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Abstract: In the present study, the nonlinear vibration of a nanobeam resting on the fractional order
viscoelastic Winkler–Pasternak foundation is studied using nonlocal elasticity theory. The D’Alembert
principle is used to derive the governing equation and the associated boundary conditions.
The approximate analytical solution is obtained by applying the multiple scales method. A detailed
parametric study is conducted, and the effects of the variation of different parameters belonging to
the application problems on the system are calculated numerically and depicted. We remark that the
order and the coefficient of the fractional derivative have a significant effect on the natural frequency
and the amplitude of vibrations.
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1. Introduction

Due to the recent and rapid advances in nanomechanics, nanobeams have become the most
important structures used extensively in technology such as nano-electromechanical systems (NEMs),
opto-mechanical or nanoresonator devices. The exclusive properties of nanoscale beams are due to
their size, and this size plays an important role in static and in dynamic analysis. In front of the
difficulties of classical continuum mechanics in considering the size effect in modeling the behavior of
this kind of structure, various size-dependent continuum theories have been developed. These theories
include nonlocal continuum theory, strain gradient theory or a combination of both (nonlocal strain
gradient theory), modified couple stress theory, micropolar theory and the surface elasticity theory.
Among these theories, Eringen’s nonlocal elasticity theory [1,2] was utilized by a number of researchers
to capture size-effects.

These kinds of structures can be modeled as a beam structure on a viscoelastic foundation.
The beam can be modeled as a Timoshenko beam [3,4], or as a Rayleigh beam [5],
or as a Euler–Bernouilli beam [6], and the foundation as a Winkler model [7–9], or as a Pasternak model,
or a combination of both (Winkler–Pasternak model), or as a nonlinear elastic model and the fractional
order viscoelastic model [10]. The Winkler model is a one-parameter model, namely the Winkler-type
elastic foundation consists of a series of closely-spaced elastic springs. The Pasternak model is
a two-parameter model, namely the Pasternak-type viscoelastic foundation consists of Winkler-type
elastic springs and transverse shear deformation. The nonlinear model is a three parameter one in
which the layer is indicated by the linear elastic spring, shear deformation and cubic nonlinearity
elastic spring.The fractional order Winkler–Pasternak [10] has been well developed. This fractional
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order is due to the long memory effects of some kinds of viscoelastic materials. In vibration analysis
of nanostructures, it is very important to evaluate the impact of the surrounding medium on the
dynamic of beams. Niknam and Aghdam [11] proposed an analytical approach to study dynamic of
nonlocal functionally graded beam resting on nonlinear elastic support. A meshless approach for free
transverse vibration of single-walled carbon nanotube (SWCNT) was proposed by Kiani [12]. Eringen′s
nonlocal theory and Timoshenko beam theory were used to make a buckling analysis of SWCNT on
elastic medium [13,14]. Non-conservative dynamic of nonlocal cantilever carbon nanotubes (CNTs) on
viscoelastic medium is proposed [15]. Mikhasev [16] researched localized modes of free vibrations of
SWCNT. Mustapha and Zhong [17] studied the dynamics of non-prismatic SWCNT in a viscoelastic
medium. Lee and Chang [18] studied the dynamics of a viscous fluid conveying SWCNT. Kiani [19,20]
examined elastically-restrained double-walled carbon nanotube (DWCNT) and SWCNT for delivering
nanoparticles. Instability analysis of CNT conveying fluid was conducted [21]. Yas and Samadi [22]
examined CNT-reinforced composite on and elastic medium. A small scale effect in nonuniform CNT
conveying fluid on the viscoelastic medium was examined [23]. Aydogdu [24] analyzed nanorods on
an elastic medium. Dynamic analysis of nanotubes on elastic matrix was conducted by Wang [25].
Dynamics of curved SWCNT on a Pasternak elastic foundation was examined [26]. Aydogdu and
Arda [27] researched the torsional dynamics of nonlocal DWCNTs. Necla [28] studied the nonlinear
vibration of a nonlocal nanobeam resting on a Winkler-type foundation. The work of Anague [10]
is based on the dynamics of Rayleigh beams resting on a fractional order viscoelastic Pasternak
foundation subjected to moving loads.

