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Abstract: The theory of complex dimensions describes the oscillations in the geometry (spectra and
dynamics) of fractal strings. Such geometric oscillations can be seen most clearly in the explicit
volume formula for the tubular neighborhoods of a p-adic fractal string Lp, expressed in terms of the
underlying complex dimensions. The general fractal tube formula obtained in this paper is illustrated
by several examples, including the nonarchimedean Cantor and Euler strings. Moreover, we show
that the Minkowski dimension of a p-adic fractal string coincides with the abscissa of convergence of
the geometric zeta function associated with the string, as well as with the asymptotic growth rate of
the corresponding geometric counting function. The proof of this new result can be applied to both
real and p-adic fractal strings and hence, yields a unifying explanation of a key result in the theory of
complex dimensions for fractal strings, even in the archimedean (or real) case.

Keywords: fractal geometry; p-adic analysis; p-adic fractal strings; zeta functions; complex
dimensions; Minkowski dimension; fractal tubes formulas; p-adic self-similar strings; Cantor;
Euler and Fibonacci strings

Nature is an infinite sphere of which the center is everywhere and the circumference nowhere.
Blaise Pascal (1623–1662)

1. Introduction

An ordinary real (or archimedean) fractal string is a bounded open subset of the real line,
with fractal boundary. It provides a complementary perspective to the notion of a self-similar fractal,
in the sense that every self-similar string determines a self-similar set in R, viewed as the boundary of
the string. Moreover, it is noteworthy that the geometric zeta function of a fractal string determines
the fractal (i.e., Minkowski) dimension of the corresponding fractal set. Following the examples of
the a-string and of the archimedean Cantor string given by the first author in [1–3], the notion of an
archimedean fractal string was conceived and defined by Michel Lapidus and Carl Pomerance in their
investigation of the one-dimensional Weyl–Berry conjecture for fractal drums and its connection with
the Riemann zeta function [4]. The Riemann hypothesis turned out to be equivalent to the solvability
of the corresponding inverse spectral problem for fractal strings, as was established by Michel Lapidus
and Helmut Maier in [5]. The heuristic notion of complex dimensions then started to emerge and was
used in a crucial way, at least heuristically, in their spectral reformulation of the Riemann hypothesis.
The precise notion of complex dimensions, defined as the poles of a certain geometric zeta function
associated with the fractal string, was crystallized and rigorously developed by Michel Lapidus
and Machiel van Frankenhuijsen in the research monograph Fractal Geometry and Number Theory [6]
and then significantly further extended in the book Fractal Geometry, Complex Dimensions and Zeta
Functions [7].
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The work of Lapidus and Maier mentioned above can be summarized as follows:

The inverse spectral problem for a fractal string can be solved if and only if its dimension is not 1/2.

The inverse spectral problem for a fractal string is not solvable in dimension 1/2 because the
Riemann zeta function ζ(s) = 1 + 1/2s + 1/3s + · · · vanishes (infinitely often) on the critical line
<(s) = 1/2. Therefore, the inverse spectral problem is solvable in dimension D 6= 1/2 if and only
if the Riemann zeta function does not vanish off the critical line <(s) = 1/2 or, equivalently, if and
only if the Riemann hypothesis is true. In order to understand why dimension 1/2 is so special,
Michel Lapidus [8] (building, in particular, on earlier work in [4,5]), as well as Michel Lapidus and
Machiel van Frankenhuijsen [7], were led to a definition of the dual of a fractal string, interchanging
the dimensions D and 1− D. A partial answer to the question why 1/2 is singled out is that if a
fractal string is self-dual, then its dimension is 1/2. The concept of the dual of a fractal string provides
a geometric way to take the functional equation of the Riemann zeta function into consideration
in the theory of complex dimensions. Such considerations would not be complete if they did not
also involve the Euler product of the Riemann zeta function. The spectral operator was introduced
semi-heuristically in [7] as the map that sends the geometry of a fractal string onto its spectrum.
Formally, the spectral operator admits an (operator-valued) Euler product. In [9–11], Hafedh Herichi
and Michel Lapidus have rigorously defined and studied the spectral operator, within a proper
functional analytic setting. They have also reformulated the above criterion for the Riemann hypothesis
in terms of a suitable notion of invertibility of the spectral operator; see also [12,13] for a corresponding
asymmetric criterion, expressed in terms of the usual notion of invertibility of the spectral operator.
Furthermore, they have shown that the (operator-valued or “quantized”) Euler product for the spectral
operator also converges inside the critical strip 0 < <(s) < 1, where all the (nontrivial) complex zeros
of the Riemann zeta function reside.

In order to extend the framework of the theory of complex dimensions, with an aim towards
applying ideas and techniques from number theory to the inverse spectral problem, it is therefore
natural to attempt developing a theory of p-adic fractal strings, and then globally, an adèlic theory of
fractal strings. Further laying out the foundations for such a theory is one of the main long-term goals
of this paper.

We note that nonarchimedean p-adic analysis has been used in various areas of mathematics,
such as arithmetic geometry, number theory and representation theory, as well as of mathematical and
theoretical physics, such as string theory, cosmology, quantum mechanics, relativity theory, quantum
field theory, statistical and condensed matter physics; see, e.g., [14–18] and the relevant references
therein. (See also, e.g., [19–23].) In Number Theory as the Ultimate Physical Theory, [24], Igor V. Volovich
has suggested that p-adic numbers can possibly be used in order to describe the geometry of spacetime
at very high energies (and hence, very small scales, i.e., below the Planck or the string scale) because
the measurements in the ‘archimedean’ geometry of spacetime at fine scales do not have any certainty.
Furthermore, several authors, including Stephen W. Hawking, have also suggested that the fine scale
structure of spacetime may be fractal; see, e.g., [8,25–28]. Therefore, a geometric theory of p-adic fractal
strings and their complex dimensions might be helpful in the quest to explore the geometry and fine
scale structure of spacetime at high energies.

On the other hand, in the book entitled In Search of the Riemann Zeros: Strings, Fractal Membranes and
Noncommutative Spacetimes [8], Michel Lapidus has suggested that fractal strings and their quantization,
fractal membranes, may be related to aspects of string theory and that p-adic (and possibly, adèlic)
analogs of these notions would be useful in this context in order to better understand the underlying
noncommutative spacetimes and their moduli spaces ([8,29]). The theory of p-adic fractal strings,
once suitably ‘quantized’, may be helpful in further developing some of these ideas and eventually
providing a framework for unifying the real and p-adic fractal strings and membranes.

In this paper, we further develop the geometric theory of p-adic (or nonarchimedean) fractal
strings, which are bounded open subsets of the p-adic Qp with a fractal “boundary”, along
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with the associated theory of complex dimensions and, especially, of fractal tube formulas in the
nonarchimedean setting. This theory, which was first developed by Michel Lapidus and Lũ’ Hùng
in [30–32], as well as later, by those same authors and Machiel van Frankenhuijsen in [33], extends
the theory of real (or archimedean) fractal strings and their complex dimensions in a natural way.
Following [30–33], we introduce suitable geometric zeta functions for p-adic fractal strings whose poles
play the role of complex dimensions for the standard real fractal strings. We also discuss the explicit
fractal tube formulas in the general case of (languid) p-adic fractal strings and in the special case of
p-adic self-similar strings. Throughout this paper, these various results are illustrated in the case of
the nonarchimedean self-similar Cantor and the Fibonacci strings (introduced in [30,31]), as well as in
the case of the p-adic Euler string (introduced in [32,33]), which (strictly speaking) is not self-similar.
Some particular attention is devoted to the 3-adic Cantor string (introduced and studied in [30]), whose
‘metric’ boundary is the 3-adic Cantor set [30], which is naturally homeomorphic to the classic ternary
Cantor set.

The rest of this paper is organized as follows: In Sections 2 and 3, we recall the definition of an
arbitrary p-adic fractal string along with its associated geometric zeta function and complex dimensions,
as well as the corresponding notions of Minkowski dimension and content. Furthermore, in Section 4,
we discuss the important, but more technical, question of how to suitably define and calculate the
volume of the ‘inner’ ε-neighborhood of a p-adic fractal string. The definitions and proofs given
in Section 4 depend crucially on the nonarchimedean (specifically, p-adic) nature of the underlying
geometry. In Section 5, we then introduce a proper notion in this context of Minkowski dimension and
Minkowski content, building on the results of Section 4. Moreover, we obtain the nonarchimedean
analog of a key result in (archimedean) fractal string theory, showing that the Minkowski dimension
of a p-adic fractal string coincides with the abscissa of convergence of its geometric zeta function.
(In the process, we show that this common value coincides with the asymptotic growth rate of the
geometric counting function of the fractal string, a result which is new even in the archimedean
setting, even though it may be implicit in [4].) Our proof also provides a new and unified derivation
of the archimedean result for real fractal strings ([2,3,6,7]), by placing the archimedean and the
nonarchimedean settings on the same footing; see Section 5.1. In Section 6, we then use our previous
results (in Sections 4 and 5) to express the volume of the inner tube of a p-adic fractal string as an infinite
sum over all the underlying complex dimensions, thereby obtaining a nonarchimedean analog of the
‘fractal tube formula’ obtained for real (or archimedean) fractal strings in [6,7]. (See, especially, [7]
(Chapter 8)) We illustrate this formula in Section 6 by providing (as well as deriving via a direct
computation) the fractal tube formula for the p-adic Euler string, the definition of which is given
in Section 2.3. Many further illustrations of our nonarchimedean fractal tube formula are provided
in [33] for the important case of general p-adic self-similar strings, including the 3-adic Cantor string
(Example 2 below) and the 2-adic Fibonacci string. In Section 7, we briefly discuss possible future
research directions connected with the theory developed in this paper and its predecessors, [30–33].
Finally, in Section 8, we reveal the existence of p-adic fractal strings of any rational dimension between
0 and 1 and a possible connection between their construction and the Riemann hypothesis for the
Riemann zeta function. We also discuss some constructions of adèlic fractal strings and a geometric
zeta function for the adèlic Euler–Riemann string.

For more information about the theory of fractal strings (or sprays) and their complex dimensions,
beside the books [6–8,34], we refer to [2–5,9–13,29–33,35–54], as well as the relevant references therein.

2. Nonarchimedean Fractal Strings

2.1. p-Adic Numbers

Given a fixed prime number p, any nonzero rational number x can be written as x = pv · a/b,
for some integers a and b and a unique exponent v ∈ Z such that p does not divide a or b. The p-adic
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absolute value is the function | · |p : Q→ [0, ∞) given by |x|p = p−v and |0|p = 0. It satisfies the strong
triangle inequality: for every x, y ∈ Q,

|x + y|p ≤ max{|x|p, |y|p}.

