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Abstract: The manuscript surveys the special functions of the Fox-Wright type. These functions
are generalizations of the hypergeometric functions. Notable representatives of the type are the
Mittag-Leffler functions and the Wright function. The integral representations of such functions are
given and the conditions under which these function can be represented by simpler functions are
demonstrated. The connection with generalized Erdélyi-Kober fractional differential and integral
operators is demonstrated and discussed.
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1. Introduction

This paper is concerned with integral representations of the Fox-Wright functions and their
relationship to fractional calculus. The first characteristic exemplar of this function family has been
introduced by E. M. Wright, who generalized the concept in a series of papers in 1930s. The Fox-Wright
special functions are very general mathematical objects, which have broad applications in mathematical
physics, notably in descriptions of wave phenomena, heat and mass transfer. They encompass the
generalized hypergeometric functions pFq and are related to the family of the Bessel functions.

The conditions for existence of the generalized Wright function together with its representation in
terms of the Mellin-Barnes integral and of the H-function can be found in [1]. Fox-Wright functions
encompass other important families of functions, such as the the Mittag-Leffler functions (surveys
in [2,3]). The Mittag-Leffler function in turn expresses the solution of fractional order integral or
fractional order differential equations. It has applications in the theory of random walks, Levy flights,
superdiffusive transport, among others. Another important example is the M-Wright function,
which expresses the fundamental solution of the time-fractional diffusion-wave equation [4]. A recent
survey about the properties of the function can be found in [5].

The objective of the present paper is to give a self-contained treatment of the generalized
fractional calculus Erdélyi-Kober operators, which appear as re-parametrizations of the Euler integrals.
The actions of the Erdélyi-Kober operators are thus expressed in a natural way as adding or removing
parameters of multi-parameter Fox-Wright functions.

Many authors introduce the Fox-Wright functions from their representation as H-functions,
which are in turn defined as Mellin transforms pairs. Such presentation tends to obfuscate the utility
of Fox-Wright functions. In this paper, the Fox-Wright functions are represented as generalized
hypergeoemtric series (GHG) and related to the theory of the Euler Gamma and Beta functions.
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This provides some advantages, as for example Theorem 3, which to the present author’s knowledge
has not been stated in such form before.

2. Preliminaries and Notation

The generalized hypergeometric functions are defined by the infinite hypergeometric (HG) series

pFq(a1, . . . , ap; b1, . . . , bq, x) :=
∞

∑
m=0

xm

Γ(m + 1)

p

∏
k=1

Γ(ak + m)

Γ(ak)

q

∏
k=1

Γ(bk)

Γ(bk + m)

The defining property fo HG series is that the coefficients are rational functions of the index
variable (i.e., k).

In the following sections, we will use the parametric notation similar to the one adopted by
Oldham and Spanier [6].

pFq(a1, . . . , ap; b1, . . . , bq, x) ≡
[

a1, . . . , ap x
b1, . . . , bq

]

The classical hypergeometric series pFq obey the differential identities

(
z

d
dz

+ ap

)[
a1, . . . , ap z
b1, . . . , bq

]
= ap

[
a1, . . . , ap + 1 z

b1, . . . , bq

]
(

z
d
dz

+ bq − 1
)[

a1, . . . , ap z
b1, . . . , bq

]
=
(
bq − 1

) [ a1, . . . , ap z
b1, . . . , bq − 1

]
and

d
dz

[
a1, . . . , ap z
b1, . . . , bq

]
= q

[
a1 + 1, . . . , ap + 1 z
b1 + 1, . . . , bq + 1

]
, q =

∏
p
i=1 ai

∏
q
i=1 bi

which entails the differential equation

z
p

∏
k=1

(
z

d
dz

+ ak

)
pFq = z

d
dz

q

∏
k=1

(
z

d
dz

+ bk − 1
)

pFq

These relationships can be suitably generalized for fractional operators.
The Fox-Wright functions are further generalizations of the hypergeometric (HG) functions of

the form

pΨ̄q(z) ≡ Ψ̄

[
(A1, a1) . . . , (Ap, ap) z
(B1, b1) . . . , (Bq, bq)

]
:=

∞

∑
m=0

xm

Γ(m + 1)

p

∏
k=1

Γ(akm + Ak)

Γ(Ak)

q

∏
k=1

Γ(Bk)

Γ(bkm + Bk)

For this generalization, one can not expect that in general the coefficients are rational functions of
the index variable.

