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Abstract: In this paper, fractal stochastic Langevin equations are suggested, providing a mathematical
model for random walks on the middle-τ Cantor set. The fractal mean square displacement of
different random walks on the middle-τ Cantor set are presented. Fractal under-damped and
over-damped Langevin equations, fractal scaled Brownian motion, and ultra-slow fractal scaled
Brownian motion are suggested and the corresponding fractal mean square displacements are
obtained. The results are plotted to show the details.
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1. Introduction

In the last decade, analysis on fractals has been developed by many researchers [1–8]. Harmonic
analysis is used to define integrals and derivatives on fractal sets [4]. Probability theory is used to
define Laplacians on fractals [9]. Fractional spaces are mapped to continuous real space in order
to define differential equations on fractals [10–13]. Fractional calculus is applied in fractal spaces
to explain anomalous diffusion [14–18]. Time-fractional continuum models with short memory are
studied to model the evolution law for the damage variable for hyperelastic materials [19].

In a seminal paper, generalized standard calculus is formulated to define derivatives and integrals
on totally disconnected fractal sets and fractal curves [20–23]. Recently, an extension of fractal calculus
for the fractals embedding in 2D is formulated [24].

Mean square displacements of random walks having power law are modeled utilizing Fα-calculus
to provide applications in statistical mechanics [23,25]. The over-damped Langevin equation is
investigated, which describes dynamics of Brownian particles in the long time limit. The anomalous
diffusion of particles in free cooling granular gases is modeled in [26].

In this paper, we suggest fractal under-damped and over-damped Langevin equations, fractal
scaled Brownian motion, and ultra-slow fractal scaled Brownian motion. Using stochastic fractal
differential equations, the fractal mean square displacement is derived, which leads to a new hierarchy
of random walks.

The outline of the paper is as follows: In Section 2, we review basic tools. We define the
fractal Langevin equation with different coefficients and work out the mean square displacement for
under-damped and over-damped Langevin equations in Section 3. In Section 4, we present fractal
ultra-slow and scaled Brownian motion and their fractal mean displacements. Finally, we conclude
our results in Section 5.

2. Basic Tools

In this section, we give a short review of local generalized Riemman calculus on fractal middle-τ
Cantor set.
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2.1. Middle-τ Cantor Set

The middle-τ Cantor set created by following stages:

(I) Delete an open interval of length 0 < τ < 1 from the middle of the I = [0, 1].

Cτ
1 = [0,

1
2
(1− τ)] ∪ [

1
2
(1 + τ), 1] (1)

(II) Remove disjoint open intervals of length τ from the remaining sections of step I.

Cτ
2 = [0,

1
4
(1− τ)2] ∪ [

1
4
(1− τ2),

1
2
(1− τ)] ∪ [

1
2
(1 + τ) +

1
2
((1 + τ)

+
1
2
(1− τ)2)] ∪ [

1
2
(1 + τ)(1 +

1
2
(1− τ)), 1]. (2)

...

(III) Pick up disjoint open intervals of length τ from the remaining sections of previous step, and so
on ad infinitum.

Cτ =
∞⋂

k=1

Cτ
k (3)

The Lebesgue measures of middle-τ Cantor sets are zero and their Hausdorff dimensions are
given by

dimH(Cτ) =
log 2

log 2− log(1− τ)
, (4)

where H(Cτ) is the Hausdorff measure [27].

2.2. Local Fractal Calculus

If Cτ is middle-τ Cantor set, then the flag function is defined by [20,21,23],

F(Cτ , J) =

{
1 if Cτ ∩ J 6= ∅

0 otherwise.
(5)

where J = [d1, d2]. Then, Pα[Cτ , N] is given in [20,21,23] by

Pα[Cτ , N] =
n

∑
i=1

Γ(α + 1)(ti − ti−1)
αF(Cτ , [ti−1, ti]).

where N[d1,d2]
= {d1 = t0, t1, t2, . . . , tn = d2} is a subdivisions of J.

