overlapped interpolated image. We shall expect the blocking artifact is alleviated and the image
quality is further improved. The interpolated image with overlapping technique is shown in Figure 10a,
with the selected zoom-in portions of the cat shown in Figure 10c,e. For comparison, the corresponding
zoom-in portions of the Fractal interpolated image without overlap are shown in Figure 10b,d. It can
be observed that the blockiness of the interpolated image has largely suppressed, and the details of
the texture rich regions of the Cat images can be preserved in the overlapped interpolated image.
Besides the blocking artifacts, the shot noise problem due to the interleave layer in Fractal interpolation
method with interleaving has also been suppressed. This is because the location of the shot noise
pixels are different in fractal decoded images with different shifts. As a result, the averaging action
among fractal decoded images with different shot noise pixel locations helps to reduce the shot noise
intensity to an HVS non-observable level. The good performance of this image interpolation scheme is
also observed in the objective performance measures, where both the PSNR and SSIM are 27.39 dB
and 0.887, respectively, which are better than that of other fractal zooming/interpolation methods
presented in this paper. This almost perfect fractal image interpolation scheme does come with the very
high price of exceptionally high computational complexity and possible high memory requirement.

Recent development of Fractal wavelet image coding/interpolation can help to lower the
computational complexity, but the fractal operating on the transform domain (wavelet domain) will
lose the nice features of self-similarity in spatial domain, and hence the decoded/interpolated image
will no longer look natural, and the edges and features will not be as sharp as traditional fractal image
operating in the spatial domain. In view of this quality degradation, the fractal wavelet technique is
not discussed in this paper.

Fractal Fract. 2019, 3, 7 19 of 21(a) (c)(b) (d)(e)
Figure 10. A 2× interpolated Cat image by mean filtering a set of four cyclic spin fractal decoding
images (original plus 3 other shifted images) with doubled range block size (i.e., 16× 16) and interleaved
low-resolution image pixels using fractal interpolation method with interleaving (PSNR = 27.39 dB,
SSIM = 0.887): (a) the full interpolated image; (b) zoom-in portion of the whiskers of the Cat image
obtained from fractal interpolation method with interleaving but nomean filtering (same as Figure 8f),
and (c) from mean filtering shifted fractal decoded images; (d) zoom-in portion of the eye of the
Cat image obtained from a fractal interpolation method with interleaving but no mean filtering (the
same as Figure 8g), and (e) from mean filtering shifted fractal decoded images.

7. Conclusions

This paper has shown that fractal image interpolation has the potential to generate high quality
interpolated images. One of the major weaknesses of the fractal image interpolation is the use of
fixed size range and domain image blocks. There are regions in images that are more difficult to cope
with others (such as the eye region of the Cat image), which will require a mechanism to adapt the
block size. One of such methods is to use quadtree decomposition. Unfortunately, variable block size
fractal image interpolation suffers from huge encoding complexity. Actually, even for range block
with uniform size, the search space to be investigated is spanned by the amount of domain block
locations, which equals the number of pixels in the image, and the variations of all affine transforms
applied to the domain pool generation. Therefore, the key to make fractal image interpolation work
is to find methods to reduce the search effort to an acceptable level for real world implementation in
everyday home computers. This involves intelligent search methods to be investigated by the readers.
In summary, the fractal image interpolation can produce excellent interpolation results for natural
images, where very sharp edges can be obtained with almost no ringing artifacts. The con is the very
high computational complexity and processing memory requirement, no matter whether it is being
applied alone or mixed with various artifacts reduction techniques.

Image interpolation is an ill-posed problem with infinitely many solutions due to the lack
of information presented in the low-resolution image. Second, various interpolation techniques
and artifact reduction methods can be mixed to achieve better interpolation results. However,
mixing different interpolation methods and artifact reduction methods together do not always work,
but, when it works, the result will usually be very pleasing. The major fallacies of such mix and match
methods will be the increase in computational complexity. Such schemes are usually iterative, which
means that the very high computational complexity interpolation algorithm will have to be performed
many more times before a prefect interpolated image can be obtained. Therefore, the design of an image
interpolation algorithm is to find the best trade-off between the appearance of artifacts (the unfortunate
results of a series of wrong assumptions) and the computational complexity.

Fractal Fract. 2019, 3, 7 20 of 21

Author Contributions: Conceptualization, C.W.K. and W.S.T.; Methodology, C.W.K.; Software, C.W.K. and W.S.T.;
Validation, C.W.K. and W.S.T.; Formal Analysis, C.W.K.; Investigation, C.W.K. and W.S.T.; Writing—Original Draft
Preparation, C.W.K.; Writing—Review and Editing, W.S.T.; Visualization, W.S.T.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

IFS Iterative Function System
PIFS Partitioned Iterative Function System
PSNR Peak Signal to Noise Ratio
SSIM Structural Similarity
DCT Discrete Cosine Transform

References

1. Xu, Y.; Ji, H.; Fermuller, C. Viewpoint invariant texture description using fractal analysis. Int. J. Comput. Vis.
2009, 83, 85–100. [CrossRef]

2. Wee, Y.C.; Shin, H.J. A Novel Fast Fractal Super Resolution Technique. IEEE Trans. Consum. Electron. 2010,
56, 1537–1541. [CrossRef]

3. He, S.H.; Wu, Z. Method of Single Image Super-Resolution Enhancement Based on Fractal Coding.
In Proceedings of the 3rd International Confernece on Computer Science and Network Technology, Dalian,
China, 12–13 October 2013; pp. 1034–1036.