For convergence of the series the condition

q

∑
k=1

bk −
p

∑
k=1

ak > −1

will be assumed everywhere [7,8]. At this point we introduce some extended notation under
the convention

p+1Ψ̄q(z) =

[
a1, . . . , ap (A, a) z
b1, . . . , bq −

]
, p+1Ψ̄q(0) = 1,
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In this notation, the hypergeometric indices of the function are written first while the
non-simplified indices are left second. The non-simplified indices result in factors of the form

Γ(ka + A)

Γ(A)

or their reciprocals, respectively, and follow the usual convention established in literature. The order
in the parametric convention for the arguments of the Gamma function follows the usual convention,
used for example in [9,10]. This is unfortunately converse to the order of the more conventional Wright
function and Mittag-Leffler type of functions.

The following simplifying convention will be used further:[
a1, . . . − z
b1, . . . −

]
≡
[

a1, . . . z
b1, . . .

]
(1)

and [
a1, . . . , ap (A, 1) z
b1, . . . , bq −

]
≡
[

a1, . . . , ap, A z
b1, . . . , bq

]
(2)

This example shows different ways to write a hypergeometric function.

3. Algebraic Decomposition

The coefficients of the GHG series can be identified by means of the following Lemma:

Lemma 1 (HG Recurrence). Suppose that

S = 1Ψ̄0(z) =
∞

∑
k=0

ck zk

Γ(k + 1)
, ck = Γ(qk)

where qk is a linear expression in the index k or

S = 0Ψ̄1(z), ck =
1

Γ(qk)

under the same convention. Then

S = c0

[
− (A, a) z
− −

]
or

S = c0

[
− − z
− (A, a)

]
respectively, where

a = qk+1 mod qk

and
A = qk mod k

Proof. We prove the first case only since the second one follows identical reasoning. By hypothesis
ck = Γ(A + ka) for some unknown A and a. Let’s form the ratio

Qk =
Γ(A + a + ka)

Γ(A + ka)

Then (A + a + ka) mod (A + k a) = a and A + k a mod k = A.
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The generalized hypergeometric series can be decomposed in symmetric (even) and
anti-symmetric (odd) series as follows:

Theorem 1 (GH Series Parity Decomposition). Suppose that the generalized hypergeometric series
S = Se + So is absolutely convergent at z. Denote Se as the even part while So as the odd part.

If S is of the form

S =

[
− (A, a) z
− . . .

]
then

Se =

[
− (A, 2a) z2

4
1
2 . . .

]
, So = z

Γ(a + A)

Γ(A)

[
− (a + A, 2 a) z2

4
3
2 . . .

]
If S is of the form

S =

[
− . . . z
− (A, a)

]
then

Se =

[
− . . . z2

4
1
2 (A, 2 a)

]
, So = z

Γ(A)

Γ(a + A)

[
− . . . z2

4
3
2 (a + A, 2 a)

]

Proof. Let the even part and odd series be Se and So, respectively. We prove only the first statement
because the second one can be proved in an identical way. For simplicity of calculations suppose that
S is of the form [

− (A, a) z
− −

]
For the even part:

k = 2m + 2 :
Γ(ak + A)

Γ(k + 1)
zk 7→ Γ(2a m + 2a + A)

Γ(2m + 3)
z2m+2

k = 2 m :
Γ(ak + A)

Γ(k + 1)
zk 7→ Γ(2a m + A)

Γ(2m + 1)
z2m

so that the ratio of the coefficients is

Γ(2m + 1)
Γ(2m + 3)

Γ(2a m + 2a + A)

Γ(2a m + A)
z2 =

z2

4 (m + 1)
(

m + 1
2

) Γ(2a m + 2a + A)

Γ(2a m + A)

Therefore,

Se =

[
− (A, 2a) z2

4
1
2 −

]
For the odd part starting from k = 1

k = 2m + 1 :
Γ(ak + A)

Γ(k + 1)
zk 7→ Γ(2a m + a + A)

