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1. Introduction

Fractional differential equations (FDEs) occur in many engineering systems and scientific
disciplines such as the mathematical modelling of systems and processes in the fields of physics,
chemistry, aerodynamics, electrodynamics of complex medium, etc. FDEs also provide as an efficient
tool for explanations of hereditary properties of different resources and processes. As a result, the
meaning of the FDEs has been of great importance and attention, and one can refer to Kilbas [1],
Podlubny [6] and the papers [2–5,7–9]. Recently, the Hilfer fractional derivative [10] for FDEs has
become a very active area of research. R. Hilfer initiated the Hilfer fractional derivative. This is
used to interpolate both the Riemann–Liouville and the Caputo fractional derivative for the theory
and applications of the Hilfer fractional derivative (see, e.g., [5,10–16] and references cited therein).
Analogously, we prefer the Hilfer derivative operator that interpolates both the Riemann–Liouville
and the Caputo derivative.

English scientist Michael Faraday first discovered the concept of thermistors in 1833 while
reporting on the semiconductor behavior of silver sulfide. From his research work, he noticed that the
silver sulfides resistance decreased as the temperature increased. This later leads to the commercial
production of thermistors in the 1930s when Samuel Ruben invented the first commercial thermistor.
Ever since, technology has improved; this made it possible to improve manufacturing processes along
with the availability of advanced quality material.

A thermistor is a thermally sensitive resistor that displays a precise and predictable change in
resistance proportional to small changes in body temperature. How much its resistance will change is
dependent upon its unique composition. Thermistors are part of a larger group of passive components.
Unlike their active component counterparts, passive devices are incapable of providing power gain,
or amplification to a circuit. Thermistors can be found everywhere in airplanes, air conditioners,
in cars, computers, medical equipment, hair dryers, portable heaters, incubators, electrical outlets,
refrigerators, digital thermostats, ovens, stove tops and in all kinds of appliances. Ice sensors and
aircraft wings, if ice builds up on the wings, the thermistor senses this temperature drop and a heater
will be activated to remove the ice. Flight tests need to be completed on a particular date, hence
there may not be enough time to create a flight test technique on that date. However, it is possible to
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take a number of recommendations on the needs of any future flight plan to examine the nature of
thermistor thermometer at high subsonic and supersonic speeds. In general, the unusual behaviour of
the thermistor thermometer is caused by the possibility of vortices and an aerodynamic disturbance
generating non-uniform flow, happening in the chamber with sensing element. The thermistors are
small, which makes them very delicate to such effects [17,18].

A thermistor is a temperature dependent resistor and comes in two varieties, negative temperature
coefficient (NTC) and positive temperature coefficient (PTC), although NTCs are most commonly
used. With NTC, the resistance variation is inverse to the temperature change i.e.,: as temperature
goes up, resistance goes down. NTC Thermistors are nonlinear, and their resistance decreases as
temperature increases. A phenomenon called self-heating may affect the resistance of an NTC
thermistor. When current flows through the NTC thermistor, it absorbs the heat causing its own
temperature to rise. In [19], Khan et al. investigated the coupled p-Laplacian fractional differential
equations with nonlinear boundary conditions. Wenjing Song and Wenjie Gao studied the existence
of solutions for a nonlocal initial value problem to a p-Laplacian thermistor problems on time scales
in [20]. Later, Moulay Rchid Sidi Ammi and Delfim F.M. Torres developed and applied a numerical
method for the time-fractional nonlocal thermistor problem in [21]. They investigated the existence and
uniqueness of a positive solution to generalized nonlocal thermistor problems with fractional-order
derivatives in [22]. Recently, Moulay Rchid Sidi Ammi and Delfim F. M. Torres [23] discussed the
existence and uniqueness results for a fractional Riemann–Liouville nonlocal thermistor problem
on arbitrary time scales. Interested readers can refer to recent papers [22–26] treating a nonlocal
thermistor problem.