Relative to the p-adic absolute value, Q does not satisfy the archimedean property because for
every x ∈ Q, |nx|p will never exceed |x|p for any n ∈ N. The metric completion of Q with respect to
the p-adic absolute value | · |p is the field of p-adic numbers Qp. More concretely, every p-adic number
z ∈ Qp has a unique p-adic expansion

z = av pv + · · ·+ a0 + a1 p + a2 p2 + · · · ,

for some v ∈ Z and digits ai ∈ {0, 1, . . . , p− 1} for all i ≥ v and av 6= 0. An important subset of Qp is
the unit ball, Zp = {x ∈ Qp : |x|p ≤ 1}, which can also be represented as follows:

Zp =
{

a0 + a1 p + a2 p2 + · · · : ai ∈ {0, 1, . . . , p− 1} for all i ≥ 0
}

.

Using this p-adic expansion, one sees that

Zp =
p−1⋃
a=0

(a + pZp), (1)

where a + pZp = {y ∈ Qp : |y − a|p ≤ 1/p}. Thus the p-adic ball Zp is self-similar to p scaled
(by the factor 1/p) copies of itself. Note that Zp is compact and thus complete. Also, Qp is a locally
compact group, and hence admits a unique translation invariant Haar measure µH , normalized so
that µH(Zp) = 1. In particular, µH(a + pnZp) = p−n for every n ∈ Z. For general references on p-adic
analysis, we point out, e.g., [55–60].

Remark 1. (a) The distance dp defined on Qp by dp(x, y) = |x − y|p is called an ultrametric, since it
satisfies the counterpart of the above strong triangle inequality:

dp(x, z) ≤ max{dp(x, y), dp(y, z)} (2)

for all x, y, z ∈ Qp. Consequently, every triangle in Qp is isosceles with the two longer sides having the
same length:

If dp(x, y) > dp(y, z) then dp(x, z) = dp(x, y). (3)

It follows that the center can be chosen anywhere within the p-adic ball B. Moreover, given any two balls
B1 and B2, either they are disjoint or one is entirely contained in the other (i.e., B1 ⊆ B2 or B2 ⊆ B1).
These special properties are common to all ultrametric spaces (i.e., all metric spaces for which the ultrametric
triangle inequality (2) holds).

(b) By definition, Zp is the (closed) unit ball of (Qp, dp). Moreover, Zp has the remarkable property of being a
ring (since for all x, y in Zp, by (2) again, |x + y|p ≤ max(|x|p, |y|p) ≤ 1, and |xy|p = |x|p|y|p ≤ 1).
This is to be contrasted with the fact that [−1, 1], the unit ball of R, is not stable under addition (although
it is obviously stable under multiplication); see [61]. Finally, since translations are homeomorphisms,
every closed ball B = B(a, r) in Qp with center a has a radius r of the form r = pn,

B(a, r) = a + p−nZp = {x ∈ Qp : |x− a|p ≤ r} (4)
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for some r ∈ pZ, the valuation group of the nonarchimedean field Qp. We leave it to the reader to investigate
the converse statement according to which every convex subset of Qp is a metric ball (i.e., an interval);
see, e.g., [59].

(c) (p-adic intervals). In the sequel (as well as in part of the literature on p-adic analysis, see, e.g., [55]),
the metric balls B = a + rZp (with a ∈ Qp and r ∈ pZ, as in (4) just above), are sometimes called the
‘intervals’ of Qp. Note that they are not connected, in the usual topological sense, but that they are ‘convex’,
in the following sense: for each x, y ∈ B and α ∈ Zp, we have that αx + (1− α)y ∈ B. (Here and
henceforth, it is useful to think of Zp ⊂ Qp as being the analogue of the unit interval [0, 1] ⊂ R, rather
than of [−1, 1].)

(d) (The archimedean/nonarchimedean dichotomy). A beautiful and classical theorem of Alexander Ostrowski
states that each nontrivial absolute value on the field of rational numbers Q, is either equivalent to the
standard archimedean absolute value on Q or to the nonarchimedean p-adic absolute value | · |p for some
prime p. (Recall that two absolute values are said to be equivalent if they induce the same topology on Q;
this is the case if and only if one is a power of the other.) Therefore, infinitely many completions of Q (one for
each prime p) are nonarchimedean and R is the only completion of Q that is archimedean. For this reason,
one sometimes writes R = Q∞ and refers to (the equivalence class of) the absolute value | · | as the ‘place
at infinity’, associated with the ‘prime at infinity’ or the ‘real prime’; see [61]. (We note that Ostrowski’s
Theorem is usually expressed in terms of valuations rather than of absolute values. Accordingly, a place of
Q is generally defined as an equivalence class of valuations on Q.) With this notation in mind, we see that
the field Q∞ is archimedean, whereas for any (finite) prime p, Qp is a nonarchimedean field. The theory of
p-adic fractal strings developed in [30–33] is aimed, initially, at finding suitable definitions and obtaining
results that parallel those corresponding to the theory of real (or archimedean) fractal strings developed
in [7], for example. As we will see, however, although there are many analogies between the archimedean
and nonarchimedean theories of fractal strings, there are also some notable differences between them; see,
especially, [32], along with [30,33].

2.2. p-Adic Fractal Strings

Let Ω be a bounded open subset of Qp. Then it can be decomposed into a countable union of
disjoint open balls with radius p−nj centered at aj ∈ Qp,

aj + pnjZp = B(aj, p−nj) = {x ∈ Qp | |x− aj|p ≤ p−nj},

where nj ∈ Z and j ∈ N∗. (We shall often call a p-adic ball an interval. By ‘ball’ here, we mean
a metrically closed and hence, topologically open and closed ball.) There may be many different
such decompositions since each ball can always be decomposed into smaller disjoint balls [55];
see Equation (1). However, there is a canonical decomposition of Ω into disjoint balls with respect to a
suitable equivalence relation, as we now explain.

Definition 1. Let U be an open subset of Qp. Given x, y ∈ U, we write that x ∼ y if and only if there is a ball
B ⊆ U such that x, y ∈ B.

It is clear from the definition that the relation ∼ is reflexive and symmetric. To prove the
transitivity, let x ∼ y and y ∼ z. Then there are balls B1 containing x, y and B2 containing y, z.
Thus y ∈ B1 ∩ B2; so it follows from the ultrametricity of Qp that either B1 ⊆ B2 or B2 ⊆ B1. In any case,
x and z are contained in the same ball; so x ∼ z. Hence, the above relation ∼ is indeed an equivalence
relation on the open set U. By a standard argument (and since Q is dense in Qp), one shows that there
are at most countably many equivalence classes.

Remark 2 (Convex components). The equivalence classes of ∼ can be thought of as the ‘convex components’
of U. They are an appropriate substitute in the present nonarchimedean context for the notion of connected
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components, which is not useful in Qp since Zp (and hence, every interval) is totally disconnected. Note that
given any x ∈ U, the equivalence class (i.e., the convex component) of x is the largest ball containing x
(or equivalently, centered at x) and contained in U.

Definition 2. A p-adic (or nonarchimedean) fractal string Lp is a bounded open subset Ω of Qp.

Thus it can be written, relative to the above equivalence relation, canonically as a disjoint union
of intervals or balls:

Lp =
∞⋃

j=1

(aj + pnjZp) =
∞⋃

j=1

B(aj, p−nj).

Here, B(aj, p−nj) is the largest ball centered at aj and contained in Ω. We may assume that the lengths
(i.e., Haar measure) of the intervals aj + pnjZp are nonincreasing, by reindexing if necessary. That is,

p−n1 ≥ p−n2 ≥ p−n3 ≥ · · · > 0. (5)

Note that, more generally, a p-adic fractal string can be defined as an open subset Ω of Qp such
that µH(Ω) < ∞.

Definition 3. The geometric zeta function of a p-adic fractal string Lp is defined as

ζLp(s) :=
∞

∑
j=1

(µH(aj + pnjZp))
s =

∞

∑
j=1

p−njs (6)

for all s ∈ C with <(s) sufficiently large.

Remark 3. The geometric zeta function ζLp is well defined since the decomposition of Lp into the disjoint
intervals aj + pnjZp is unique. Indeed, these intervals are the equivalence classes of which the open set Ω
(defining Lp) is composed. In other words, they are the p-adic “convex components” (rather than the connected
components) of Ω. Note that in the real (or archimedean) case, there is no difference between the convex or
connected components of Ω, and hence the above construction would lead to the same sequence of lengths as
in [7] (Section 1.2).

2.3. Example: p-Adic Euler String

The following p-adic Euler string is a new example of p-adic fractal string, which is not self-similar
(in the sense of [31,33]). It is a natural p-adic counterpart of the elementary prime string, which is the
local constituent of the completed harmonic string; cf. [7] (Section 4.2.1).

Let X = p−1Zp. Then, by the ‘self-duplication’ Formula (1),

X =
p−1⋃
ξ=0

(ξ p−1 +Zp).

We now keep the first subinterval Zp, and then decompose the next subinterval further. That is,
we write

p−1 +Zp =
p−1⋃
ξ=0

(p−1 + ξ + pZp).

Again, iterating this process, we keep the first subinterval p−1 + pZp in the above decomposition
and decompose the next subinterval, p−1 + 1 + pZp. Continuing in this fashion, we obtain an
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infinite sequence of disjoint subintervals
{

an + pnZp
}∞

n=0 , where {an}∞
n=0 satisfies the following

initial condition and recurrence relation:

a0 = 0 and an = an−1 + pn−2 for all n ≥ 1.

We call the corresponding p-adic fractal string,

Ep =
∞⋃

n=0
(an + pnZp),

the p-adic Euler string.
The geometric zeta function of the p-adic Euler string Ep is

ζEp(s) =
∞

∑
n=0

(µH(an + pnZp))
s =

∞

∑
n=0

p−ns =
1

1− p−s , for <(s) > 0.

Therefore, ζEp has a meromorphic extension to all of C given by the last expression, which is the
classic p-Euler factor (i.e., the local Euler factor associated with the prime p):

ζEp(s) =
1

1− p−s , for all s ∈ C. (7)

Hence, the set of complex dimensions of Ep is given by

DEp = {D + iνp | ν ∈ Z}, (8)

where D = σ = 0 and p = 2π/log p.

Remark 4 (The punctured unit ball). The unit ball minus the origin is not a ball itself, but instead the
infinite union

Zp\{0} =
∞⋃

n=0

p−1⋃
k=1

kpn + pn+1Zp,

where every time, a small punctured neighborhood of 0, namely pnZp\{0}, is subdivided into smaller balls.
This union is isomorphic to the Euler string:

Ep =
1
p
Zp\

{
1

p(1− p)

}
.

Remark 5 (Adèlic Euler string). Note that ζEp is the p-Euler factor of the Riemann zeta function; i.e.,

∏
p<∞

ζEp(s) = ∏
p<∞

1
1− p−s =

∞

∑
n=1

1
ns = ζ(s) for <(s) > 1.

Recall that the meromorphic continuation ξ of the completed Riemann zeta function has the same (critical)
zeros as ζ and satisfies the functional equation ξ(s) = ξ(1− s).