4. Zhang, Y.; Fan, Q.; Bao, F.; Liu, Y.; Zhang, C. Single-Image Super-Resolution Based on Rational Fractal
Interpolation. IEEE Trans. Image Process. 2018, 27, 3782–3797. [PubMed]

5. Xu, H.; Zhai, G.; Yang, X. Single image super-resolution with detail enhancement based on local fractal
analysis of gradient. IEEE Trans. Circuits Syst. Video Technol. 2013, 23, 1740–1754. [CrossRef]

6. Chaurasia, V.; Gumasta, R.K.; Kurmi, Y. Fractal Image Compression with Optimized Domain Pool
Size. In Proceedings of the International Conference on Innovations in Electronics, Signal Processing
and Communication, Shillong, India, 6–7 April 2017; pp. 209–212.

7. Padmashree, S.; Nagapadma, R. Different approaches for implementation of fractal image compression on
medical images. In Proceedings of the International Conference on Electrical, Electronics, Communications,
Computer and Optimization Techniques, Mysuru, India, 9–10 December 2016; pp. 66–72.

8. Biswas, A.K.; Karmakar, S.; Sharma, S.; Kowar, M.K. Performance of fractal image compression for medical
images: A comprehensive literature review. Int. J. Appl. Inf. Syst. 2015, 8, 14–24.

9. Ye, R.; Lan, H.; Wu, Q. A fractal interpolation based image encryption scheme. In Proceedings of the
IEEE International Conference on Computer and Communication Engineering Technology, Beijing, China,
18–20 August 2018; pp. 291–295.

10. Liu, M.; Zhao, Y.; Lin, C.; Bai, H.; Yao, C. Resolution-independent up-sampling for depth map using fractal
transforms. KSII Trans. Internet Inf. Syst. 2016, 10, 2730–2747.

11. Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales.
Fundam. Math. 1922, 3, 133–181. [CrossRef]

12. Hutchinson, J. Fractals and self-similarity. Indiana Univ. J. Math. 1981, 30, 713–747. [CrossRef]
13. Jacquin, A.E. Image coding based on a fractal theory of iterated contractive image transformations.

IEEE Trans. Image Process. 1992, 1, 18–30. [CrossRef] [PubMed]
14. Barnsley, M.F.; Elton, J.H.; Hardin, D.P. Recurrent iterated function systems. Constr. Approx. 1989, 5, 3–31.

[CrossRef]
15. Fisher, Y. Fractal Image Compression—Theory and Applications; Springer: New York, NY, USA, 1995.
16. Reusens, E. Overlapped Adaptive Partitioning for Image Coding Based on Theory of Iterated Function

systems. In Proceedings of the IEEE Internation Conference on Acoustics, Speech and Signal Processing,
Adelaide, SA, Australia, 19–22 April 1994; pp. 569–572.

17. Davoine, F.; Antonini, M.; Chassery, J.M.; Barlaud, M. Fractal image compression based on Delaunay
triangulation and vector quantization. IEEE Trans. Image Process. 1996, 5, 338–346. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s11263-009-0220-6
http://dx.doi.org/10.1109/TCE.2010.5606294
http://www.ncbi.nlm.nih.gov/pubmed/29698209
http://dx.doi.org/10.1109/TCSVT.2013.2248305
http://dx.doi.org/10.4064/fm-3-1-133-181
http://dx.doi.org/10.1512/iumj.1981.30.30055
http://dx.doi.org/10.1109/83.128028
http://www.ncbi.nlm.nih.gov/pubmed/18296137
http://dx.doi.org/10.1007/BF01889596
http://dx.doi.org/10.1109/83.480769
http://www.ncbi.nlm.nih.gov/pubmed/18285117

Fractal Fract. 2019, 3, 7 21 of 21

18. Reusens, E. Partitioning complexity issue for iterated function system based image coding. In Proceedings
of the VII-th European Signal Processing Conference, Edinburg, UK, 13–16 September 1994; pp. 171–174.

19. Kok, C.; Tam, W. Digital Image Interpolation in MATLAB; Wiley-IEEE Press: Hoboken, NJ, USA, 2019.
20. Lu, N. Fractal Imaging; Academic Press: Cambridge, MA, USA, 1997.
21. Gharavi-Al., M.; DeNardo, R.; Tenda, Y.; Huang, T.S. Resolution enhancement of images using fractal coding.

In Proceedings of the SPICE Visual Communications and Image Processing, San Jose, CA, USA, 10 January
1997; pp. 1089–1100.

22. Polidori, E.; Dugelay, J.L. Zooming using iterated function systems. Fractals 1997, 5, 111–123. [CrossRef]
23. Chung, K.H.; Fung, Y.H.; Chan, Y.H. Image enlargement using fractal. In Proceedings of the IEEE

International Conference on Acoustic, Speech, and Signal Processing, Hong Kong, China, 6–10 April 2003;
pp. 273–276.

24. Polidori, E.; Dugelay, J.L. Zooming using iterated function systems. In Proceedings of the NATO ASI on
Image Encoding and Analysis, Trondheim, Norway, 8–17 July 1995.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1142/S0218348X97000681
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Iterated Function System
	Fixed Point Theorem
	Partitioned Iterative Function System

	Encoding
	Range Block Partition
	Domain Block Partition
	Domain Pool Generation
	Grayscale Scaling

	Decoding
	Decoding with Interpolation
	Overlapping
	Conclusions
	References