Γ(2m + 2)
z2m+2

k = 2 m− 1 :
Γ(ak + A)

Γ(k + 1)
zk 7→ Γ(2a m− a + A)

Γ(2m)
z2m

so the the ratio of the coefficients is

Γ(2 m)

Γ(2m + 2)
Γ(2a m + a + A)

Γ(2a m− a + A)
z2 =

z2

4 m
(

m + 1
2

) Γ(2a m + a + A)

Γ(2a m− a + A)
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Therefore, after an index shift m 7→ m + 1

So = z
Γ(a + A)

Γ(A)

[
− (a + A, 2 a) z2

4
3
2 −

]

Remark 1. From this result, it can be seen that the hypergeometric (HG) series are not closed with regard to the
parity decomposition. In contrast, the GHG series of the Wright type are closed with regard to this decomposition.

The simplest example illustrating the Theorem is given by the exponential series.

Example 1 (The Exponential Function Decomposition).

ez =

[
− z
−

]
=

[
− z2

4
1
2

]
+ z

[
− z2

4
3
2

]
= cosh z + sinh z

and

ei z =

[
− i z
−

]
=

[
− − z2

4
1
2

]
+ iz

[
− − z2

4
3
2

]
= cos z + i sin z

as expected.

A non-trivial example of the present Theorem is the following

Example 2 (The Mittag-Leffler Function Decomposition).

Ea,b(z) :=
∞

∑
k=0

zk

Γ(ak + b)
=

1
Γ(b)

[
1 − z
− (b, a)

]

Then

Ea,b(z) =
1

Γ(b)

[
− (1, 2) z2

4
1
2 (b, 2a)

]
+

z
Γ(a + b)

[
− (2, 2) z2

4
3
2 (b + a, 2a)

]
For the first part by the Gamma duplication formula for the argument k + 1/2:[

− (1, 2) z2

4
1
2 (b, 2a)

]
=
√

πΓ(b)
∞

∑
k=0

22kΓ(k + 1)√
πΓ(k + 1)Γ(b + 2ak)

(
z2

4

)k

= Γ(b)E2a,b(z2)

For the second part by the Gamma duplication formula for the argument 2(k + 1):[
− (2, 2) z2

4
3
2 (b + a, 2a)

]
= Γ(b + a)Γ

(
3
2

) ∞

∑
k=0

Γ(2(k + 1))
Γ(k + 1)Γ(k + 3

2 )Γ(b + a + 2ak)

(
z2

4

)k

=

Γ(b + a)
√

π

2

∞

∑
k=0

Γ(k + 1)Γ(k + 3
2 )2

2k+1
√

πΓ(k + 1)Γ(k + 3
2 )Γ(b + a + 2ak)

(
z2

4

)k

= Γ(b + a)E2a,2a+b(z2)

so that finally
Ea,b(z) = E2a,b(z2) + zE2a,a+b(z2)

The negative multiplicative parameters can be raised to the numerator by the application of the
following Theorem:
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Theorem 2. Suppose that z ∈ R, A > 0 and −1 < a < 0. Then[
. . . − z
. . . (A,−a)

]
= Im

qA
π

[
. . . (1− A, a) qaz
. . . −

]

where qa = e−iπa, qA = eiπA.

Proof. Consider the monomial

Bk =
zk

Γ(k + 1)Γ(−ka + A)

By the reflection formula

Bk =
zk

Γ(k + 1)Γ(−ka + A)

Γ(1 + ka− A)

Γ(1 + ka− A)
=

zk sin (−πka + πA)Γ(1 + ka− A)

Γ(k + 1)π

This can be embedded in the complex monomial expression

Ck =
eiπA

π

Γ(1 + ka− A)

Γ(k + 1)
zke−iπka

Assuming that z is real, the original expression Bk is the imaginary part of Ck. Further,
Ck has modulus

|Ck| =
1
π

Γ(1 + ka− A)

Γ(k + 1)
|z|k

so that the infinite series for Ck converges and so does its imaginary part. Finally the GHG parameters
can be read off from the arguments of the Gamma functions.