We aim to form a certain ‘adèlic product’ over all p-adic Euler strings (including the prime at infinity) so
that the geometric zeta function of the resulting adèlic Euler string E is the completed Riemann zeta function.
Formally, the adèlic Euler string may be written as

E =
⊗
p≤∞
Ep
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and its geometric zeta function ζE (s) would then coincide with the completed Riemann zeta function ξ

(see [62,63]):

ζE (s) = ξ(s) := π−s/2Γ(s/2) ∏
p<∞

1
1− p−s .

Remark 6 (Comparison with the archimedean theory). From the geometric point of view,
the nonarchimedean Euler string Ep is more natural than its archimedean counterpart, the p-elementary
prime string hp, described in [7] (Section 4.2.1). Indeed, as we have just seen, Ep has a very simple geometric
definition. Since, by construction, Ep and hp have the same sequence of lengths {p−n}∞

n=0 , they have the same
geometric zeta function, namely, the p-Euler factor

ζp(s) :=
1

1− p−s (9)

of the Riemann zeta function ζ(s), and hence, the same set of complex dimensions

Dp =

{
iν

2π

log p
: ν ∈ Z

}
. (10)

An ‘adèlic version’ of the ‘harmonic string’ h, a generalized fractal string whose geometric zeta function is
ζh(s) = ζ(s), or rather, of its completion h̃ (so that ζ h̃(s) = ξ(s)), is provided in [7] (Section 4.2.1). In particular,
with each term being interpreted as a positive measure on (0, ∞) and the symbol ∗ denoting multiplicative
convolution on (0, ∞), we have that

h = ∗p<∞hp and h̃ = ∗p≤∞hp. (11)

Furthermore, a noncommutative geometric version of this construction is provided in [8] in terms of
the ‘prime fractal membrane’; see especially, [8], Chapters 3 and 4, along with [29]. Heuristically, a ‘fractal
membrane’ (as introduced in [8]) is a kind of adèlic, noncommutative torus of infinite genus. It can also be
thought of as a ‘quantized fractal string’; see [8], Chapter 3. It is rigorously constructed in [29] using Dirac-type
operators, Fock spaces, Toeplitz algebras [64], and associated spectral triples (in the sense of [65]); see also [8],
Section 4.2. We hope in the future to obtain a suitable nonarchimedean version of that construction. It is
possible that in the process, we will establish contact with the physically motivated work in [14] involving p-adic
quantum mechanics.

3. The Geometric Zeta Function

The screen S is the graph (with the vertical and horizontal axes interchanged) of a real-valued,
bounded and Lipschitz continuous function S(t):

S := {S(t) + it | t ∈ R}.

The window W is the part of the complex plane to the right of the screen S (see Figure 1):

W := {s ∈ C | <(s) ≥ S(=(s))}.

Let
inf S := inf

t∈R
S(t) and sup S := sup

t∈R
S(t),

and assume that sup S ≤ σ, where σ = σLp is the abscissa of convergence of ζLp (to be precisely
defined in (13) below).
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D0 1

W
S

Figure 1. The screen S and the window W.

Definition 4. Let Lp be a p-adic fractal string. If ζLp has a meromorphic continuation to an open connected
neighborhood of W ⊆ C, then

DLp(W) := {ω ∈W | ω is a pole of ζLp} (12)

is called the set of visible complex dimensions of Lp. If no ambiguity may arise or if W = C, we simply write
DLp = DLp(W) and call it the set of complex dimensions of Lp.

Moreover, the abscissa of convergence of ζLp (where Lp is defined in Equation (6)) is denoted by σ = σLp .
Recall that it is defined by (see, e.g., [60])

σLp := inf

{
α ∈ R :

∞

∑
j=1

p−njα < ∞

}
. (13)

Remark 7. In particular, if ζLp is entire (which occurs only in the trivial case when Lp is given by a finite
union of intervals), then σLp = −∞. Otherwise, σLp ≥ 0 (since Lp is composed of infinitely many intervals)
and we will see in Theorem 3 that σLp < ∞ since σLp ≤ DM ≤ 1, where DM = DM,Lp is the Minkowski
dimension of Lp, to be introduced in Section 5. Furthermore, it will follow from Theorem 3 that for a nontrivial
p-adic fractal string, σLp = DM.

Observe that since DLp(W) is defined as a subset of the poles of a meromorphic function, it is at most
countable and forms a discrete subset of C.

Finally, we note that it is well known that ζLp is holomorphic for <(s) > σLp ; see, e.g., [60]. Hence,

DLp ⊆ {s ∈ C : <(s) ≤ σLp}.

Remark 8 (Archimedean fractal strings). Archimedean or real fractal strings are defined as bounded open
subsets of the real line R = Q∞. They were initially defined in [4], following an early example in [1], and have
been used extensively in a variety of settings; see, e.g., [1–3,5,9–13,34–36,38–51,53] and the books [6–8,34].
Since an open set Ω ⊂ R is canonically equal to the disjoint union of finitely or countably many open and
bounded intervals (namely, its connected components), say Ω =

⋃∞
j=1 Ij, we may also describe a real fractal

string by a sequence of lengths L =
{

lj
}∞

j=1 , where lj = µL(Ij) is the length or 1-dimensional Lebesgue measure
of the interval Ij, written in nonincreasing order:

l1 ≥ l2 ≥ l3 ≥ · · · .
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(A justification for this identification is provided by the formula for the volume VL(ε) of ε-inner tubes of Ω,
as given by Equation (27) below.) Note that since µL(Ω) < ∞, lj → 0 as j→ ∞, except in the trivial case when
Ω consists of finitely many intervals. Also observe that the 1-dimensional Lebesgue measure µL is nothing but
the Haar measure on R = Q∞, normalized so that µL([0, 1]) = 1.

All of the definitions given above for p-adic fractal strings have a natural counterpart for real fractal strings.
For instance, the geometric zeta function of L is initially defined by

ζL(s) =
∞

∑
j=1

(µL(Ij))
s =

∞

∑
j=1

ls
j , (14)

for <(s) > σL, the abscissa of convergence of ζL, and for a given screen S and associated window W, the set
DL = DL(W) of visible complex dimensions of L is given exactly as in (12) of Definition 4, except with Lp

and ζLp replaced with L and ζL, respectively. Similarly, σL, the abscissa of convergence of ζL is given as
in (13), except with the lengths of L instead of those of Lp. Moreover, it follows from [7] (Theorem 1.10) that for
any nontrivial real fractal string L, we have σL = DM, the Minkowski dimension of L (i.e., of its topological
boundary ∂Ω). This latter result will be given a new proof in Section 5.1.

We refer the interested reader to the research monographs [6,7] for a full development of the theory of real
fractal strings and their complex dimensions.

Languid and Strongly Languid p-Adic Fractal Strings

In Section 6, we will obtain explicit tube formulas for p-adic fractal strings, with and without
error term. (See Theorem 5 and Corollary 3.) We will then apply the tube formula without error term
(the strongly languid case of Theorem 5) to the p-adic Euler string discussed in Section 2.3 and revisited
in Example 1 (at the end of Section 6).

In order to state the explicit formulas with (or without) error term, we need to assume the
following technical hypotheses (see [7] (Definitions 5.2 and 5.3) and recall the definition of the screen S
given in Section 2, just before Definition 4).

Definition 5. A p-adic fractal string Lp is said to be languid if its geometric zeta function ζLp satisfies the
following growth conditions: There exist real constants κ and C > 0 and a two-sided sequence {Tn}n∈Z of real
numbers such that T−n < 0 < Tn for n ≥ 1, and

lim
n→∞

Tn = ∞, lim
n→∞

T−n = −∞, lim
n→∞

Tn

|T−n|
= 1,

such that

• L1 For all n ∈ Z and all u ≥ S(Tn),

|ζLp(u + iTn)| ≤ C(|Tn|+ 1)κ ,

• L2 For all t ∈ R, |t| ≥ 1,
|ζLp(S(t) + it)| ≤ C|t|κ .

We say that Lp is strongly languid if its geometric zeta function ζLp satisfies the following conditions,
in addition to L1 with S(t) ≡ −∞ : There exists a sequence of screens Sm : t 7→ Sm(t) for m ≥ 1, t ∈ R,
with sup Sm → −∞ as m→ ∞ and with a uniform Lipschitz bound supm≥1 ||Sm||Lip < ∞, such that

• L2′ There exist constants A, C > 0 such that for all t ∈ R and m ≥ 1,

|ζLp(Sm(t) + it)| ≤ CA|Sm(t)|(|t|+ 1)κ .
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Remark 9. (a) Intuitively, hypothesis L1 is a polynomial growth condition along horizontal lines (necessarily
avoiding the poles of ζLp ), while hypothesis L2 is a polynomial growth condition along the vertical direction
of the screen.

(b) Clearly, condition L2′ is stronger than L2. Indeed, if Lp is strongly languid, then it is also languid
(for each screen Sm separately).

(c) Moreover, if Lp is languid for some κ, then it is also languid for every larger value of κ. The same is also
true for strongly languid strings.

(d) Finally, hypotheses L1 and L2 require that ζLp has an analytic (i.e., meromorphic) continuation to an
open, connected neighborhood of <(s) ≥ σLp , while L2′ requires that ζLp has a meromorphic continuation
to all of C.

4. Volume of Thin Inner Tubes

In this section, we provide a suitable analog in the p-adic case of the ‘boundary’ of a fractal
string and of the associated inner tubes (or “inner ε-neighborhoods”). Moreover, we give the p-adic
counterpart of the expression that yields the volume of the inner tubes (see Theorem 2). This result
will serve as a starting point in §6 for proving the distributional explicit tube formula obtained in
Theorem 5.

Definition 6. Given a point a ∈ Qp and a positive real number r > 0, let B = B(a, r) = {x ∈ Qp | |x− a|p ≤ r}
be a metrically closed ball in Qp, as above. (Recall that it follows from the ultrametricity of | · |p that B is
topologically both closed and open (i.e., clopen) in Qp.) We call S = S(a, r) = {x ∈ Qp | |x− a|p = r} the
sphere of B. (In our sense, S also coincides with the ‘metric boundary’ of B, as given in the next definition.)

Let Lp =
⋃∞

j=1 B(aj, rj) be a p-adic fractal string. We then define the metric boundary βLp of Lp to be
the disjoint union of the corresponding spheres, i.e.,

βLp =
∞⋃

j=1

S(aj, rj).

Given a real number ε > 0, define the thick p-adic ‘inner ε-neighborhood’ (or ‘inner tube’) of Lp to be

Nε = Nε(Lp) := {x ∈ Lp | dp(x, βLp) < ε}, (15)

where dp(x, E) = inf{|x− y|p | y ∈ E} is the p-adic distance of x ∈ Qp to a subset E ⊆ Qp. Then the volume
VLp(ε) of the thick inner ε-neighborhood of Lp is defined to be the Haar measure of Nε, i.e., VLp(ε) = µH(Nε).

