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Fractional calculus has performed an important role in the fields of mathematics, physics,
electronics, mechanics, and engineering in recent years. The modeling methods involving fractional
operators have been continuously generalized and enhanced, especially during the last few decades.
Many operations in physics and engineering can be defined accurately by using systems of differential
equations containing different types of fractional derivatives.

This book is a result of the contributions of scientists involved in the special collection of articles
organized by the journal Fractal and Fractional (MDPI), most of which have been published at the end
of 2017 and the beginning 2018. In accordance with the initial idea of a Special Issue, the best published
have now been consolidated into this book.

The articles included span a broad area of applications of fractional calculus and demonstrate the
feasibility of the non-integer differentiation and integration approach in modeling directly related to
pertinent problems in science and engineering. It is worth mentioning some principle results from
the collected articles, now presented as book chapters, which make this book a contemporary and
interesting read for a wide audience:

The fractional velocity concept developed by Prodanov [1] is demonstrated as tool to characterize
Hölder and in particular, singular functions. Fractional velocities are defined as limits of the difference
quotients of a fractional power and they generalize the local notion of a derivative. On the other
hand, their properties contrast some of the usual properties of derivatives. One of the most peculiar
properties of these operators is that the set of their nontrivial values is disconnected. This can be used,
for example, to model instantaneous interactions, such as Langevin dynamics. In this context, the local
fractional derivatives and the equivalent fractional velocities have several distinct properties compared
to integer-order derivatives.

The classical pantograph equation and its generalizations, including fractional order and higher
order cases, is developed by Bhalekar and Patade [2]. The special functions are obtained from the series
solution of these equations. Different properties of these special functions are established, andtheir
relations with other functions are developed.

The new direction in fractional calculus involving nonsingular memory kernels, developed in the
last three years following the seminar articles of Caputo and Fabrizio in 2015 [3], is hot research topic.
Two studies in the collection clearly demonstrate two principle directions: operators with nonsingular
exponential kernels, i.e., the so-called Caputo-Fabrizio derivatives [4,5] (Hristov, 2016, Chapter 10),
and operators with nonsingular memory kernels based on the Mittag-Leffler function [6,7] (Atangana,
Baleanu, 2016; Baleanu, Fennandez, 2018).

Yavuz and Ozdemir [8] demonstrate a novel approximate-analytical solution method, called the
Laplace homotopy analysis method (LHAM), using the Caputo-Fabrizio (CF) fractional derivative
operator based on the exponential kernel. The recommended method is obtained by combining Laplace
transform (LT) and the homotopy analysis method (HAM). This study considers the application of
LHAM to obtain solutions of the fractional Black-Scholes equations (FBSEs) with the Caputo-Fabrizio
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(CF) fractional derivative and appropriate initial conditions. The authors demonstrate the efficiencies
and accuracies of the suggested method by applying it to the FBS option pricing models with their
initial conditions satisfied by the classical European vanilla option. Using real market values from
finance literature, it is demonstrated how the option is priced for fractional cases of European call option
pricing models. Moreover, the proposed fractional model allows modeling of the price of different
financial derivatives such as swaps, warrant, etc., in complete agreement with the corresponding
exact solutions.

In light of new fractional operators, Gomez-Aguilar and Atangana [9] present alternative
representations of the Freedman model considering Liouville-Caputo and Atangana-Baleanu-Caputo
fractional derivatives. The solutions of these alternative models are obtained using an iterative scheme
based on the Laplace transform and the Sumudu transform. Moreover, special solutions via the
Adams-Moulton rule are obtained for both fractional derivatives.

In light of certain applied problems, the thermal control of complex thermal interfaces and heat
conduction are principle issues to which classical fractional calculus is widely applicable. The control of
thermal interfaces has gained importance in recent years because of the high cost of heating and cooling
materials in many applications. The main focus in the work of Moreau et al. [10] is to compare the
second and third generations of the CRONE controller (French acronym of Commande Robusted’Ordre
Non Entier) in the control of a non-integer plant by means a fractional order controller. The idea is
that, as a consequence of the fractional approach, all of the systems of integer order are replaced by
the implementation of a CRONE controller. The results reveal that the second generation CRONE
controller is robust when the variations in the plant are modeled with gain changes, whereas the phase
remains the same for all of the plants (even if not constant). However, the third generation CRONE
controller demonstrates a good, feasible robustness when the parameters of the plant are changed as
well as when both gain and phase variations are encountered.

Thermistors are part of a larger group of passive components. They are temperature-dependent
resistors and come in two varieties, negative temperature coefficients (NTCs) and positive temperature
coefficients (PTCs), although NTCs are most commonly used. NTC thermistors are nonlinear, and their
resistance decreases as the temperature increases. The self-heating may affect the resistance of an NTC
thermistor, and the work of Vivek et al. [11] focuses on the existence and uniqueness and Ulam-Hyers
stability types of solutions for Hilfer-type thermistor problems.

A heat conduction inverse problem of the fractional (Caputo fractional derivative) heat conduction
problem is developed by Brociek et al. [12] for porous aluminum. In this case, the Caputo
fractional derivative is employed. The direct problem is solved using a finite difference method and
approximations of Caputo derivatives, while the inverse problem, the heat transfer coefficient, thermal
conductivity coefficient, initial condition, and order of derivative are sought and the minimization
of the functional describing the error of approximate solution is carried out by the Real Ant Colony
Optimization algorithm.

Process monitoring represents an important and fundamental tool aimed at process safety and
economics while meeting environmental regulations. Lenzi et al. [13] present an interesting approach
to the quality control of different olive and soybean oil mixtures characterized by image analysis with
the aid of an RGB color system by the algebraic fractional model. The model based on the fractional
calculus-based approach could better describe the experimental dataset, presenting better results of
parameter estimation quantities, such as objective function values and parameter variance. This model
could successfully describe an independent validation sample, while the integer order model failed to
predict the value of the validation sample.

The classical Stokes’ first problem for a class of viscoelastic fluids with the generalized fractional
Maxwell constitutive model was developed by Bazhlekova and Bazhlekov [14]. The constitutive
equation is obtained from the classical Maxwell stress-strain relation by substituting the first-order
derivatives of stress and strain by derivatives of non-integer orders in the interval (0, 1). Explicit integral
representation of the solution is derived and some of its characteristics are discussed: non-negativity
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and monotonicity, asymptotic behavior, analyticity, finite/infinite propagation speed, and absence of
wave front.

Summing up, this special collection presents a detailed picture of the current activity in the field
of fractional calculus with various ideas, effective solutions, new derivatives, and solutions to applied
problems. As editor, I believe that this will be continued as series of Special Issues and books released
to further explore this subject.

I would like to expresses my gratitude to Mrs. Colleen Long from the office of Fractal and Fractional
for the correct and effective work in handling the submitted manuscripts. The work and comments of
the reviewers allowing this collection to be published are gratefully acknowledged as well.

Last but not least, the efforts of all authors contributing to this special collection
arehighly appreciated.
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