Many time-space differential equations are very difficult to solve; sometimes, these equations
are exactly impossible to solve. In front of these difficulties, a sophisticated analytical and numerical
method to find approximated solutions is needed. Ozturk and Coskun [29] proposed the homotopy
perturbation method. The multiple scale method was used to analyze the nonlinear vibration of
CNT [30–33]. He’s variational method exhibited more advantages [12,34–37]. The direct iterative
method was used in dynamical analysis of DWCNT [38]. The finite element method [21,23] and the
differential quadrature method [13,22] also exhibited more advantages.

The above investigations clearly show that most of the studies presented in the literature are
related to nonlocal and nonlinear structures, but studies on the nonlocal and nonlinear fractional
order vibration are very limited. When it is observed in the field, the linear frequency amplitude and
nonlinear frequency amplitude of beams are major topics, but dynamic analysis of beams embedded
in a fractional order viscoelastic medium is very rare. The nonlinear free vibration of the nanotube
with the damping effect was studied by using nonlocal elasticity theory [31]. To our knowledge,
there is no published work on a fractional order nonlocal nonlinear vibration of a nanobeam resting on
a viscoelastic foundation. The nonlinearity of the problem is obtained by considering the von Karman
geometric nonlinearity, which introduces a cubic nonlinearity into the equations. In the present
paper, we analyze the nonlinear vibration of a nanobeam resting on a fractional order viscoelastic
Winkler–Pasternak foundation using Eringen’s nonlocal elasticity. Nonlinear fractional order frequency
response and mode shapes are drawn for the nanobeam with different end conditions.

2. Preliminaries

2.1. Fractional Order Viscoelasticity

Fractional calculus is a part of mathematical analysis that has found many applications in
nanomechanics. The role of fractional calculus is to study arbitrary real or complex order integrals
and derivatives. There are many definitions of fractional order integrals and derivatives that have
been given by different authors. However, in our study, we will consider only Riemann–Liouville’s
definition of a fractional derivative as follows: If x(·) is an absolutely continuous function in [a, b] and
0 ≺ a ≺ 1, then:

1. The left Riemann–Liouville fractional derivative of order α is of the form:
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aDα
t x (τ) =

1
Γ (1− α)

d
dt

t∫
a

x (τ)
(t− τ)α dτ, t ∈ [a, b] (1)

2. The right Riemann–Liouville fractional derivative of order α is of the form:

tDα
b x (τ) =

1
Γ (1− α)

(
− d

dt

) b∫
t

x (τ)
(τ − t)α dτ, t ∈ [a, b] (2)

Fractional derivatives are used in the accurate modeling in rheology, as well as structural
mechanics to model internal damping. In [39], it was shown that classical viscoelastic models failed to
describe the damping of a viscoelastic solid and that improved fractional derivative-based models need
to be considered. Such models have few advances. First, they are based on molecular theories [40].
Second, such models satisfy thermodynamic laws. At least, they need a few parameters to describe the
viscoelastic behavior.

In the following, we give a constitutive relation of the fractional order viscoelastic
Winkler–Pasternak foundation beam interaction force (per unit length of the beam’s axis), which is
obtained including the fractional derivative term as [10]:

q (x, t) = kw (x, t) + c
∂w (x, t)

∂t
− [µe + µvDα

t ]
∂2w (x, t)

∂x2 , (3)

in which the deformed beam can be described by the transverse deflection w (x, t), k and c are the
foundation stiffness and damping coefficients and µe and µv are the foundation shear elastic and
viscosity coefficients. Dα

t is the fractional derivative with order α.