Lemma 1. Let B = B(a, r) and S = S(a, r), as in Definition 6. Then, for any positive number ε < r, we have

Nε(B) := {x ∈ B | dp(x, S) < ε} = S. (16)

Further, if r = p−m for some m ∈ Z, then for all ε < r,

µH({x ∈ B | dp(x, S) < ε}) = µH(S) = (1− p−1)p−m. (17)

Proof. Clearly S ⊆ {x ∈ B | dp(x, S) < ε} since for any x ∈ S, dp(x, S) = 0. Next, fix ε with
0 < ε < r and let x ∈ B be such that dp(x, S) < ε. Then there must exist y ∈ S such that |x− y|p < ε.
But, since |y− a|p = r, we deduce from the fact that every “triangle” in Qp is isosceles ([55], p. 6) that
|x− a|p = |y− a|p and thus x ∈ S. This completes the proof of (16).

We next establish Formula (17). In light of Equation (16), it suffices to show that

µH(S) = (1− p−1)p−m. (18)
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Let S1 = S(0, 1) = {x ∈ Qp | |x|p = 1} denote the unit sphere in Qp. Since S = S(a, p−m) = a + pmS1,
we have that µH(S) = µH(S1)p−m. Next we note that

B(0, 1) =
⋃

m≥0
S(0, p−m)

is a disjoint union. Hence, by taking the Haar measure of B(0, 1), we deduce that

1 =

(
∞

∑
m=0

p−m

)
µH(S1) =

1
1− p−1 µH(S1), (19)

from which (18) and hence, in light of the first part, (17) follows.

Theorem 1 (Volume of thick inner tubes). Let Lp =
⋃∞

j=1 B(aj, p−nj) be a p-adic fractal string. Then,
for any ε > 0, we have

VLp(ε) = (1− p−1)
k

∑
j=1

p−nj + ∑
j>k

p−nj (20)

= ζLp(1)−
1
p

k

∑
j=1

p−nj , (21)

where k = k(ε) is the largest integer such that p−nk ≥ ε.

Proof. In light of the definition of Nε = Nε(Lp) given in Equation (15) and the definition of k given in
the theorem, we have that

Nε =
k⋃

j=1

Sj ∪
⋃
j>k

Bj,

where Bj := B(aj, p−nj) and Sj := S(aj, p−nj) for each j ≥ 1.
We then apply Lemma 1 to deduce the expression of VLp(ε) = µH(Nε) stated in Equations (20)

and (21).

Note that ζLp(1) = ∑∞
j=1 p−nj is the volume of Lp (or rather, of the bounded open subset Ω of Qp

representing Lp):
ζLp(1) = µH(Lp) < ∞.

It is clearly independent of the choice of Ω representing Lp, and so is VLp(ε) in light of either (20)
or (21).

Corollary 1. The following limit exists in (0, ∞) :

lim
ε→0+

VLp(ε) = µH(βLp) = (1− p−1)ζLp(1). (22)

Proof. This follows by letting ε→ 0+ in either (20) and (21) and noting that k = k(ε)→ ∞.

Corollary 1, combined with the fact that βLp ⊂ Nε(Lp) for any ε > 0, naturally leads us to
introduce the following definition.

Definition 7. Given ε > 0, the thin p-adic ‘inner ε-neighborhood’ (or ‘inner tube’) of Lp is given by

Nε = Nε(Lp) := Nε(Lp)\βLp. (23)
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Then, in light of Corollary 1, the volume VLp(ε) of the thin inner ε-neighborhood of Lp is defined to be the
Haar measure of Nε and is given by

VLp(ε) := µH(Nε) = VLp(ε)− µH(βLp). (24)

Note that, by construction, we now have limε→0+ VLp(ε) = 0.

We next state the counterpart (for thin inner tubes) of Theorem 1, which is the key result that will
enable us to obtain an appropriate p-adic analog of the fractal tube formula (in Section 6) as well as of
the notions of Minkowski dimension and content (in Section 5).

Theorem 2 (Volume of thin inner tubes). Let Lp =
⋃∞

j=1 B(aj, p−nj) be a p-adic fractal string. Then,
for any ε > 0, we have

VLp(ε) = p−1 ∑
j>k

p−nj = p−1 ∑
j:p−nj<ε

p−nj (25)

= p−1
(

ζLp(1)−
k

∑
j=1

p−nj

)
, (26)

where k = k(ε) is the largest integer such that p−nk ≥ ε, as before.

Proof. In view of Theorem 1 and Corollary 1, the result follows immediately from Equation (24) in
Definition 7.

Remark 10. Observe that because the center a of a p-adic ball B = B(a, p−n) can be chosen arbitrarily without
changing its radius p−n, the metric boundary of a ball, βB = S = S(a, p−n), depends on the choice of a. Note,
however, that in view of Equation (17) in Lemma 1, its volume µH(S) depends only on the radius of B. Similarly,
even though the decomposition of a p-adic fractal string Ω (i.e., Lp) into maximal balls Bj = Bj(aj, p−nj) is
canonical, ‘the’ metric boundary of Lp, βLp =

⋃∞
j=1 S(aj, rj), depends on the choice of the centers aj. However,

according to Corollary 1, µH(βLp) is independent of this choice and hence, neither VLp(ε) = µH(Nε(Lp))

nor VLp(ε) = µH(Nε(Lp)) depends on the choice of the centers. Indeed, in light of Theorems 1 and 2, VLp(ε)

and VLp(ε) depend only on the choice of the p-adic lengths p−nj , and hence solely on the p-adic fractal string
Lp, viewed as a nonincreasing sequence of positive numbers, and not on the geometric representation Ω of Lp,
let alone on the choice of the centers of the balls of which Ω is composed.

Although it is not entirely analogous to it, this situation is somewhat reminiscent of the fact that the volume
VL(ε) of the inner ε-neighborhoods of an archimedean fractal string depends only on its lengths

{
lj
}∞

j=1 and
not on the representative Ω of L as a bounded open set; see Equation (27) and the discussion surrounding it in
Remark 11.

Remark 11 (Comparison between the archimedean and the nonarchimedean cases). Recall that VLp(ε)

does not tend to zero as ε → 0+, but that instead it tends to the positive number (1− p−1)ζLp(1), whereas
VLp(ε) does tend to zero. This is the reason why the Minkowski dimension must be defined in terms of VLp(ε)

(as will be done in Section 5) rather than in terms of VLp(ε). Indeed, if VLp(ε) were used instead, then every
p-adic fractal string would have Minkowski dimension 1. This would be the case even for a trivial p-adic fractal
string composed of a single interval, for example. This is also why, in the p-adic case, we will focus only on
the tube formula for VLp(ε) rather than for VLp(ε), although the latter could be obtained by means of the same
techniques.
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Note the difference between the expressions for VL(ε) in the case of an archimedean fractal string L and for
its nonarchimedean thin (resp., thick) counterpart VLp(ε) (resp., VLp(ε)) in the case of a p-adic fractal string
Lp. Compare Equation (8.1) of [7] (which was first obtained in [4]),

VL(ε) = ∑
j:lj≥2ε

2ε + ∑
j:lj<2ε

lj, (27)

with Equations (25) and (26) in Theorem 2. (Here, we are using the notation of Remark 8, to which the reader is
referred to for a brief introduction to real fractal strings.) It follows, in particular, that VL(ε) is a continuous
function of ε on (0, ∞), whereas VLp(ε) (and hence also VLp(ε)) is discontinuous (because it is a step function
with jump discontinuities at each point p−nj , for j = 1, 2, . . .). The above discrepancies between the archimedean
and the nonarchimedean cases help explain why the tube formula for real and p-adic fractal strings have a
similar form, but with different expressions for the corresponding ‘tubular zeta function’ (in the sense of [41,42]).
We note that a minor aspect of these discrepancies is that 2ε is now replaced by ε. Interestingly, this is due to the
fact that the unit interval [0, 1] has inradius 1/2 in R = Q∞ whereas Zp has inradius 1 in Qp. Recall that the
inradius of a subset E of a metric space is the supremum of the radii of the balls entirely contained in E.

Finally, we note that for an archimedean fractal string L, there is no reason to distinguish between the ‘thin
volume’ VL and the ‘thick volume’ VL, as we now explain. Indeed, the archimedean analogue βL of the metric
boundary is a countable set, and hence has measure zero, no matter which geometric realization Ω one chooses
for L. More specifically, in the notation of Remark 8, βL consists of all the endpoints of the open intervals Ij
(the connected components of Ω, or equivalently, its convex components). Hence, µL(βL) = 0 and so

VL(ε) := VL(ε)− µL(βL) = VL(ε),

as claimed.
For example, if L is the ternary Cantor string CS , then βL is the countable set consisting of all the

endpoints of the ‘deleted intervals’ in the construction of the real Cantor set C. In other words, βL is the set T of
ternary points (which has measure zero because it is countable). Hence, the metric boundary βL of CS is dense
in ∂L, the topological boundary of CS , and which in the present case, coincides with the ternary Cantor set C.
Also note that the fact that C = ∂L (and not T = βL) has measure zero is purely coincidental and completely
irrelevant here. Indeed, the same type of argument would apply if L were any archimedean fractal string, even if
µL(∂L) > 0 as is the case for example, if ∂L is a ‘fat Cantor set’ (i.e., a Cantor set of positive measure) or, more
generally, if ∂L is a ‘fat fractal’ (in the sense of [66,67]). The underlying reason is that in the archimedean case,
the topological boundary ∂L = ∂Ω is disjoint from Ω (since Ω is open), and hence, does not play any role in the
computation of VL(ε) or of VL(ε). By contrast, it is not true that the metric boundary βL and the geometric
representation Ω are disjoint (since, in fact, βL ⊆ Ω), but what is remarkable is that the Minkowski dimension
of βL coincides with that of its closure, and hence (in most cases of interest), with DM,L.

4.1. Example: The Euler String

As a first application of Theorem 2, we can obtain, via a direct computation, a tube formula for
the p-adic Euler string Ep; that is, an explicit formula for the volume of the thin inner ε-neighborhood,
VEp(ε), as given in Definition 7.

Let Ep be the p-adic Euler string defined in Section 2.3. Given ε > 0, let k be the largest integer
such that µH(ak + pkZp) = p−k ≥ ε; then k = [logp ε−1]. (Here, for x ∈ R, we write x = [x] + {x},
where [x] is the integer part and {x} is the fractional part of x; i.e., x ∈ Z and 0 ≤ {x} < 1.) Thus,
by Equation (25) of Theorem 2, we have,

VEp(ε) = p−1
∞

∑
n=k+1

p−n =
p−1

p− 1
p−k =

p−1

p− 1
p− logp ε−1

(
1
p

)−{logp ε−1}
,



Fractal Fract. 2018, 2, 26 15 of 30

since k = logp ε−1 − {logp ε−1}. Next, the Fourier series expansion for b−{x} is given by (see [7]
(Equation (1.13)))

b−{x} =
b− 1

b ∑
n∈Z

e2πinx

log b + 2πin
, (28)

Applying it with b = 1/p and x = logp ε−1, we find

VEp(ε) =
p−1

p− 1
p− 1
log p ∑

n∈Z

ε1−inp

1− inp

=
1

p log p ∑
ω∈DEp

ε1−ω

1−ω
. (29)

Finally, in the last equality, we have used Equation (8) for the set of complex dimensions DEp of Ep.