Corollary 1. Under the same hypothesis[
. . . − z
. . . (1− A,−a)

]
= −Im

qA
π

[
. . . (A, a) qaz
. . . −

]
, qa = e−iπa, qA = e−iπA

4. Integral Representations

4.1. Integral Representations by Beta Integrals

The main result of this section is given by the theorem below. The result allows for the
representation of a GHG function of order (p + 1, q + 1) in terms of an integral of a GHG function of
order (p, q + 1) or in special cases (p, q). In this section everywhere the argument of a GHG function
will be considered real-valued.

Theorem 3 (Beta integral representation). For B > A > 0 and b ≥ a the following representation holds[
a1, . . . , ap (A, a) z
b1, . . . , bq (B, b)

]
=

1
B(A, B− A)

∫ 1

0
τA−1(1− τ)B−A−1

[
a1, . . . , ap − z τa(1− τ)(b−a)

b1, . . . , bq (B− A, b− a)

]
dτ

By change of variables t = 1/(1 + u)[
a1, . . . , ap (A, a) z
b1, . . . , bq (B, b)

]
=

1
B(A, B− A)

∫ ∞

0

uB−A−1

(u + 1)B

[
a1, . . . , ap − z ub−a

(u+1)a

b1, . . . , bq (B− A, b− a)

]
du
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Proof. The proof follows from the hypothesis of absolute convergence of the series. Therefore, the
order of integration and summation can be switched.

Let w = Γ(B)/Γ(A) and suppose that a 6= b. Observe that by Equation (A3)

B(A, B− A)

Γ(B− A)
=

Γ(A)

Γ(B)
, B > A > 0

Therefore,
Γ(ak + A)

Γ(bk + B)
=
B(ka + A, k(b− a) + B− A)

Γ(k(b− a) + B− A)

Therefore, by absolute convergence of the series

w
∞

∑
k=0

Γ(ak + A)

Γ(bk + B)
zkck

Γ(k + 1)
= w

∫ 1

0

∞

∑
k=0

τka+A−1(1− τ)k(b−a)+B−A−1 zkck
Γ(k + 1)

dτ

Therefore,

w
∫ 1

0
τA−1(1− τ)B−A−1

∞

∑
k=0

τka(1− τ)k(b−a) zkck
Γ(k + 1)

dτ =

1
B(A, B− A)

∫ 1

0
τA−1(1− τ)B−A−1

[
. . . − z τa(1− τ)(b−a)

. . . (B− A, b− a)

]
dτ

Furthermore, let now a = b = 1. It can be further observed that for the monomial term

1
B(A, B− A)

∫ 1

0
τA−1(1− τ)B−A−1 ckτk

Γ (k + 1)
dτ =

B (k + A, B− A) Γ (B)
Γ (A) Γ (B− A)

ck
Γ (k + 1)

=
ck

Γ (k + 1)
Γ (k + A)

Γ (A)

Γ (B)
Γ (k + B)

Therefore,

1
B(A, B− A)

∫ 1

0
τA−1(1− τ)B−a−1

[
. . . . . . z τ

. . . . . .

]
dτ =

[
. . . , A . . . z
. . . , B . . .

]

This representation step reduces a (p + 1, q + 1) GHG series into a (p, q + 1) GHG series. It can be
seen that the reduction via Beta integral is not complete except if a = b. Therefore, it can be instructive
to distinguish homogeneous GHG series with indices ai = bi and different multiplicies. This is the
subject of the following results:

Corollary 2 (Homogeneous Euler Reduction). For B > A and a > 0[
a1, . . . , ap (A, a) z
b1, . . . , bq (B, a)

]
=

1
B(A, B− A)

∫ 1

0
τA−1(1− τ)B−A−1

[
a1, . . . , ap z τa

b1, . . . , bq

]
dτ
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Furthermore, for a = 1 the usual Euler reduction for hypergeometric functions holds[
a1, . . . , ap (A, 1) z
b1, . . . , bq (B, 1)

]
=

[
a1, . . . , ap, A z
b1, . . . , bq, B

]
=

1
B(A, B− A)

∫ 1

0
τA−1(1− τ)B−A−1

[
a1, . . . , ap z τ

b1, . . . , bq

]
dτ

By change of variables the reduced representation can be expressed as an improper integral:

Corollary 3. By change of variables t = 1/(1 + u) for a > 0[
a1, . . . , ap (A, a) z
b1, . . . , bq (B, a)

]
=

1
B(A, B− A)

∫ ∞

0

uB−A−1

(u + 1)B

[
a1, . . . , ap

z
(u+1)a

b1, . . . , bq

]
du

and for a = b = 1[
a1, . . . , ap (A, 1) z
b1, . . . , bq (B, 1)

]
=

[
a1, . . . , ap, A z
b1, . . . , bq, B

]
=

1
B(A, B− A)

∫ ∞

0

uB−A−1

(u + 1)B

[
a1, . . . , ap

z
(u+1)

b1, . . . , bq

]
du

4.2. Integral Representations by Gamma Integrals

Theorem 4 (Complex GH Series Representation). Suppose that all indices ai and bi are real. Then for real z
and B > −1[

a1, . . . , ap . . . z
B, b1, . . . , bq . . .

]
=

(−1)−BΓ(B)
2πi

∫
Ha+

e−τ

τB

[
a1, . . . , ap . . . − z

τ

b1, . . . , bq . . .

]
dτ =

Γ(B)
2πi

∫
Ha−

eτ

τB

[
a1, . . . , ap . . . z

τ

b1, . . . , bq . . .

]
dτ

where Hankel path Ha+ starts at infinity on the real axis, encircling 0 in a positive sense, and returns to infinity
along the real axis, respecting the cut along the positive real axis, while Ha− is its reflection.

Proof. From the Heine’s formula for the reciprocal Gamma function representation

1
Γ(z)

=
(−1)−z

2πi

∫
Ha+

e−τ

τz dτ =
1

2πi

∫
Ha−

eτ

τz dτ

It follows that

∞

∑
k=0

1
Γ(k + b)

ck(−z)k =
(−1)−b

2πi

∞

∑
k=0

∫
Ha+

e−τ

τk+b ckzkdτ =
(−1)−b

2πi

∫
Ha+

e−τ

τb

∞

∑
k=0

ck

( z
τ

)k

Therefore, [
a1, . . . , ap z

b, b1, . . . , bq

]
=

(−1)−bΓ(b)
2πi

∫
Ha+

e−τ

τb

[
a1, . . . , ap − z

τ

b1, . . . , bq

]
dτ
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and [
a1, . . . , ap . . . z

b, b1, . . . , bq . . .

]
=

(−1)−bΓ(b)
2πi

∫
Ha+

e−τ

τb

[
a1, . . . , ap . . . − z

τ

b1, . . . , bq . . .

]
dτ

by extension.

Corollary 4. For B > −1 the following representation holds[
a1, . . . , ap . . . z
b1, . . . , bq (B, b)

]
=

(−1)−BΓ(B)
2πi

∫
Ha+

e−τ

τB

[
a1, . . . , ap . . . z

(−τ)b

b1, . . . , bq . . .

]
dτ =

Γ(B)
2πi

∫
Ha−

eτ

τB

[
a1, . . . , ap . . . z

τb

b1, . . . , bq . . .

]
dτ

Remark 2. This theorem can be interpreted as the inverse Laplace transform of a simpler Fox-Wright function.
Moreover, the complex integral can be converted to a real integral for suitable functions [11].

Theorem 5 (Real GH Series Representation). Suppose that all indices ai and bi are real. Then for some real
A > 0 and a > 0 and z < 1[

a1, . . . , ap (A, a) z
b1, . . . , bq . . .

]
=

1
Γ(A)

∫ ∞

0
e−ττA−1

[
a1, . . . , ap . . . z τa

b1, . . . , bq . . .

]
dτ

Proof. From the Gamma function representation

Γ(z) =
∫ ∞

0
e−ττz−1 dτ, z > 0

it follows that

∞

∑
k=0

Γ(ak + A)ckzk =
∞

∑
k=0

∫ ∞

0
e−ττak+A−1ckzkdτ =

∫ ∞

0
e−ττA−1

∞

∑
k=0

ck (zτa)k

Therefore,[
a1, . . . , ap (A, a) z
b1, . . . , bq . . .

]
=

1
Γ(A)

∫ ∞

0
e−ττA−1

[
a1, . . . , ap . . . z τa

b1, . . . , bq . . .