The mass function γα(Cτ , d1, d2) is defined in [20,21,23] by

γα(Cτ , b1, b2) = lim
δ→0
Pα

δ [C
τ , N] = lim

δ→0

(
inf

N[d1,d2 ]
:|N|≤δ

Pα[Cτ , N]

)
, (6)

where infimum is taken over all subdivisions N of [d1, d2] satisfying |N| := max1≤i≤n(ti − ti−1) ≤ δ.
The integral staircase function Sα

Cτ (t) is defined in [20,21] by

Sα
Cτ (t) =

{
γα(Cτ , d0, t) if t ≥ d0

−γα(Cτ , d0, t) otherwise,
(7)
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where d0 is an arbitrary and fixed real number.
The γ-dimension of a set Cτ ∩ [d1, d2] is defined as

dimγ(Cτ ∩ [d1, d2]) = inf{α : γα(Cε, d1, d2) = 0}
= sup{α : γα(Cτ , d1, d2) = ∞}. (8)

The Cτ-limit of a function g : Cτ → < is given by

∀ ε > 0, ∃ δ > 0 z ∈ Cτ and |z− t| < δ⇒ |g(z)− l| < ε. (9)

If l exists, then we have
l = Cτ - lim

z→t
g(z). (10)

The Cτ-continuity of a function g : Cτ → < is defined by

g(t) = Cτ - lim
z→t

g(z). (11)

The Cτ-derivative of f (t) at t is defined [20]

Dα
Cτ f (t) =

Cτ - lim
y→t

f (y)− f (t)
Sα

Cτ (y)−Sα
Cτ (t)

if, t ∈ Cτ ,

0, otherwise.
(12)

if the limit exists.
In Figure 1, we plot middle-τ Cantor set, sharacteristic function, staircase function and

γ-dimension for middle-τ Cantor set with τ = 5/7. (The red line indicates upper bound of staircase
function Γ(1.35)t0.35).

The Cτ-integral of k(t) on J = [d1, d2] is defined in [20,21,23] and approximately given by

∫ d2

d1

k(t)dα
Cτ t ≈

n

∑
i=1

k(ti)(Sα
Cτ (ti)− Sα

Cτ (ti−1)). (13)

For more details, we refer the reader to [20,21].
The characteristic function of the middle-τ Cantor set is defined in [23] by

χCτ (α, t) =

{
1

Γ(α+1) , t ∈ Cτ ,

0, otherwise.
(14)

The delta function on middle-τ Cantor set, which is called fractal Gaussian noise, is defined by

δ
γ
Cτ (t− t1) =

{
∞, t = t1

0, t 6= t1.

and ∫ +∞

−∞
g(t)δγ

Cτ (t− t1)dα
Cτ t = g(t1).
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(a) (b)

(c) (d)
Figure 1. Figures for Section 2: (a) middle-τ Cantor set with τ = 5/7; (b) staircase function of middle-τ
Cantor set with τ = 5/7; (c) the γ-dimension gives α = 0.35 to middle-τ Cantor set with τ = 5/7; and
(d) characteristic function for middle-τ Cantor set with τ = 5/7.

3. Fractal Langevin Equation with Different Coefficients

In this section, we study over-damped and under-damped Langevin equations.

3.1. Fractal Over-Damped Langevin Equation

Consider over-damped fractal Langevin equation

Dγ
Cτ ,tx(t) =

√
2D0 ζ(t), K = Cτ , (15)

where D0 (m2 s−γ/α) is coefficient of diffusion and ζ(t) is

< ζ(t2)ζ(t1) > = δ
γ
K(t2 − t1),

< ζ(t) > = 0. (16)

The fractal mean square displacement (FMSD) of random walk corresponding to Equation (15) is
given by

< Sα
K(x)2 >= 2D0Sγ

K(t), (17)

where α and γ are fractal space and time dimensions, respectively. Using upper bound of staircase
function, namely

Sγ
K(t) < tγ, (18)
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By substituting Equation (18) into Equation (17), we obtain

< x(t)2 >≈ 2D0tγ/α. (19)

In Figure 2, we plot Equation (19), in which the red, blue, and green lines are to super-, normal-
and sub-diffusion, respectively.

Figure 2. Graph of FMSD of over-damped Langevin equation setting γ = 1, α = 1 (blue), γ =

0.63, α = 0.5 (red), and γ = 0.43, α = 0.5 (green).