5. Minkowski Dimension

In the sequel, the (inner) Minkowski dimension and the (inner) Minkowski content of a p-adic
fractal string Lp (or, equivalently, of its metric boundary βLp, see Definition 6) is defined exactly as
the corresponding notion for a real fractal string (see [7] (Definition 1.2)), except for the fact that we
now use the definition of V(ε) = VLp(ε) provided in Equation (24) of Definition 7. (For reasons that
will be clear to the reader later on in this section, we denote by DM = DM,Lp instead of by D = DLp

the Minkowski dimension of Lp.) More specifically, the Minkowski dimension of Lp is given by

DM = DM,Lp := inf
{

α ≥ 0 | VLp(ε) = O(ε1−α) as ε→ 0+
}

. (30)

Furthermore, Lp is said to be Minkowski measurable, with Minkowski contentM, if the limit

M = lim
ε→0+

VLp(ε)ε
−(1−DM) (31)

exists in (0, ∞).

Remark 12. Note that since VLp(ε) = VLp(ε)− µH(βLp), the above definition of the Minkowski dimension
is somewhat analogous to that of “exterior dimension”, which is sometimes used in the archimedean case to
measure the roughness of a ‘fat fractal’ (i.e., a fractal with positive Lebesgue measure). The notion of exterior
dimension has been useful in the study of aspects of chaotic nonlinear dynamics; see, e.g., [66] and the survey
article [67].

The goal of the rest of this section is to establish the following theorem, which is the exact analogue
for p-adic fractal strings of [7], Theorem 1.10, which was first observed in [2,3] by using a result of [68].
(Recall that σLp is defined in Equation (13) of Section 3. Also note that we need to assume that Lp

has infinitely many lengths since if Lp is composed of finitely many intervals, then σLp = −∞ and
DM = D = 0; see Formula (36) below for the definition of D).

Theorem 3. Let Lp be a p-adic fractal string composed of infinitely many intervals. Then the Minkowski
dimension DM = DM,Lp of Lp equals the abscissa of convergence σLp of the geometric zeta function ζLp . That
is, DM = σLp .

Theorem 3 will be established in Theorem 4 below in greater generality, namely for any
summable sequence of positive numbers lj. This is the object of the technical Lemma 2, which is
of independent interest.
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When applied to a p-adic fractal string, the following lemma relates the thin volume with the
zeta function. For completeness, but independently of this, we also formulate the counterpart for the
counting function of the reciprocal lengths of an arbitrary fractal string. The lemma holds in general,
independently of the fact that in the present situation, the lengths are powers of p. Recall from (25) that

V(ε) =
1
p ∑

j : lj≤ε

lj,

writing V instead of VLp since what follows holds for arbitrary infinite sequences of positive numbers lj
such that ∑∞

j=1 lj is convergent. Also, the geometric counting function of L := {lj}∞
j=1,

N(x) := ∑
lj≥1/x

1, (32)

is the number of reciprocal lengths up to x > 0, and

ζL(s) :=
∞

∑
j=1

ls
j , (33)

at least for all s ∈ C such that Rs > 1.

Lemma 2. We have the following two expressions for ζL(s) :

ζL(s) = ζL(1)ls−1
1 + (1− s)

∫ l1

0
pV(ε)εs−2 dε, (34)

and

ζL(s) = s
∫ ∞

0
N(x)x−s−1 dx. (35)

Both expressions converge exactly when ∑∞
j=1 ls

j converges.

Proof. For n > 0, we compute

(1− s)
∫ l1

ln
pV(ε)εs−2 dε =

n−1

∑
j=1

(1− s)
∫ lj

lj+1

pV(ε)εs−2 dε

=
n−1

∑
j=1

∞

∑
k=j+1

lk(1− s)
∫ lj

lj+1

εs−2 dε,

since for lj+1 ≤ ε < lj, the function pV(ε) is constant, equal to ∑k>j lk. We compute the integral
to obtain

(1− s)
∫ l1

ln
pV(ε)εs−2 dε =

n−1

∑
j=1

∞

∑
k=j+1

lk
(
ls−1
j+1 − ls−1

j
)
.

Next, we split the sum and interchange the order of summation, to obtain

n

∑
j=2

∞

∑
k=j

lkls−1
j −

n−1

∑
j=1

∞

∑
k=j+1

lkls−1
j =

∞

∑
k=2

lk
min{k,n}

∑
j=2

ls−1
j −

∞

∑
k=2

lk
min{k,n}−1

∑
j=1

ls−1
j .
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In this formula, the two double sums clearly converge, since ∑k≥1 lk converges. Simplifying, we obtain

(1− s)
∫ l1

ln
pV(ε)εs−2 dε =

∞

∑
k=2

lkls−1
min{k,n} −

∞

∑
k=2

lkls−1
1

=
n−1

∑
k=2

ls
k +

∞

∑
k=n

lkls−1
n − ls−1

1

∞

∑
k=2

lk.

Now, lkls−1
n ≤ ls

k for k ≥ n (if s ≥ 1, we estimate instead ls−1
n ≤ 1, provided n is so large that

ln ≤ 1). Hence we can let n approach infinity if and only if ∑∞
k=2 ls

k converges, and then the middle
sum converges to zero. In that case, we obtain ∑k≥1 ls

k − ls−1
1 ζL(1) = ζL(s)− ζL(1)ls−1

1 for the limit.
In a similar way, we compute

s
∫ l−1

n

0
N(x)x−s−1 dx =

n−1

∑
j=1

s
∫ l−1

j+1

l−1
j

N(x)x−s−1 dx =
n−1

∑
j=0

j
(
ls
j − ls

j+1
)
,

since N(x) = 0 for x < l−1
1 , and N(x) = j for l−1

j ≤ x < l−1
j+1. We find

s
∫ l−1

n

0
N(x)x−s−1 dx =

n−1

∑
j=1

jls
j −

n

∑
j=1

(j− 1)ls
j =

n

∑
j=1

ls
j − nls

n.

Now, nls
n ≤ 2 ∑n

j=[n/2] ls
j , provided s ≥ 0, so we can let n approach infinity if and only if ∑∞

j=1 ls
j

converges, in which case we find the value ζL(s) for the limit, again since the tail ∑∞
j=[n/2] ls

j converges
to zero.

Recall that the Minkowski dimension DM was defined in (30) above. We also define the growth
rate of L (or asymptotic growth rate of the geometric counting function N := NL) by

D := inf
{

α ≥ 0 | N(x) = O(xα) as x → ∞
}

. (36)

Theorem 4. Assume that the hypotheses of Theorem 3 are satisfied. Then σL, the abscissa of convergence of ζL,
coincides with DM and with D. That is, DM = σL = D.

Proof. Let α > DM. Since, by definition of DM, V(ε) ≤ Aε1−α, then

(1− s)
∫ l1

0
V(ε)εs−2 dε ≤ A(1− s)

∫ l1

0
εs−α−1 dε.

(Here, A is some suitable positive constant.) This integral converges for all real numbers s > α; hence,
by the foregoing lemma (Lemma 2), σ ≤ α, where (for notational simplicity) σ = σL denotes the
abscissa of convergence of L := {`j}∞

j=1. Since this holds for all α ∈ R such that α > DM, we conclude

that σ ≤ DM. Conversely, if α < DM, then V(ε) is not O(ε1−α) as ε→ 0+. This means that there exists
a sequence {εn}∞

n=0 converging to 0, with l1 ≥ ε0 > ε1 > ε2 > . . . and such that V(ε j) ≥ ε1−α
j for every

j ≥ 1. Moreover, we may choose the sequence to be exponentially decreasing; say, εn+1 < εn/2 for
every n ≥ 1. Then, for s ≤ 1,

(1− s)
∫ l1

0
V(ε)εs−2 dε ≥

∞

∑
j=1

(1− s)
∫ ε j−1

ε j

ε1−α
j εs−2 dε,
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since V(ε) is increasing. We then estimate

(1− s)
∫ ε j−1

ε j

εs−2 dε = εs−1
j − εs−1

j−1 ≥ εs−1
j
(
1− 2s−1),

to obtain

(1− s)
∫ l1

0
V(ε)εs−2 dε ≥

∞

∑
j=1

εs−α
j
(
1− 2s−1).

For all s ∈ R such that s ≤ α, this sum diverges. Again by Lemma 2, we conclude that σ ≥ α. This
holds for all α < DM; hence, σ ≥ DM. Together with the first part, we conclude that σ = DM.

Next, we show that σ = D. If α > D, then N(x) ≤ Axα for some A > 0. Then for all s ∈ R such
that s > α, and noting that N(x) vanishes for x < l−1

1 , we have that

s
∫ ∞

l−1
1

N(x)x−s−1 dx ≤ A
s− α

ls−α
1 .

Hence, according to Lemma 2, σ ≤ α. Since this holds for all α > D, we conclude that σ ≤ D.
Conversely, if α < D, then N(x) is not O(xα). This means that there exists an unbounded sequence

{xj}∞
j=0 tending to ∞, with l−1

1 ≤ x0 < x1 < x2 < . . . and such that N(xj) ≥ xα
j for every j. Moreover,

we choose the sequence to be exponentially increasing, xn+1 > 2xn. Then, for s ≥ 0,

s
∫ ∞

l−1
1

N(x)x−s−1 dx ≥
∞

∑
j=0

s
∫ xj+1

xj

xα
j x−s−1 dx,

since N(x) is increasing. We estimate s
∫ xj+1

xj
x−s−1 dx ≥ x−s

j
(
1− 2−s), to obtain

s
∫ ∞

l−1
1

N(x)x−s−1 dx ≥
∞

∑
j=1

xα−s
j
(
1− 2−s).

For s ≤ α, this sum diverges. We conclude that σ ≥ α. This holds for all α < D, hence σ ≥ D, and it
follows that σ = D.

Combining all of the above steps, we conclude that σ = DM = D, as desired.

Corollary 2. For any p-adic fractal string Lp with infinitely many lengths, we have 0 ≤ DM = σLp ≤ 1.
Furthermore, we have that DM = σLp = D, where D is the growth rate of Lp defined by (36).

5.1. The Real Case

For (ordinary) archimedean fractal strings, the Minkowski dimension also determines the abscissa
of convergence of the geometric zeta function, in an analogous manner. The advantage of our new
proof is that it yields a unified approach to both the archimedean and nonarchimedean (or p-adic)
cases. It also establishes in the process the new result according to which DM is not only equal to σL
(the abscissa of convergence of L) but also to D (the asymptotic growth rate of L), a useful fact which
was only implicit in earlier work (such as [2–4,6,7]), even for real (or archimedean) fractal strings and
is explicitly needed, for example, in [9–11].

We provide here the details of our unified approach, but by focusing, of course, on the real
(or archimedean) case.