Motivated by the aforementioned papers, we study the existence, uniqueness and Ulam–Hyers
stability types of solutions for Hilfer type thermistor problem of the form

Dα,β
0+ u(t) = λ f (u(t))(∫ T

0 f (u(x))dx
)2 , t ∈ J := [0, T],

I1−γ
0+ u(0) = u0, γ = α + β− αβ,

(1)

where Dα,β
0+ is the Hilfer fractional derivative of order α and type β, 0 < α < 1, 0 ≤ β ≤ 1 and let

J = [0, T], X be a Banach space, f : J × X → X is a given continuous function. The operator I1−γ
0+

denotes the left-sided Riemann–Liouville fractional integral of order 1− γ. Choosing λ such that

0 < λ <

(
LTα+1−γ

(C1T)2Γ(α+1) +
2C2

2 LTα+3−γ

(C1T)2Γ(α+1)

)−1
is discussed in Section 4.

It is seen that (1) is equivalent to the following nonlinear integral equation

u(t) =
u0

Γ(γ)
tγ−1 +

λ

Γ(α)

∫ t

0
(t− s)α−1 f (u(s))(∫ T

0 f (u(x))dx
)2 ds. (2)

The stability of the functional equations were first introduced in a discourse conveyed in 1940 at
the University of Wisconsin. The issue made by Ulam is as per the following: Under what conditions
does there exist an additive mapping near an approximately additive mapping? [4,27–29]. The first
reply to the topic of Ulam was given by Hyers in 1941 on account of Banach spaces. Ever since, this
type of stability was known as the Ulam–Hyers stability. Rassias [29] gave a generalization of the Hyers
theorem for linear mappings. Many mathematicians later extended the issue of Ulam in different ways.
Recently, Ulam’s problem was generalized for the stability of differential equations. A comprehensive
interest was given to the study of the Ulam and Ulam–Hyers–Rassias stability of all kinds of
functional equations [4,8,9,30]. An exhaustive interest was given to the investigation of the Ulam and
Ulam–Hyers–Rassias stability of all kinds of functional Equation (1).
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The paper is organized as follows. In Section 2, we introduce some definitions, notations, and
lemmas that are used throughout the paper. In Section 3, we will prove existence and uniqueness
results concerning problem (1). Section 4 is devoted to the Ulam–Hyers stabilities of problem (1).

2. Basic Concepts and Results

In this section, we introduce notations, definitions, and preliminary facts that are used
throughout this paper. For more details on Hilfer fractional derivative, interested readers can
refer to [5,10,12,13,15,31].

Definition 1. Let C[J, X] denote the Banach space of all continuous functions from [0, T] into X with the norm

‖u‖C := sup {|u(t)| : t ∈ J} .

We denote L1 {R+}, the space of Lebesgue integrable functions on J.
By Cγ[J, X] and C1

γ[J, X], we denote the weighted spaces of continuous functions defined by

Cγ[J, X] := { f (t) : J → X|tγ f (t) ∈ C[J, X]} ,

with the norm
‖ f ‖Cγ

= ‖tγ f (t)‖C ,

and

‖ f ‖Cn
γ
=

n−1

∑
k=0

∥∥∥ f k
∥∥∥

C
+
∥∥∥ f (n)

∥∥∥
Cγ

, n ∈ N.

Moreover, C0
γ[J, X] := Cγ[J, X].

Now, we give some results and properties of fractional calculus.

Definition 2 ([1,16]). The left-sided mixed Riemann–Liouville integral of order α > 0 of a function
h ∈ L1 {R+} is defined by

(Iα
0+h)(t) =

1
Γ(α)

∫ t

0
(t− s)α−1h(s)ds, for a.e. t ∈ J,

where Γ(·) is the (Euler’s) Gamma function defined by

Γ(ξ) =
∫ ∞

0
tξ−1e−tdt; ξ > 0.

Notice that for all α, α1, α2 > 0 and each h ∈ C[J, X], we have Iα
0+h ∈ C[J, X], and

(Iα1
0+ Iα2

0+h)(t) = (Iα1+α2
0+ h)(t); for a.e. t ∈ J.