]
dτ

provided that all parameters are real.

Corollary 5. [
A, a1, . . . , ap . . . z

b1, . . . , bq . . .

]
=

1
Γ(A)

∫ ∞

0
e−ττA−1

[
a1, . . . , ap . . . zτ

b1, . . . , bq . . .

]
dτ

Remark 3. The last Theorem can be interpreted as the Laplace transform of a simpler Fox-Wright function.
Pogany et al. give essentially the same result as Corrollary 5 as Equation (7) in page 128 [12].

In summary, the section shows that a (p, q) GHG series can be reduced to a p+ q multiple integrals
of the Euler type.
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5. Applications

5.1. Mittag-Leffler Functions

The 2 parameter Mittag-Leffler function [13,14] under the present convention will be denoted as

Ea,b(z) :=
∞

∑
k=0

zk

Γ(ak + b)
=

1
Γ(b)

[
1 − z
− (b, a)

]

This immediately gives the complex integral representation according to Corollary 4

Ea,b(z) =
1

2πi

∫
Ha−

eτ

τb

[
1 z

τa

−

]
dτ =

1
2πi

∫
Ha−

eτ

τb
dτ

1− z
τa

=
1

2πi

∫
Ha−

τa−beτ

τa − z
dτ

However, in this case the contour encloses the curve |1− z/τa| = 1.
Another example is the 3-parameter Mittag-Leffler function generalization, that is the Prabhakar

function [15] defined as

Eγ
a,b(z) :=

∞

∑
k=0

Γ(k + γ) zk

Γ(γ)Γ(ak + b) k!
=

1
Γ(b)

[
γ − z
− (b, a)

]

In this case
Eγ

a,b(z) =
1

Γ(γ)

∫ ∞

0
e−ττγ−1W ( a, b| zτ) dτ

which leads to an integral involving the Wright function.
An interesting special case is the function Eγ

a,1(z) which is a confluent Kummer (1F1)
hypergeometric function. In this case for a > γ

Eγ
a,1(z) =

[
γ z
a

]
=

1
B(a, a− γ)

∫ 1

0
τγ−1(1− τ)a−γ−1ezτdτ

as expected.

5.2. The Kummer-Wright Function

In particular, the following representation can be stated for the basic GH function (the
Kummer-Wright function)

[
− (A, a) z
− (B, b)

]
=

1
B(A, B− A)

∫ 1

0
τA−1(1− τ)B−A−1

[
− − z τa(1− τ)(b−a)

− (B− A, b− a)

]
dτ =

Γ(A)

Γ(B)

∫ 1

0
τA−1(1− τ)B−A−1W

(
b− a, B− A| z τa(1− τ)(b−a)

)
dτ
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And also[
− (A, a) z
− (B, b)

]
=

1
B(A, B− A)

∫ ∞

0

uB−A−1

(u + 1)B

[
− − z ub−a

(u+1)a

− (B− A, b− a)

]
du =

Γ(A)

Γ(B)

∫ ∞

0

uB−A−1

(u + 1)B W

(
b− a, B− A| z ub−a

(u + 1)a

)
du

This Wright function in turn can be represented as (see Equation (A4)):

W ( b− a, B− A| z) = 1
2πi

∫
Ha−

eτ ez/τb−a

τB−A dτ

For the homogeneous case then

W (0, B− A| z) = ez

Γ(B− A)

according to the representation of the reciprocal Gamma function. Therefore, according to the
Homogeneous Reduction Corollary:[

− (A, a) z
− (B, a)

]
=

1
B(A, B− A)

∫ 1

0
τA−1(1− τ)B−A−1ez τa

dτ

which is a generalization of the Kummer function.

5.3. Generalized Fractional Erdélyi-Kober Operations

The theory of GHG series has an interesting relationship with the generalized fractional calculus.
The right Erdélyi-Kober (E-K) fractional integrals are defined as [10]:

Iγ,δ
β f (z) :=

1
Γ(δ)

∫ 1

0
τγ(1− τ)δ−1 f (τ1/βz)dτ

while another equivalent form is [16] [Ch. 18]:

Iγ,δ
β f (z) =

β z−β(γ+δ)

Γ(δ)

∫ z

0
(zβ − uβ)δ−1uβ(γ+1)−1 f (u)du

The two forms are related by the change of variables u = z τ1/β. Therefore, from the preceding
presentation it follows that

Iγ,δ
1/β

[
. . . . . . z
. . . . . .