The geometric zeta function of a real fractal string L = {`j}∞
j=1, with l1 ≥ l2 ≥ l3 ≥ · · · → 0,

is given by (33), just as in the p-adic case, with an abscissa of convergence defined by

σL = inf

{
α ∈ R :

∞

∑
j=1

lα
j < ∞

}
, (37)
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entirely analogous to (13). We assume an infinite number of positive lengths with a finite total length,

ζL(1) =
∞

∑
j=1

lj < ∞;

so that 0 ≤ σL ≤ 1.
Since both in the archimedean and in the nonarchimedean case, the geometric zeta function and

geometric counting function NL (and hence D) are defined in the same way, it immediately follows
that (35) holds in the archimedean case as well, and consequently, σL = D.

On the other hand, the formula for the volume of the tubular neighborhoods is different, due to
the different geometry of the boundary of balls in Qp (as we have seen in Section 4) and of intervals in
R. In particular, the real unit interval [0, 1] has inradius 1/2 in R = Q∞ whereas the p-adic unit ball Zp

has inradius 1 in Qp (see also Remark 11). For real fractal strings, VL(ε) is given by (27), and hence the
formula corresponding to (34) is

ζL(s) = sζL(1)ls−1
1 + 2s(1− s)

∫ l1/2

0
VL(ε)(2ε)s−2 dε, (38)

valid for <s > DM, where DM is defined by (30). This can be proved by a method similar to the
proof of Lemma 2, but we give here an alternative proof. The function VL = VL(ε) is continuous and
piecewise differentiable for ε > 0, with derivative

V′L(ε) = 2NL
( 1

2ε

)
.

Integrating by parts, we obtain

2s(1− s)
∫ l1/2

0
VL(ε)(2ε)s−2 dε

= −s
[
VL(ε)(2ε)s−1

]l1/2

0
+ 2s

∫ l1/2

0
NL(1/2ε)(2ε)s−1dε

= −sζL(1)ls−1
1 + s

∫ ∞

l−1
1

NL(x)x−1−s dx,

which by (35) equals −sζL(1)ls−1
1 + ζL(s) since NL(x) = 0 for x < l−1

1 .

Remark 13. As an alternative, the zeta function is also given by

ζL(s) = 2s(1− s)
∫ ∞

0
VL(ε)(2ε)s−2 dε.

This expression only converges for DM < <s < 1.

As was already pointed out earlier, the above formula converges for <s > DM. In addition,
it follows from the proof that the formula converges if and only if the series for ζL converges.
This implies that σL ≤ DM. In order to prove the converse inequality, we construct, just as in
the proof of Theorem 4, a sequence of positive ε-values decreasing exponentially fast to zero in order
to show that (38) does not converge for <s < DM. It follows that σL = DM.

We conclude that for a real (or archimedean) fractal string, we have DM = σL = D, just as was
shown in the first part of this section for a p-adic (or nonarchimedean) fractal string, and thereby
completing the statement and the proof of Theorems 3 and 4 (now extended to the real case), as well as
providing a unified treatment of both the archimedean and nonarchimedean cases.
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6. Explicit Tube Formulas for p-adic Fractal Strings

The following result is the counterpart in this context of Theorem 8.1 of [7], the distributional
tube formula for real fractal strings. It is established by using, in particular, the extended distributional
explicit formula of [7], Theorems 5.26 and 5.27, along with the expression for the volume of thin inner
ε-tubes obtained in Theorem 2.

We now state our general nonarchimedean (or p-adic) fractal tube formula in this context.

Theorem 5 (p-adic explicit tube formula). (i) Let Lp be a languid p-adic fractal string (as in the first
part of Definition 5 of Section 3), for some real exponent κ and a screen S that lies strictly to the left of
the vertical line <(s) = 1. Further assume that σLp < 1. (Recall from Corollary 2 that we always have
σLp ≤ 1. Moreover, if Lp is self-similar, then σLp < 1.) Then the volume of the thin inner ε-neighborhood
of Lp is given by the following distributional explicit formula, on test functions in D(0, ∞), the space of
C∞ functions with compact support in (0, ∞) :

VLp(ε) = ∑
ω∈DLp (W)

res

(
p−1ζLp(s)ε

1−s

1− s
; ω

)
+Rp(ε), (39)

where DLp(W) is the set of visible complex dimensions of Lp (as given in Definition 4).
Here, the distributional error term is given by

Rp(ε) =
1

2πi

∫
S

p−1ζLp(s)ε
1−s

1− s
ds (40)

and is estimated distributionally (in the sense of [7], Definition 5.29) by

Rp(ε) = O(ε1−sup S), as ε→ 0+. (41)

(ii) Moreover, if Lp is strongly languid (as in the second part of Definition 5), then we can take W = C
andRp(ε) ≡ 0, provided we apply this formula to test functions supported on compact subsets of [0, A).
The resulting explicit formula without error term is often called an exact tube formula in this case.

Proof. Since the proof of Theorem 5 parallels that of its counterpart for real fractal strings (see [7],
Theorem 8.7), we only provide here the main steps. We will explain, in particular, why the p-adic tube
formula takes a different form than in the real case. As will be clear from the proof, it all goes back
to the difference between Theorem 2 and its archimedean analogue (see Equation (27) above or [7],
Equation (8.1)).

According to Theorem 2,

VLp(ε) =
1
p ∑

j : p−nj<ε

p−nj =
1
p

∫ ∞

1/ε

1
x

η(dx) = 〈P [0]
η , vε〉,

where P [0]
η = η := ∑∞

j=1 δ{pnj} is viewed as a distribution and

vε(x) :=

{
0 if x ≤ 1/ε

1/(px) if x > 1/ε.
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Fix ϕ ∈ D(0, ∞). Then ∫ ∞

0
ϕ(ε)vε(x) dε =

1
px

∫ ∞

1/x
ϕ(ε) dε

= p−1 ϕ1(x),

where ϕ1 is a smooth, but not compactly supported, test function, given by

ϕ1(x) :=
1
x

∫ ∞

1/x
ϕ(ε)dε.

Thus

〈VLp(ε), ϕ〉 =
∫ ∞

0
ϕ(ε)

∫ ∞

0
vε(x) η(dx)dε

=
〈
P [0]

η , p−1 ϕ1(x)
〉

. (42)

The Mellin transform of ϕ1 is computed to be

ϕ̃1(s) =
1

1− s
ϕ̃(2− s) for <s < 1. (43)

Furthermore, by analytic continuation, and since ϕ̃(s) is entire for ϕ ∈ D(0, ∞), the equality in (43)
continues to hold for all s ∈ C.

Now, let Ψ = p−1 ϕ1. Its Mellin transform is

Ψ̃(s) =
p−1

1− s
ϕ̃(2− s),

which holds for all s ∈ C. Note that it follows from our previous discussion that Ψ̃(s) is meromorphic
in all of C, with a single, simple pole at s = 1.

Next, we deduce from (42) and [7], Theorem 5.26 (the extended distributional explicit formula) that

〈VLp(ε), ϕ〉 = ∑
ω∈DLp

res
(

ζLp(s)Ψ̃(s); ω
)
+Rp(ε)

=
∫ ∞

0
∑

ω∈DLp

res

(
ζLp(s)ε

1−s

p(1− s)
; ω

)
ϕ(ε)dε +

∫ ∞

0
Rp(ε)ϕ(ε) dε.

Therefore,

VLp(ε) = ∑
ω∈DLp (W)

res

(
ζLp(s)ε

1−s

p(1− s)
; ω

)
+Rp(ε),

where the distributionRp(ε) is given by (40) and is estimated distributionally as in (41).
In closing this proof, we note that in the strongly languid case, we use [7], Theorem 5.27 in order

to conclude that (39) holds withRp(ε) ≡ 0.

Remark 14. We may rewrite the (typically infinite) sum in (39) as follows:

∑
ω∈DLp (W)

res(ζLp(ε; s); s = ω), (44)
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where (by analogy with the definitions and results in [41,42]),

ζLp(ε; s) :=
p−1ζLp(s)ε

1−s

1− s
(45)

is called the nonarchimedean tubular zeta function of the p-adic fractal string Lp.
By contrast, the archimedean tubular zeta function (in the present one-dimensional situation) of a real

fractal string L is given by

ζL(ε; s) :=
ζL(s)(2ε)1−s

s(1− s)
, (46)

and the analog of the above sum in the archimedean tube formula of [7] (as rewritten in [41]) is given as in (44),
except with Lp replaced by L and with DL(W) ∪ {0} instead of DLp(W). Note that ζL(ε; s) typically has a
pole at s = 0, whereas ζLp(ε; s) does not.

Corollary 3 (p-adic fractal tube formula). If, in addition to the hypotheses in Theorem 5, we assume that all
the visible complex dimensions of Lp are simple, then

VLp(ε) = ∑
ω∈DLp (W)

cω
ε1−ω

1−ω
+Rp(ε), (47)

where cω = p−1 res
(

ζLp ; ω
)

. Here, the error termRp is given by (40) and is estimated by (41) in the languid
case. Furthermore, we haveRp(ε) ≡ 0 in the strongly languid case, provided we choose W = C.

Remark 15. In [7], Chapter 8, under different sets of assumptions, both distributional and pointwise tube
formulas are obtained for archimedean fractal strings (and also, for archimedean self-similar fractal strings).
(See, in particular, Theorems 8.1 and 8.7, along with Section 8.4 in [7].) At least for now, in the nonarchimedean
case, we limit ourselves to discussing distributional explicit tube formulas. We expect, however, that under
appropriate hypotheses, one should be able to obtain a pointwise fractal tube formula for p-adic fractal strings
and especially, for p-adic self-similar strings. In fact, for the simple examples of the nonarchimedean Cantor,
Euler and Fibonacci strings, the direct derivation of the fractal tube Formula (47) yields a formula that is
valid pointwise and not just distributionally. (See, in particular, Section 4.1 and Example 2.) We leave the
consideration of such possible pointwise extensions to a future work.

Example 1 (Fractal tube formula for the p-adic Euler string). We now explain how to recover from
Theorem 5 (or Corollary 3) the tube formula for the Euler string Ep obtained via a direct computation in
Section 4.1. Indeed, it follows from Corollary 3 (applied with W = C) that

VEp(ε) =
1
p ∑

ω∈DEp

res(ζEp ; ω)
ε1−ω

1−ω
, (48)

which is exactly the expression obtained for VEp(ε) in Formula (29) of Section 4.1 since

res(ζEp ; ω) =
1

log p

for all ω ∈ DEp . (This latter observation follows easily from the expression of ζLp obtained in Equation (7).)
Note that Corollary 3 can be applied here in the strongly languid case when W = C and Rp(ε) ≡ 0 since,
in light of the discussion in Section 2.3, all the complex dimensions of Ep are simple and ζEp is clearly strongly
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languid of order κ := 0 and with the constant A := p−1. Furthermore, Formula (48) can be rewritten in the
following more concrete form:

VEp(ε) =
1

p log p ∑
n∈Z

ε1−inp

1− inp
, (49)

since DEp = {inp : n ∈ Z} and p = 2π/ log p (as in Equation (8) of Section 2.3).
Finally, note that since the series

∑
n∈Z

ε1−inp

1− inp

converges pointwise because the associated Fourier series ∑n∈Z
e2πinx

1−inp is pointwise convergent on R, it follows
that the p-adic fractal tube Formulas (48) and (49) actually converge pointwise rather than just distributionally.