2.2. Nonlocal Theory

In the nonlocal elasticity theory, the stress at a point x is a function of the strains at all other
points of an elastic body. The integral form of the nonlocal constitutive relation for a three-dimensional
structure is:

σij (x) =
∫

χ
(∣∣x− x′

∣∣ , τ
)
tij
(
x′
)

dV(x′), ∀x ∈ V, (4)

where σij is the nonlocal stress tensor, tij is the local or classical stress tensors at a point x′, χ (|x− x′| , τ)

denotes the attenuation function, which incorporates nonlocal effects into the constitutive equation,
|x− x′| is the distance in the Euclidean norm and τ = e0a/

l is a nonlocal parameter, where l is the
external characteristic length (crack length or wave length), a is the internal characteristic length
(lattice parameter, granular, etc.) and e0 is a material constant that can be determined from molecular
dynamics simulations or by using the dispersive curve of the Born–Karman model of lattice dynamics.
Later, Eringen [2] proposed a differential form of the constitutive relation with an appropriate kernel
function as: (

1− τ2l2∇2
)

σij = tij. (5)

For the one-dimensional case, the local stress txx at a point x′ can be explained according to
Hooke’s law as:

txx
(

x′
)
= Eεxx

(
x′
)

, (6)

where E denotes the elastic modulus and εxx the strain. That yields the following differential form of
the nonlocal constitutive equation for a one-dimensional elastic body:

σxx − µ
∂2σxx

∂x2 = Eεxx, (7)

where µ = (e0a)2 is the nonlocal parameter and σxx is the nonlocal stress.
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3. Governing Equation of the Nanobeam Resting on the Fractional Order
Viscoelastic Foundation

This study is carried out on the basis of the nonlocal Euler–Bernouilli nanobeam of length L,
cross-sectional area A, density ρ and transverse deflection w (x, t) in the z direction. Two types of
boundary conditions, which are simple-simple and clamped-clamped, are considered in this work
and shown in Figure 1. We assume that the cross-sectional area is constant along the x coordinate and
that the material of the nanobeam is homogeneous. The nanobeam is resting on a fractional order
viscoelastic Winkler–Pasternak foundation in which k and c are the stiffness and damping coefficient
and µe and µv are the foundation shear elastic and viscosity coefficients. We also consider that the
nanobeam is under the influence of time varying axial load. According to Euler–Bernouilli beam
theory, the displacement fields at any point of the beam can be expressed as:

ux (x, z, t) = u (x, t)− z
∂w (x, t)

∂x
, uy = 0, uz = w (x, t) , (8)

where u and w are the axial and transverse displacements, respectively. By assuming the von Karman
nonlinear strain displacement relation for the given displacement fields, we get:

ε0 =
∂u
∂x

+
1
2

(
∂w
∂x

)2
, ε1 = −zk̄, k̄ =

∂2w
∂x2 . (9)

where ε0 is the nonlinear extensional strain and k̄ is the bending strain. The von Karman nonlinear
normal strain can be expressed as:

ε = ε0 + ε1 =
∂u
∂x

+
1
2

(
∂w
∂x

)2
− z

∂2w
∂x2 . (10)

Figure 1. Boundary conditions for different beam supports. (a) Simple-simple case and (b)
clamped-clamped case.

By applying the D’Alembert principle to the infinitesimal element of the nanobeam,
the equilibrium equation can be obtained as:

ρA
∂2u
∂t2 =

∂T
∂x

, (11a)

ρA
∂2w
∂t2 =

∂Q
∂x

+ T
∂2w
∂x2 − q (x, t) , (11b)

ρI
∂3w

∂x∂t2 = Q− ∂M
∂x

, (11c)
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in which the stress resultant is defined as:

(Q, T, M) =

A∫
0

(τ̄xz, σ̄xx, zσ̄xx)dA, (12)

where Q, T and M are the transversal force, the axial force and the bending moment, respectively.
τ̄xz and σ̄xx are the shear and normal stress components. The longitudinal inertia ∂2u

∂t2 can be neglected
based on the discussion about the nonlinear vibration of continuous systems [41,42], then the axial
normal force T can be represented as:

T = F cos Ωt +
EA
2L

L∫
0

(
∂w
∂x

)2
dx. (13)

Assuming that the axial force is periodic and time-dependent and combining Equations (7)
and (11), the nonlinear vibration equation of motion for the nanobeam resting on the fractional order
viscoelastic Pasternak-type foundation in terms of transversal displacements is obtained as follows:

ρA ∂2w
∂t2 − ρI ∂4w

∂x2∂t2 −
(

F cos Ωt + EA
2L
∫ (

∂w
∂x

)2
dx
)

∂2w
∂x2 + kw + c ∂w

∂t − (µe + µvDα
t )

∂2w
∂x2 + EI ∂4w

∂x4

−µ ∂2

∂x2

(
ρA ∂2w

∂t2 − ρI ∂4w
∂x2∂t2

)
+ µ ∂2

∂x2

((
F cos Ωt + EA

2L
∫ (

∂w
∂x

)2
dx
)

∂2w
∂x2

)
−µ ∂2

∂x2

(
kw + c ∂w

∂t − (µe + µvDα
t )

∂2w
∂x2

)
= 0,

(14)

where F is the amplitude of axial load and Ω is the frequency of this load. The following
non-dimensional quantities aim to study the problem in the general form as:

x̄ =
x
L

, w̄ =
w
L

, t̄ =
t

L2

√
EI
ρA

, η2 =
µ

L2 , K =
kL4

EI
, εC = c

√
L4

ρA (EI)
, KP =

µeL2

EI
, εF̄ =

FL2

EI

εCP =
µvL2(1−α)

(ρA)
1
2 α(EI)

1
2 (2−α)

, δ =
I

AL2 . (15)

The non-dimensional Equations (14) and (15) can be expressed as:

∂2w̄
∂t̄2 − δ ∂4w̄

∂x̄2∂t̄2 −
(

εF̄ cos Ω̄t̄ + 1
2 ε
∫ (

∂w̄
∂x̄

)2
dx̄
)

∂2w̄
∂x̄2 + Kw̄ + εC ∂w̄

∂t̄ +
(
KP + εCPDα

t̄

)
∂2w̄
∂x̄2 + ∂4w̄

∂x̄4

−η2 ∂2

∂x̄2

(
∂2w̄
∂t̄2 − δ ∂4w̄

∂x̄2∂t̄2

)
+ η2 ∂2

∂x̄2

((
εF̄ cos Ω̄t̄ + 1

2 ε
∫ (

∂w̄
∂x̄

)2
dx̄
)

∂2w̄
∂x̄2

)
−η2 ∂2

∂x̄2

(
Kw̄ + εC ∂w̄

∂t̄ +
(
KP + εCPDα

t̄

)
∂2w̄
∂x̄2

)
= 0,

(16)

in which K and C denote dimensionless stiffness and viscosity medium, KP and CP denote the
dimensionless shear elastic and viscosity coefficient, F̄ represent the dimensionless amplitude of axial
load and η, w̄ and t̄ denote the nonlocal parameter, transversal displacement and time, respectively,
in dimensionless form. The small bookkeeping parameter ε is used to emphasize the transversal
deformation, viscosity coefficients and tension fluctuation compared to the other terms.

The non-dimensional form of boundary conditions can be expressed as

Simple-simple case:
w̄ (0) = 0, w̄ (1) = 0, w̄′′ (0) = 0, w̄′′ (1) = 0; (17)
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Clamped-clamped case:
w̄ (0) = 0, w̄ (1) = 0, w̄′ (0) = 0, w̄′ (1) = 0. (18)

3.1. Solution of the Governing Equation

The dimensionless fractional order nonlinear partial differential equation, Equation (16), describes
the transversal vibration of the nanobeam resting on a fractional order viscoelastic foundation under
the influence of periodic axial load. In order to obtain the asymptotic approximate solution in the first
order for the problem, the perturbation method of multiple scales will be employed. By applying the
Galerkin method, we assume the asymptotic approximate solution in the following form:

w̄ (x̄, t̄) = q (t̄) φ (x̄) , (19)

in which q (t̄) is the unknown time function and φ (x̄) is the linear mode shape determined from the
boundary conditions. The linear mode shapes of Equations (17) and (18) are given by:

φ (x̄) = c1 exp iα1 x̄ + c2 exp iα2 x̄ + c3 exp iα3 x̄ + c4 exp iα4 x̄. (20)

The boundary conditions are applied, and the constants ci and αi can be obtained. Mode shapes
of the linear first frequency are plotted in Figures 2 and 3.