3.2. Fractal Under-Damped Langevin Equation

Let us consider the fractal under-damped Langevin equation as follows

(Dγ
Cτ ,t)

2x(t) + γ0Dγ
Cτ ,tx(t) =

√
2D0 γ0ζ(t), (20)

where γ0 (s−γ/α) and D0 = T/mγ0 are called fractal friction coefficient and fractal diffusion constant,
respectively [26]. Let Dγ

K,tx(t) = vK(t), then, by Equation (20), we obtain

< vK(t1)vK(t2) >=
T
m

exp
(
−γ0|Sγ

K(t2)− Sγ
K(t1)|

)
. (21)

Using Equation (21), we get

< Sα
K(x)2 >= 2D0Sγ

K(t) +
2D0

γ0
(e−γ0Sγ

K(t) − 1). (22)

which is named FMSD of the fractal under-damped Langevin equation. Utilizing upper bound of
Sγ

K(t) < tγ, we obtain

< x(t)2 >≈
[

2D0tγ +
2D0

γ0
(e−γ0tγ − 1)

]1/α

. (23)

Replacing the short time t� 1
γ0

into Equation (22), we obtain

< Sα
K(x)2 >' D0γ0Sγ

K(t)
2. (24)
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By substituting long time t � 1
γ0

into Equation (22), one arrives at Equation (17). In Figure 3,
we sketch Equation (23).

Figure 3. Graph of FMSD of under-damped Langevin equation setting γ = 1, α = 1 (blue), γ =

0.63, α = 0.5 (red), and γ = 0.43, α = 0.5 (green).

4. Fractal Scaled Brownian Motion

The fractal stochastic Langevin equation, which is a model of fractal scaled Brownian motion,
is given by

Dγ
Cτ ,tx(t) =

√
2D(t) ζ(t), t ∈ Cτ , (25)

with the condition in Equation (16) and

D(t) = D0(1 +
t

τ0
)ν−1, t ∈ K, (26)

where ν ∈ [0, 2] and τ0 (s) are constant. Using Equation (26), we obtain FMSD in the following form

< Sα
K(x)2 > = 2

∫ t

0
D(t′)dγ

Kt′ =
2D0τ0

ν

([
1 +

Sγ
K(t)
τ0

]ν − 1

)
,

< x(t)2 > ≈ 2D0τ0

ν

([
1 +

tγ

τ0

]ν − 1
)1/α

. (27)

In Figure 4, we plot Equation (27). Replacing the short time t� τ0 into Equation (27), we have

< Sα
K(x)2 >≈ 2D0 Sγ

K(t), (28)

and substituting the long time t� τ0 into Equation (27), we obtain

< Sα
K(x)2 >≈ Sγ

K(t)
ν. (29)

Consequently, Equation (29) covers both sub-and super-diffusive processes. Ultra-slow fractal
scaled Brownian motion is obtained substituting ν = 0 into Equation (26), and we have
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D(t) = D0(1 +
t

τ0
)−1, t ∈ K. (30)

In view of Equations (30) and (25), we thus obtain FMSD as follows:

< Sα
K(x)2 > = 2D0τ0 log

(
1 +

Sγ
K(t)

Sγ
K(τ0)

)
, (31)

< x(t)2 > ≈ 2D0τ0 log

(
1 +

tγ

τ
γ
0

)
. (32)

Figure 4. Graph of FMSD of scaled Brownian motion equation setting γ = 1, α = 1, ν = 2 (blue), γ =

0.5, α = 0.63, ν = 2 (red), and γ = 0.5, α = 0.43, ν = 2 (green).

Substituting long times t� τ0 into Equation (31) leads to

< Sα
K(x)2 >∼ log(Sγ

K(t)). (33)

By Equation (33) and recalling Equation (18), we get

< x(t)2 >≈ (log(tγ))1/α. (34)

Remark 1. These results switch to the known result for the ordinary or scaled Brownian motion and classical
Langevin equation by choosing γ = α = 1.

In Figure 5, we sketch Equation (34).

Remark 2. We derive equations using the conjugacy of Cτ-calculus with the standard calculus [21,26].

Remark 3. Figures 2–5 show super-, normal and sub-diffusion for the models.

Remark 4. In Figures 2–5, we set γ0 = τ0 = D0 = 1.
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Figure 5. Graph of FMSD of ultra-slow fractal scaled Brownian motion setting γ = 1, α = 1 (red), γ =

0.63, α = 0.5 (blue), and γ = 1, α = 0.7 (green).

5. Conclusions

In this work, we have studied fractal scaled Brownian motion, the fractal under-damped Langevin
equation, and the fractal over-damped Langevin equation. The stochastic Langevin equations with
different diffusion coefficients are considered to give different fractal mean square displacements.
The results obtained in this manuscript are generalizations of the known results for the ordinary
Langevin equation and scaled Brownian motion. Moreover, we obtain different conditions that are
related to the dimensions of space and time.

Funding: This research received no external funding.
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