Example 2 (The tube formula for the nonarchimedean Cantor string). In this example, we explain how to
derive the exact fractal tube formula for CS3, the 3-adic Cantor string introduced in [30] and further studied
in [31–33].

By construction, the complement of CS3 in Z3 is the 3-adic Cantor set C3, which is a nonarchimedean
self-similar set (as introduced in [30,31]); so that C3 is the unique nonempty compact subset K of Z3 (or of Q3)
which is the solution of the fixed point equation

K = ϕ1(K) ∪ ϕ2(K), (50)

for some suitable affine similarity transformations ϕ1, ϕ2 from Z3 to itself; more specifically, we have that
ϕ1(x) = 3x and ϕ2(x) = 2 + 3x, for all x ∈ Z3. We refer to [30–32] for more information concerning the
properties of C3 and CS3 as well as for corresponding figures. (See [69] for the general definition of self-similar
sets in complete metric spaces, and [70] for a detailed discussion in the usual case of Euclidean spaces.)

Let ε > 0. We have that

ζCS3(s) =
3−s

1− 2 · 3−s , for all s ∈ C

and hence

DCS3 = {D + iνp | ν ∈ Z},

will all the complex dimensions being simple and where D := log3 2 and p := 2π/ log 3. Furthermore,
we have that

res(ζCS3 ; ω) =
1

2 log 3
,

independently of ω ∈ DCS3 , and so the exact fractal tube formula for the nonarchimedean Cantor string is found
to be

VCS3(ε) =
1
3 ∑

ω∈DCS3

res(ζCS3 ; ω)
ε1−ω

1−ω
. (51)

Note that since CS3 has simple complex dimensions, we may also apply Corollary 3 (in the strongly languid
case when W = C) in order to precisely recover Equation (51).

We may rewrite (51) in the following form:

VCS3(ε) = ε1−DGCS3(log3 ε−1),
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where GCS3 is the nonconstant periodic function (of period 1) on R given by

GCS3(x) :=
1

6 log 3 ∑
n∈Z

e2πinx

1− D− inp
.

Finally, we note that since the Fourier series

∑
n∈Z

e2πinx

1− D− inp

is pointwise convergent on R, the above direct computation of VCS3(ε) shows that (51) actually holds pointwise
rather than just distributionally.

In closing this example, we note that we could similarly use Theorem 5 (or Corollary 3) to obtain an exact
fractal tube formula for the 5-adic Cantor set recently introduced in [71] and defined in a way analogous to the
3-adic Cantor set from [30].

Remark 16. The 3-adic Cantor string discussed in Example 2 is an example of a p-adic (here, 3-adic) self-similar
string. Another example of a p-adic (or nonarchimedean) self-similar string is the 2-adic Fibonacci string, whose
complex dimensions are distributed periodically along two vertical lines (instead of a single one as in the case of a
3-adic Cantor string). (See [31,32]; furthermore, see [33] for the corresponding exact pointwise tube formula.)
In general, a (nontrivial) p-adic self-similar string Lp is always lattice (that is, its scaling ratios are all integer
powers of a single number, necessarily p; see [31,32]. Therefore, unlike for real (or archimedean) fractal strings
(compare with [7], Chapters 2 and 3), which can be either lattice or nonlattice, the complex dimensions of Lp

are always periodically distributed along finitely many vertical lines, the right most of which is the vertical
line {Rs = DM}, where DM is the Minkowski dimension of Lp. The corresponding fractal tube formulas,
illustrating our main theorem in this section (Theorem 5) in order to obtain fractal tube formulas for general
p-adic self-similar fractal strings, are provided in [33].

In order to avoid unnecessary repetitions, we refer the interested reader to [32,33] for those special but
important examples of fractal tube formulas. We only mention the following two interesting facts:

(i) Because on each relevant vertical line, the complex dimensions form an arithmetic progression (with a
progression or period independent of the line) and have the same multiplicities, the corresponding term in
the associated fractal tube formula can be written as a suitable power function times a periodic function
(of x := log(ε−1)). (This is so assuming that the complex dimensions on that line are simple, which is
always the case, for instance, of the right most vertical line {Rs = DM}).

(ii) In all of the concrete examples of p-adic self-similar strings studied in [32,33], including the 3-adic Cantor
string and the 2-adic Fibonacci string, the corresponding exact fractal tube formula can be shown to
converge pointwise (rather than distributionally, as in Theorem 5). We conjecture that at least in the
case of simple complex dimensions, the exact fractal tube formula of a p-adic self-similar string always
converges pointwise (and not just distributionally, as in Theorem 5). (Such a result is established in [7],
Section 8.4 for general real or archimedean self-similar strings, whether or not all of the complex dimensions
are simple.) Accordingly, it would be very interesting to establish that conjecture as well as to obtain a
pointwise counterpart of Theorem 5; that is, a fractal tube formula for p-adic (not necessarily self-similar)
fractal strings, with or without an error term, which (under suitable hypotheses) would be valid pointwise.
We note that in the archimedean case (i.e., for real fractal strings) such a pointwise fractal tube formula
is available under rather general conditions; see [7], Section 8.1.1, esp., Theorem 8.7 and Corollary 8.10.
We leave the investigation of these issues to some future work or to the interested reader.

7. Possible Extensions

We close this paper by providing possible directions for future investigations in this area.
In Remark 16, we have already mentioned the problem of obtaining a pointwise fractal tube formula,
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analogous to our distributional fractal tube formula (Theorem 5) in the archimedean case and to the
pointwise tube formula obtained in the nonarchimedean case in [7], Section 8.1.1 (for general real
fractal strings, under suitable hypotheses) and (without any assumptions) in [7], Section 8.4 for general
real self-similar fractal strings. We next point out other possible problems and research directions.

7.1. Adèlic Fractal Strings and Their Spectra

It would be interesting to unify the archimedean and nonarchimedean settings by appropriately
defining adèlic fractal strings, and then studying the associated spectral zeta functions (as is done for
standard archimedean fractal strings in [2–7,43]). To this aim, the spectrum of these adèlic fractal
strings should be suitably defined and its study may benefit from Dragovich’s work [14] on adèlic
quantum harmonic oscillators. In the process of defining these adèlic fractal strings, we expect to
make contact with the notion of a fractal membrane (or “quantized fractal string”) introduced in [8],
Chapter 3 and rigorously constructed in [29] as a Connes-type noncommutative geometric space [65];
see also [8], Section 4.2. The aforementioned spectral zeta function of an adèlic fractal string would
then be viewed as the (completed) spectral partition function of the associated fractal membrane, in
the sense of [8]. (See also Remark 6 above.) We note that a geometric construction of certain adèlic
fractal strings is proposed in the epilogue (Section 8) below.

7.2. Nonarchimedean Fractal Strings in Berkovich Space

As was shown in [31] and recalled in Remark 16, there can only exist lattice p-adic self-similar
strings, because of the discreteness of the valuation group of Qp. However, in the archimedean
setting, there are both lattice and nonlattice self-similar strings; see [7], Chapters 2 and 3. We expect
that by suitably extending the notion of p-adic self-similar string to Berkovich’s p-adic analytic
space [19,23], it can be shown that p-adic self-similar strings are generically nonlattice in this broader
setting. Furthermore, we conjecture that every nonlattice string in the Berkovich projective line can
be approximated by lattice strings with increasingly large oscillatory periods (much as occurs in the
archimedean case [7], Chapter 3). Finally, we expect that, by contrast with what happens for p-adic
fractal strings, the volume VLp(ε) will be a continuous function of ε in this context. (Compare with
Remark 11.)

7.3. Higher-Dimensional Fractal Tube Formulas

We expect that the higher-dimensional tube formulas obtained by Lapidus and Pearse in [40,41]
(as well as, more generally, by those same authors and Winter in [42]) for archimedean self-similar
sprays and the associated tilings [53] in Rd have a natural nonarchimedean counterpart in the
d-dimensional p-adic space Qd

p, for any integer d ≥ 1. In the latter p-adic case, the corresponding
‘tubular zeta function’ ζTp(ε; s) (when d = 1, see Remark 14) should have a more complicated
expression than in the one-dimensional situation, and should involve both the inner radii and the
‘curvature’ of the generators (see [41,42], as described in [7], Section 13.1, for the archimedean case) of
the tiling (or p-adic fractal spray) Tp. Moreover, by analogy with what is expected to happen in the
Euclidean case [41,42], the coefficients of the resulting higher-dimensional tube formula should have
an appropriate interpretation in terms of yet to be suitably defined ‘nonarchimedean fractal curvatures’
associated with each complex and integral dimension of Tp. Finally, by analogy with the archimedean
case (for d ≥ 1, see [41,42]), the p-adic higher-dimensional fractal tube formula should take the same
form as in Equation (44), except with ζLp(ε; s) given by a different expression from the one in (45)
where d = 1, and with DLp(W) replaced by DLp(W) ∪ {0, 1, . . . , d}, as well as (for nonarchimedean
self-similar tilings) with W = C and Rp(ε) ≡ 0 in the counterpart of Equation (45) or (46). In the
future, we plan to investigate the above problems along with related question pertaining to fractal
geometry and geometric measure theory in nonarchimedean spaces.

In closing Section 7.3, we mention that recently, the first author, Goran Radunovic̀ and
Darko Z̆ubrinic have developed a general theory of fractal zeta functions and complex dimensions
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(see, e.g., the book [34]) valid in Euclidean spaces RN of any dimension and for arbitrary bounded
subsets of RN . In the process, they have very significantly extended the theory of fractal tube formulas
obtained originally for fractal strings in [6,7] and then for higher-dimensional fractal sprays (especially,
self-similar sprays) in [40–42]; see, especially, [46,47] and [34], Chapter 5. Accordingly, it is natural
to wonder whether the general theory of fractal zeta functions and fractal tube formulas developed
in [34,46–49] can be applied and suitably adapted in order to obtain concrete nonarchimedean tube
formulas valid (under appropriate hypotheses) for arbitrary compact subsets of p-adic space (Qp)N

(or more general ultrametric spaces), and, in particular, for arbitrary p-adic self-similar sets in (Qp)N .

8. Epilogue

In looking for a simple geometric way to create an adèlic fractal string and a global theory
of complex fractal dimensions, we found a very natural construction of p-adic fractal strings of any
rational dimension between 0 and 1. The simplest example is of dimension D = 1

2 , which is particularly
interesting since it involves the diagonal of the digits. This reminds one of the intersections of the
graph of the Frobenius with the diagonal in Enrico Bombieri’s proof of the Riemann hypothesis for
curves over finite fields. It may give rise to a fractal approach to translating his proof for curves over
finite fields to the curve spec Z over the rationals, which is the case of the famous Riemann hypothesis
for the Riemann zeta function. However, we caution the reader that this possibility is far from being
realized for now.