By introducing Equation (19) into Equation (16), multiplying the results by the linear mode shape
function φ (x̄) and then integrating them over the length of the nanobeam, we obtain a fractional order
nonlinear ordinary differential equation expressed as:

d2q
dt̄2 + εC̃

dq
dt̄

+
(

w2
0 + εγF̄ cos Ω̄t̄

)
q +

1
4

εχq3 + εC̃P
dαq
dt̄α

= 0, (21)

where w0 is the natural frequency for the linear system, C̃ and C̃P are normal damping ratio and shear
damping ratio, χ is the reduced nonlinear stiffness and γ is the constant:

w2
0 =

K
(
a1 − η2a2

)
+ KP

(
−a2 + η2a3

)
+ a3

(a1 − η2a2) + δ (−a2 + η2a3)
, C̃ =

C
(
a1 − η2a2

)
(a1 − η2a2) + δ (−a2 + η2a3)

,

γ =

(
a2 − η2a3

)
(a1 − η2a2) + δ (−a2 + η2a3)

, χ =
2a4

(
−a2 + η2a3

)
(a1 − η2a2) + δ (−a2 + η2a3)

,

C̃P =
CP
(
−a2 + η2a3

)
(a1 − η2a2) + δ (−a2 + η2a3)

, {a1, a2, a3, a4} =
L∫

0

{
φ2, φφ′, φφIV ,

(
φ′
)2
}

. (22)

Figure 2. First three vibration mode shapes for the simple-simple case boundary condition.
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Figure 3. First three vibration modes shapes for the clamped-clamped case boundary condition.

Equation (21) is a new form of parametrical; 7-excited Duffing differential equation due to the
presence of the fractional order term. In order to determine the asymptotic approximate solution with
combined effects of nonlinearity, parametric excitation and fractional order damping, we will apply
the method of multiple scales. A straightforward asymptotic expansion can be introduced:

q (t̄; ε) = ε0q0 (T0, T1) + ε1q1 (T0, T1) , (23)

where T0 = t̄ and T1 = εt̄ represent the fast and low timescale. The fast timescale is associated
with the linear unperturbed system, while the slow timescale is characterized by the modulation of
the amplitude and phase in the presence of possible resonance. Denoting D0 = ∂/

∂T0
, D1 = ∂/

∂T1
,

the ordinary time derivatives can be transformed into the partial derivative as:

d
dt

= D0 + εD1,
d2

dt2 = D2
0 + 2εD0D1,

(
d
dt

)α

= Dα
0 + εαDα−1

0 D1 + ..., (24)

Inserting Equations (23) and (24) into Equation (21), we obtain the following relation:(
ε0
)

: D2
0q0 + ω2

0q0 = 0, (25a)(
ε1
)

: D2
0q1 + ω2

0q1 = −2D0D1q0 − C̃PDα
0 q0 − C̃D0q0 −

1
4

χq3
0 + γF̄ cos (Ω̄T0), (25b)

Fundamental frequencies are obtained by solving the first order of expansion, and the solvability
condition is obtained by solving the second order of expansion. The solution of the first order equation
is given as:

q0 (T0, T1) = A (T1) exp iω0T0 + Ā (T1) exp−iω0T0, (26)

where i =
√
−1, A is a complex function of slow timescale and Ā is the complex conjugate. Excitation

frequency is assumed close to one of the natural frequencies of the system; the dimensionless form of
this excitation frequency can be written as:

Ω̄ = ω0 + εσ, (27)

where σ is a detuning parameter. Substituting Equation (26) into the second order of expansion and
using the dimensionless form of excitation frequency yield:

D2
0q1 + ω2

0q1 = −2iω0

(
D1 A +

1
2

C̃A
)

exp iω0T0

−
(

3
4

χA2 Ā + (iω0)
αC̃P A +

1
2

γĀF̄ exp (σT1)

)
exp iω0T0 + cc + NST, (28)
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where cc and NST represent the complex conjugate and the non-secular term, respectively.
The solvability condition for Equation (28) is obtained as follows:

2iω0

(
D1 A +

1
2

C̃A
)
+

3
4

χA2 Ā + (iω0)
αC̃P A +

1
2

γĀF̄ exp (σT1) = 0. (29)

Taking into account the real amplitude a and phase β, the complex amplitude A can be written as:

A = a (T1) exp iβ (T1) . (30)

Then, the amplitude and phase modulation equations are:

D1a +
1
2

C̃a +
1
2

ωα−1
0 C̃Pa sin

απ

2
+

1
4

γaF̄
ω0

sin ψ = 0, (31a)

D1β− 3χ

8ω0
a2 − 1

2
ωα−1

0 C̃P cos
απ

2
− 1

4
γF̄
ω0

cos ψ = 0, (31b)

in which ψ = σT1 − 2β is the new phase angle. In the steady-case, Equation (31) will be solved in
a further section.

4. Numerical Results

Numerical examples of frequencies are presented in this section. The linear fundamental
frequencies for different kinds of boundary conditions will be evaluated, and the fractional order
nonlinear frequencies for free vibrations will also be evaluated in the case of the steady-state. To show
the correctness of the presented study, we compared the obtained results to the results proposed by
Mustapha and Zhong [17], Yokoyama [43] and Togun et al. [28]. A detailed parametric study was
conducted to investigate the effects of system parameters such as stiffness, damping, the nonlocal
parameter and fractional parameter on the dimensional fractional order nonlinear natural frequencies
of the nanobeam with simple-simple boundary conditions and the frequency response curve obtained
by the perturbation method. For free vibration F̄ = 0, in the case of the steady-state, we obtain:

D1a = 0⇒ a = a0. (32)

By introducing Equation (32) into Equation (31b), we get:

β (T1) =

(
3χ

8ω0
a2

0 +
1
2

ωα−1
0 C̃P cos

απ

2

)
T1 + β0, (33)

where a0 and β0 are the constants’ steady-state real amplitude and phase, which are determined
from the initial conditions. Introducing the obtained results into Equation (26) gives the first order
vibration response:

q0 (T0, T1) = a0 exp i
(

3χ

8ω0
a2

0 +
1
2

ωα−1
0 C̃P cos

απ

2

)
εt̄× exp i (ω0 t̄ + β0) + cc, (34)

and hence, the fractional order nonlinear frequency is:

ω
(α)
nl = ω0 + D1β = ω0 + ε

3χ

8ω0
a2

0 + ε
1
2

ωα−1
0 C̃P cos

απ

2
, (35)
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where λ = 3χ
8ω0

is the nonlinear correction coefficient and the third term is a correction of the natural
frequency due to the fractional order damping term. At the steady-state, D1a = 0 and D1ψ = 0.
The detuning parameter or the amplitude-frequency response is as follows:

σ =
3χ

4ω0
a2

0 + ωα−1
0 C̃P cos

απ

2
±
√

1
4

γ2 F̄2

ω2
0
−
(

C̃ + ωα−1
0 C̃P sin

απ

2

)2
. (36)

4.1. Validation Study

Studies related to the nonlinear nonlocal nanobeam resting on a Winkler–Pasternak viscoelastic
foundation in the literature are very limited. In order to validate the present analytical results for the
amplitude-frequency response of the dynamical fractional order nonlinear nonlocal nano-beam with
the simple-simple boundary condition, we compared the obtained results proposed by Mustapha and
Zhong [17], Yokoyama [43] and Togun et al. [28]. Let us consider the case of free vibration and only
the classical damping influence (α = 1); thus, the fractional order correction to the natural frequency
is absent in Equations (35) and (36), and then, we recognize the common form of nonlinear frequency
and the detuning parameter:

ωnl = ω0

(
1 + ε

3χ

8ω2
0

a2
0

)
, (37)

σ =
3χ

4ω0
a2

0 ±
√

1
4

γ2 F̄2

ω2
0
− µ2, (38)

where λ = 3χ
8ω0

is the nonlinear correction coefficient and µ = C̃+ C̃P the damping coefficient. The work
of Mustapha and Zhong [17] studied the non-uniform SWCNT depending on a nonlocal Rayleigh
beam resting on a Pasternak-type foundation. Yokoyama [43] studied the free transverse vibration of
the classical Euler–Bernouilli beam resting on a Winkler–Pasternak foundation, and Togun et al. [28]
studied the nonlinear vibration of a nonlocal nanobeam on a Winkler–Pasternak foundation using
Euler–Bernouilli beam theory. A comparison study was performed to check the correctness of
the present study. To this aim, the linear frequency of the local case of our nanobeam resting on
a Winkler–Pasternak foundation for the simple-simple boundary condition was compared to those
of the work of Mustapha and Zhong [17], Yokoyama [43] and Togun et al. [28]. It can be seen from
Tables 1 and 2 that there is good harmony among the four results.

Figure 4 shows the nonlocal parameter effect on the fractional nonlinear frequency; we observe
that the natural frequency decreases when the nonlocal parameter increases. The variation of the
fractional nonlinear frequency with the amplitude for the first three modes of vibration is shown in
Figure 5; this figure shows that the fractional nonlinear frequencies increase with an increase in the
mode number.

Table 1. The first five non-dimensional natural frequencies of a local Euler–Bernouilli beam resting
on a Winkler–Pasternak foundation for the simple-simple boundary condition (η = 0, δ = 0, K = 25,
Kp = 25).

Mode Present Ref. [28] Ref. [17] Ref. [43]

1 19.2133 19.2133 19.2178 19.21
2 50.7002 50.7002 50.7804 50.71
3 100.6767 100.677 - -
4 170.0281 170.028 - -
5 258.9868 258.987 - -
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Table 2. The first five non-dimensional natural frequencies of a local Euler–Bernouilli beam resting
on a Winkler–Pasternak foundation for the simple-simple boundary condition (η = 0, δ = 0, K = 36,
Kp = 36).

Mode Present Ref. [28] Ref. [17] Ref. [43]

1 22.1069 22.1069 22.1112 -
2 54.9160 54.916 55.1873 -
3 105.4698 105.47 - -
4 175.0932 175.093 - -
5 264.1956 264.196 - -

Figure 4. First three modes of the fractional nonlinear frequency versus nonlocality η (α = 0.5, K = 5,
Kp = 2, Cp = 0.001).

Figure 5. First three modes of the fractional nonlinear frequency versus amplitude (α = 0.5, K = 5,
Kp = 2, Cp = 0.001, η = 0.5).

In Figures 6–8, the fractional nonlinear frequency versus amplitude for different values of the
system parameter are shown for the first mode of vibration. Figure 6 shows the effect of Pasternak
parameter Kp on the fractional nonlinear frequency versus amplitude curves, and we can observe
in this figure that the fractional nonlinear frequency increases with an increase of Kp. In Figure 7,
the fractional nonlinear frequency also increases with an increase of Winkler stiffness parameter K.
In Figure 8, the fractional nonlinear frequency versus amplitude for different values of fractional
damping coefficient Cp is drawn, and we can notice that the fractional nonlinear frequency increases
slowly when the fractional damping coefficient increases. This is normal because the fractional
nonlinear frequency has a direct relation to Cp. Furthermore a hardening behavior can be observed in
Figures 6–8 because the fractional nonlinear frequency increases as the amplitude increases.
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Figure 6. Fractional nonlinear frequency versus amplitude for different values of Kp (α = 0.5, K = 100,
Cp = 0.001, η = 0.5).