]
=

Γ(γ + 1)
Γ(γ + δ + 1)

[
. . . . . . , (γ + 1, β) z
. . . . . . , (γ + δ + 1, β)

]
(3)

This corresponds to the findings of Kiryakova [17].
The E-K operator reduces to the Riemann-Liouville fractional integral for β = 1 and γ = 0 as

Iδ
R−L f (z) = zδ I0,δ

1 f (z) =
zδ

Γ(δ)

∫ 1

0
(1− τ)δ−1 f (τz)dτ

Conversely,
Iδ
R−Lzγ f (z) = zγ+δ Iγ,δ

1 f (z)
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It is interesting to note further that the EK operators map the functions of the Dimovski space Dα

into one another [18]:
Iγ,δ
β : D α 7→ D α, α > −β(γ + 1)

where the function space is given by the following:

Definition 1 (Dimovski Space [19]). The space of functions D α consists of all functions f (x), x > 0, that can
be represented in the form f (x) = xp f1(x) with p > α and f1 ∈ C([0, ∞)).

The corresponding generalized Erdélyi-Kober fractional derivative is defined by a composition
product as

Dγ,δ
β f (z) =

[δ]+1

∏
j=1
◦
(

z
β

∂z + γ + j
)

Iγ+δ,1−<δ>
β f (z)

where < δ > is the fractional part and [δ] is the integral part of the number.
For β = 1 the E-K fractional derivative operator reduces to the Riemann-Liouville fractional

derivative of order δ as
Dδ

R−L f (z) = D0,δ
1 z−δ f (z)

The E-K fractional derivative operator is the left-inverse of E-K integral for suitable functions
from D α:

Dγ,δ
β Iγ,δ

β f (z) = f (z)

Therefore, [
. . . . . . z
. . . . . .

]
=

Γ(γ + 1)
Γ(γ + δ + 1)

Dγ,δ
1/β

[
. . . . . . , (γ + 1, β) z
. . . . . . , (γ + δ + 1, β)

]

and [
. . . . . . z
. . . . . .

]
=

Γ(γ)
Γ(δ)

Dγ−1,δ−γ
1/β

[
. . . . . . , (γ, β) z
. . . . . . , (δ, β)

]
(4)

The last equation can be used for index reduction.

6. Discussion

These results demonstrate that the homogeneous class of GHG series are closed with respect to the
(generalized) fractional calculus operations. One can, therefore, expect that the solutions of fractional
differential equations could be expressed in terms of Fox-Wright functions. Therefore, the Fox-Wright
functions are the most general functions of the mathematical physics.

Furthermore, the results demonstrate a strong link between the special function theory and the
theory of the Euler Beta and Gamma functions. It appears that the E-K operators can be thought of
Euler’s Beta integrals in disguise. Moreover, the Gamma integral representations can be interpreted as
Laplace or Inverse Laplace transforms.

Finally, the main consequence of so-presented results is that all GHG functions of the Fox-Wright
type can be represented as multiple (complex) integrals of three primitive special functions of orders
(1, 0), (0, 1) and (1, 1) respectively. This corroborates the findings of Kiryakova [9,10,17]. These multiple
integrals can be denoted as generalized fractional differ-integrals; however, this line of representation
is superfluous to the necessities of the numerical and physical modeling.
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contract number VS.097.16N and the COST Association Action CA16212 INDEPTH.

Conflicts of Interest: The author declares no conflict of interest.
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Appendix A. Euler Integrals

The Gamma integral, i.e., the Euler integral of second kind is defined as

Γ(z) =
∫ ∞

0
e−ττz−1 dτ, Rez > 0 (A1)

while for all z /∈ Z−

Γ(z) =
1

2i sin πz

∫
Ha−

eττz−1 dτ, τ ∈ C

The complex representation for the reciprocal Gamma function is given by the Heine’s integral as

1
Γ(z)

=
(−1)−z

2πi

∫
Ha+

e−τ

τz dτ =
1

2πi

∫
Ha−

eτ

τz dτ (A2)

The contour is depicted in Figure A1. For non-integral arguments the branch cut is selected as the
negative real axis.