We found another natural way to create an infinite family of p-adic Cantor strings CS p in
the nonarchimedean ring of p-adic integers Zp and simultaneously their exact counterparts in the
archimedean unit interval [0, 1], the p-inary Cantor strings CS∗p. The Minkowski dimensions of the
nonarchimedean and archimedean Cantor strings vary from 0 to 1 as p varies from 2 to ∞. Directly
above and below the Minkowski dimension lie infinitely many complex fractal dimensions, periodically
distributed along a discrete vertical line. The periodic distribution of the complex fractal dimensions,
being discrete near dimension 0, become denser as the Minkowski dimension tends to 1.

The simplest way to unify all infinitely many p-adic Cantor strings CS p together with the ordinary
real Cantor string CS is to form an infinite product

CS × ∏
p<∞
CS p,

which is a self-similar string in the set of integral adèles AZ.
An even more harmonious and symmetric way to unify all the nonarchimedean Cantor strings

together with their corresponding archimedean counterpart is first to pair each p-adic Cantor string
CS p together with the p-inary Cantor string CS∗p by taking the Cartesian product CS p×CS∗p ⊂ Qp×R.
Then we can imagine the infinite direct product

∏
p<∞

(CS p × CS∗p)

as being an ‘adèlic’ Cantor string in a new ‘adèlic’ space

∏
p<∞

(Qp ×R)

with infinitely many archimedean components. (We put ‘adèlic’ in quotes because this space has
infinitely many real components, one for every prime number, whereas the ring of adèles has only one
real component, corresponding to the archimedean valuation of Q.)

We note, however, that our constructions of adèlic fractal strings do not give the Riemann zeta
function as the geometric zeta function. It would be interesting to have a natural construction of an
adèlic fractal string with the Riemann zeta function as its geometric zeta function.
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We conclude these comments with a construction that gives the square of the Riemann zeta
function. Let Ep be the p-adic Euler string and h be the real harmonic string, then the infinite
direct product

h× ∏
p<∞
Ep

can be considered as an adèlic fractal string in the set of integral adèles AZ. Let ζEp be the geometric
zeta function of Ep and ζh be the geometric zeta function of the harmonic string; then, the infinite
product of complex meromorphic functions

ζh × ∏
p<∞

ζEp

is equal to the square of the Riemann zeta function.

Author Contributions: The work has been equally shared between all three authors.

Funding: The work of the first author (MLL) was partially supported by the US National Science Foundation (NSF)
under the research grants DMS-0707524 and DMS-1107750, and by the Institut des Hautes Etudes Scientifiques
(IHES) in Paris/Bures-sur-Yvette, France, where the first author was a visiting professor while part of this work
was completed, as well as by the Burton Jones Endowed Chair in Pure Mathematics (of which MLL was the chair
holder at the University of California, Riverside, during the completion of this paper). The research of the second
author (LH) was partially supported by the Trustees’ Scholarly Endeavor Program at Hawai‘i Pacific University.

Acknowledgments: We wish to thank Springer, the publisher of [7], for having granted us (more specifically,
the two authors of the book [7]) the copyright for [7] (Section 13.2) within which part of the results obtained in
this paper were discussed. That portion of [7] (Section 13.2) was referring, in particular, to an earlier preprint
of this article to which we have since then made a number of changes and additions, including the new result
providing (in Section 5), among other things, a full synthetic proof of the equality of the abscissa of convergence
of the geometric zeta function and of the (upper) Minkowski dimension of the associated fractal set, valid both in
the real (or archimedean) case and in the p-adic (or nonarchimedean) case. Another significant addition to our
earlier version of this paper is the discussion (in Section 8) of several results concerning the new topic of adèlic
fractal strings, for which complete proofs will be provided in a later work towards a global theory of complex
fractal dimensions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lapidus, M.L. Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the
Weyl–Berry conjecture. Trans. Am. Math. Soc. 1991, 325, 465–529. [CrossRef]

2. Lapidus, M.L. Spectral and fractal geometry: From the Weyl–Berry conjecture for the vibrations of fractal
drums to the Riemann zeta-function. In Differential Equations and Mathematical Physics, Proceedings of the
Fourth UAB International Conference, Birmingham, UK, March 1990; Bennewitz, C., Ed.; Academic Press:
New York, NY, USA, 1992; pp. 151–182.

3. Lapidus, M.L. Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the
Weyl–Berry conjecture. In Ordinary and Partial Differential Equations, Vol. IV, Proceedings of the Twelfth
International Conference, Dundee, Scotland, UK, June 1992; Sleeman, B.D., Jarvis, R.J., Eds.; Pitman Research
Notes in Mathematics Series 289; Longman Scientific and Technical: London, UK, 1993; pp. 126–209.

4. Lapidus, M.L.; Pomerance, C. The Riemann zeta-function and the one-dimensional Weyl–Berry conjecture
for fractal drums. Proc. Lond. Math. Soc. 1993, 66, 41–69. [CrossRef]

5. Lapidus, M.L.; Maier, H. The Riemann hypothesis and inverse spectral problems for fractal strings. J. Lond.
Math. Soc. 1995, 52, 15–34. [CrossRef]

6. Lapidus, M.L.; van Frankenhuijsen, M. Fractal Geometry and Number Theory: Complex Dimensions of Fractal
Strings and Zeros of Zeta Functions; Birkhäuser: Boston, MA, USA, 2000.

7. Lapidus, M.L.; van Frankenhuijsen, M. Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry
and Spectra of Fractal Strings, 2nd Revised and Enlarged Edition of the 2006 Edition; Springer Monographs in
Mathematics; Springer: New York, NY, USA, 2013.

8. Lapidus, M.L. In Search of the Riemann Zeros: Strings, Fractal Membranes and Noncommutative Spacetimes;
American Mathematical Society: Providence, RI, USA, 2008.

http://dx.doi.org/10.1090/S0002-9947-1991-0994168-5
http://dx.doi.org/10.1112/plms/s3-66.1.41
http://dx.doi.org/10.1112/jlms/52.1.15


Fractal Fract. 2018, 2, 26 28 of 30

9. Herichi, H.; Lapidus, M.L. Quantized Number Theory, Fractal Strings, and the Riemann Hypothesis: From Spectral
Operators to Phase Transitions and Universality; Research Monograph; World Scientific Publishing: Singapore;
London, UK, 2019; in press; 400p.

10. Herichi, H.; Lapidus, M.L. Riemann zeros and phase transitions via the spectral operator on fractal strings.
J. Phys. A Math. Theor. 2012, 45, 374005. [CrossRef]

11. Herichi, H.; Lapidus, M.L. Fractal complex dimensions, Riemann hypothesis and invertibility of the
spectral operator. In Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics I: Fractals in
Pure Mathematics; Carfi, D., Lapidus, M.L., Pearse, E.P.J., van Frankenhuijsen, M., Eds.; Contemporary
Mathematics; American Mathematical Society: Providence, RI, USA, 2013; Volume 600, pp. 51–89,
doi:10.1090/conm/600/11948.

12. Lapidus, M.L. Towards quantized number theory: Spectral operators and an asymmetric criterion for the
Riemann hypothesis. Philos. Trans. R. Soc. Ser. A 2015, 373. [CrossRef] [PubMed]

13. Lapidus, M.L. The sound of fractals strings and the Riemann hypothesis. In Analytic Number Theory:
In Honor of Helmut Maier’s 60th Birthday; Pomerance, C.B., Rassias, T., Eds.; Springer International Publisher:
Cham, Switzerland, 2016; pp. 201–252, doi:10.1007/978-3-319-22240-0_14.

14. Dragovich, B. Adelic harmonic oscillator. Int. J. Mod. Phys. A 1995, 10, 2349–2365. [CrossRef]
15. Rammal, R.; Toulouse, G.; Virasoro, M.A. Ultrametricity for physicists. Rev. Mod. Phys. 1986, 58, 765–788.

[CrossRef]
16. Vladimirov, V.S.; Volovich, I.V.; Zelenov, E.I. p-adic Analysis and Mathematical Physics; World Scientific

Publishing: Singapore, 1994.
17. Dragovich, B.; Yu, A.; Khrennikov, S.; Kozyrev, S.V.; Volovich, I.V. On p-adic mathematical physics.

p-Adic Numbers Ultrametric Anal. Appl. 2009, 1, 1–17. [CrossRef]
18. Everett, C.J.; Ulam, S. On some possibilities of generalizing the Lorentz group in the special relativity theory.

J. Comb. Theory 1966, 1, 248–270. [CrossRef]
19. Berkovich, V.G. p-adic analytic spaces. In Proceedings of the International Congress of Mathematicians,

Berlin, Germany, 18–27 August 1998; Fisher, G., Rehmann, U., Eds.; Documenta Mathematica (Extra Volume
ICM 1998); Volume II, pp. 141–151.

20. Bendikov, A. Heat kernels for isotropic-like Markov generators on ultrametric spaces: A survey. p-Adic
Numbers Ultrametric Anal. Appl. 2018, 10, 1–11. [CrossRef]

21. Bendikov, A.; Grigor’yan, A.; Pittet, C.; Woess, W. Isotropic Markov semigroups on ultrametric spaces.
Russ. Math. Surv. 2014, 69, 589–680. [CrossRef]

22. Pearson, J.; Bellissard, J. Noncommutative Riemannian geometry and diffusion on ultrametric Cantor sets.
J. Noncommut. Geom. 2009, 3, 447–480. [CrossRef]

23. Ducros, A. Espaces analytiques p-adiques au sens de Berkovich. Sémin. Bourbaki 2006, 48, 137–176.
24. Volovich, I.V. Number Theory as the Ultimate Physical Theory. CERN-TH.4781/87. Available online: http:

//cds.cern.ch/record/179558/files/198708102.pdf (accessed on 26 September 2018).
25. Gibbons, G.W.; Hawking, S.W. (Eds.) Euclidean Quantum Gravity; World Scientific Publishing:

Singapore, 1993.
26. Hawking, S.W.; Israel, W. (Eds.) General Relativity: An Einstein Centenary Survey; Cambridge University Press:

Cambridge, UK, 1979.
27. Notale, L. Fractal Spacetime and Microphysics: Towards a Theory of Scale Relativity; World Scientific Publishing:

Singapore, 1993.
28. Wheeler, J.A.; Ford, K.W. Geons, Black Holes, and Quantum Foam: A Life in Physics; Norton, W.W.: New York,

NY, USA, 1998.
29. Lapidus, M.L.; Nest, R. Fractal membranes as the second quantization of fractal strings. 2018, in preparation.
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31. Lapidus, M.L.; Lũ’, H. Self-similar p-adic fractal strings and their complex dimensions. p-Adic Numbers

Ultrametric Anal. Appl. 2009, 1, 167–180. [CrossRef]
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