Figure 7. Fractional nonlinear frequency versus amplitude for different values of K (α = 0.5, Kp = 5,
Cp = 0.001, η = 0.5).

Figure 8. Fractional nonlinear frequency versus amplitude for different values of Cp (α = 0.5, Kp = 5,
K = 100, η = 0.5).

Frequency response curves are presented in Figure 9 for different values of the nondimensional
nonlinear coefficient. In this figure, nonlinearity is actually observed. In Figures 10–12, the fractional
contribution frequency versus Winkler parameter K and nonlocal parameter η for different values of
fractional parameter α are shown. It can be seen from Figures 10–12 that the fractional contribution
frequency increases and reaches the constant maximum value when the nonlocal parameter increases.
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For the small values of the nonlocal parameter, the fractional contribution increases quickly, but for the
high values, this contribution is constant.

Figure 9. Frequency-response curves versus amplitude for different values of χ (α = 1, C = 0.025,
Cp = 0.025, wo = 1, F̄ = 0.2).

Figure 10. Fractional contribution frequency versus stiffness K and nonlocality η (α = 0.2).

Figure 11. Fractional contribution frequency versus stiffness K and nonlocality η (α = 0.5).
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Figure 12. Fractional contribution frequency versus stiffness K and nonlocality η (α = 0.8).

In Figures 13 and 14, the fractional contribution frequency versus Pasternak parameter Kp and
nonlocal parameter η curves for different values of fractional parameter α are drawn. It is observed
that the variation of the fractional contribution depends on the interval of variation of the nonlocal
parameter η. For a small value of η, the fractional contribution increases, but for a high value of η,
this fractional contribution decreases.

Figure 13. Fractional contribution frequency versus stiffness Kp and nonlocality η (α = 0.2).

Figure 14. Fractional contribution frequency versus stiffness Kp and nonlocality η (α = 0.5).

In Figures 15–17, the fractional contribution frequency versus fractional damping coefficient Cp
and nonlocal parameter η curves are shown for different values of fractional parameter α. It can be
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seen that the fractional contribution increases when Cp increases. In front of all these observations,
it is normally easy to say that every system parameter has a significant effect on the natural frequency
of the nanobeam, especially the fractional parameter and fractional damping coefficient.

Figure 15. Fractional contribution frequency versus fractional damping coefficient Cp and nonlocality
η (α = 0.2).

Figure 16. Fractional contribution frequency versus fractional damping coefficient Cp and nonlocality
η (α = 0.5).

Figure 17. Fractional contribution frequency versus fractional damping coefficient Cp and nonlocality
η (α = 1).
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5. Conclusions

In this study, using the fractional derivative, the nonlinear vibration of a nanobeam resting on
a fractional order viscoelastic Winkler–Pasternak foundation is studied. For this purpose, Eringen’s
nonlocal elasticity theory, the von Karman geometric nonlinearity and the Euler–Bernouilli beam theory
are employed. The D’Alembert principle is used to derive the governing equation. In the solution
procedure, using the Galerkin scheme, the fractional integro-partial differential governing equation is
first simplified into the time-dependent fractional ordinary differential equation. This new equation is
known as the fractional order nonlinear Duffing equation which is then solved by the multiple scales
method. A detailed parametric study is conducted to get the effects of the system parameter such as the
Winkler stiffness parameter, Pasternak stiffness parameter, nonlocal parameter, nonlinear coefficient,
fractional damping coefficient and fractional parameter on the fractional nonlinear frequency of the
nanobeam. It is found that fractional nonlinear frequency decreases when the nonlocal parameter
increases. Furthermore, this fractional nonlinear frequency increases when the Winkler parameter,
Pasternak parameter, mode, fractional damping coefficient and amplitude increase. It is further found
that every parameter of the system has a significant effect on the fractional contribution frequency.
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