The Beta integral (i.e., the Euler integral of first kind) is given as

B(a, b) =
∫ 1

0
τa−1(1− τ)b−a−1dτ =

Γ(a)Γ(b)
Γ(a + b)

, a > 0, b > 0 (A3)

The Beta function can be continued analytically along the self-intersecting Pochhammer contour as

B(a, b) =
1

(1− e2πa)
(
1− e2πb

) ∫ 1

0
τa−1(1− τ)b−a−1dτ, τ ∈ C

10 DIMITER PRODANOV
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Figure 1. The Hankel contour Ha−(ε) and the Bromwich contour Br+(ε)
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Appendix A. Euler integrals

The Gamma integral i.e. the Euler integral of second kind is defined as

Γ(z) =

∫ ∞
0

e−ττz−1 dτ, Rez > 0 (5)

while for all z /∈ Z−

Γ(z) =
1

2i sinπz

∫
Ha−

eττz−1 dτ, τ ∈ C

The complex representation for the reciprocal Gamma function is given by the
Heine’s integral as
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=

(−1)−z

2πi

∫
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e−τ

τz
dτ =

1

2πi

∫
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dτ (6)

The contour is depicted in Fig. 1. For non-integral arguments the branch cut is
selected as the negative real axis.

The Beta integral (i.e. the Euler integral of first kind) is given as

B(a, b) =

∫ 1

0

τa−1(1− τ)b−a−1dτ =
Γ(a)Γ(b)

Γ(a+ b)
, a > 0, b > 0 (7)
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∫ 1

0

τa−1(1− τ)b−a−1dτ, τ ∈ C

Figure A1. The Hankel contour Ha−(ε) and the Bromwich contour Br+(ε).

Appendix B. The Wright Function

The function W (λ, µ| z), named after E. M. Wright, is defined as the infinite series

W (λ, µ| z) := Γ(µ)

[
− − z
− (µ, λ)

]
=

∞

∑
k=0

zk

k! Γ(λk + µ)
, λ > −1, µ ∈ C , (A4)
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W (λ, µ| z) is an entire function of z. The summation is carried out in steps where λk + µ 6= 0.
The function is related to the Bessel functions Jν(z) and Iν(z) as

W
(

1, ν + 1| − 1
4

z2
)
=
( z

2

)−ν
Jν(z), W

(
1, ν + 1| 1

4
z2
)
=
( z

2

)−ν
Iν(z)

and is sometimes called generalized Bessel function. A recent survey about the properties of the
function can be found in [5].

The integral representation of the Wright function is noteworthy because it can be used for
numerical calculations

W (λ, µ| z) = 1
2πi

∫
Ha−

eζ+zζ−λ
ζ−µ dζ, λ > −1, µ ∈ C (A5)

where Ha− denotes the Hankel contour in the complex ζ-plane with a cut along the negative real
semi-axis arg ζ = π. The contour is depicted in Figure A1.

Furthermore,
d
dz

W (λ, µ| z) = W (λ, λ + µ| z) (A6)

The proof follows immediately from the integral representation by Azrelá’s theorem:

d
dz

1
2πi

∫
Ha−

eζ+zζ−λ
ζ−µ dζ =

1
2πi

∫
Ha−

eζ+zζ−λ
ζ−µ−λ dζ = W (λ, λ + µ| z)

and formally the indefinite integral is∫
W (λ, µ| z) dz = W (λ, µ− λ| z) + C (A7)

by the properties of anti-differentiation.

Appendix B.1. The M-Wright Function

Mainardi introduces a specialization of the Wright function, which is called here the M-Wright
function, which is important in the applications to fractional transport problems [20].

Mν(z) := W(−ν, 1− ν| − z)

Special cases of the M-Wright function are given in Table A1.

Table A1. Special cases of the M-Wright function.

ν Mν(z)

+0 e−z

1/2 e−z2/4√
π

1/3 3
√

32 Ai
(

z/ 3
√

3
)
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