Definition 3 ([1,16]). The Riemann–Liouville fractional derivative of order α ∈ (0, 1] of a function
h ∈ L1 {R+} is defined by

(Dα
0+h)(t) =

(
d
dt

I1−α
0+ h

)
(t)

=
1

Γ(1− α)

d
dt

∫ t

0
(t− s)−αh(s)ds; for a.e. t ∈ J.
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Let α ∈ (0, 1], γ ∈ [0, 1) and h ∈ C1−γ[J, X]. Then, the following expression leads to the left inverse
operator as follows:

(Dα
0+ Iα

0+h)(t) = h(t); for all t ∈ (0, T].

Moreover, if I1−α
0+ h ∈ C1

1−γ[J, X], then the following composition

(Iα
0+Dα

0+h)(t) = h(t)−
(I1−α

0+ h)(0+)
Γ(α)

tα−1; for all t ∈ (0, T].

Definition 4 ([1,16]). The Caputo fractional derivative of order α ∈ (0, 1] of a function h ∈ L1 {R+} is
defined by

(cDα
0+h)(t) = (I1−α

0+
d
dt

h)(t)

=
1

Γ(1− α)

∫ t

0
(t− s)−α d

ds
h(s)ds; for a.e. t ∈ J.

In [10], Hilfer studied applications of a generalized fractional operator having the
Riemann–Liouville and the Caputo derivatives as specific cases (see also [5,32]).

Definition 5 (Hilfer derivative). Let 0 < α < 1, 0 ≤ β ≤ 1, h ∈ L1 {R+}, I(1−α)(1−β)
0+ ∈ C1

γ[J, X]. The
Hilfer fractional derivative of order α and type β of h is defined as

(Dα,β
0+ h)(t) =

(
Iβ(1−α)
0+

d
dt

I(1−α)(1−β)
0+ h

)
(t); for a.e. t ∈ J. (3)

Properties. Let 0 < α < 1, 0 ≤ β ≤ 1, γ = α + β− αβ, and h ∈ L1 {R+}.

1. The operator (Dα,β
0+ h)(t) can be written as

(Dα,β
0+ h)(t) =

(
Iβ(1−α)
0+

d
dt

I1−γ
0+ h

)
(t) =

(
Iβ(1−α)
0+ Dγ

0+h
)
(t); for a.e. t ∈ J.

Moreover, the parameter γ satisfies

0 < γ ≤ 1, γ ≥ α, γ > β, 1− γ < 1− β(1− α).

2. The generalization (3) for β = 0 coincides with the Riemann–Liouville derivative and for β = 1
with the Caputo derivative

Dα,0
0+ = Dα

0+ , and Dα,1
0+ =c Dα

0+ .

3. If Dβ(1−α)
0+ h exists and in L1 {R+}, then

(Dα,β
0+ Iα

0+h)(t) =
(

Iβ(1−α)
0+ Dβ(1−α)

0+ h
)
(t); for a.e. t ∈ J.

Furthermore, if h ∈ Cγ[J, X] and I1−β(1−α)
0+ h ∈ C1

γ[J, X], then

(Dα,β
0+ Iα

0+h)(t) = h(t); for a.e. t ∈ J.
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4. If Dγ
0+h exists and in L1 {R+}, then

(
Iα
0+Dα,β

0+ h
)
(t) =

(
Iγ
0+Dγ

0+h
)
(t) = h(t)−

I1−γ
0+ h(0+)

Γ(γ)
tγ−1; for a.e. t ∈ J.

In order to solve our problem, the following spaces are presented

Cα,β
1−γ[J, X] =

{
f ∈ C1−γ[J, X], Dα,β

0+ f ∈ C1−γ[J, X]
}

,

and
Cγ

1−γ[J, X] =
{

f ∈ C1−γ[J, X], Dγ
0+ f ∈ C1−γ[J, X]

}
.

It is obvious that
Cγ

1−γ[J, X] ⊂ Cα,β
1−γ[J, X].

Corollary 1 ([31]). Let h ∈ C1−γ[J, X]. Then, the linear problem

Dα,β
0+ x(t) = h(t), t ∈ J = [0, T],

I1−γ
0+ x(0) = x0, γ = α + β− αβ,

has a unique solution x ∈ L1 {R+} given by

x(t) =
x0

Γ(γ)
tγ−1 +

1
Γ(α)

∫ t

0
(t− s)α−1h(s)ds.

From the above corollary, we conclude the following lemma.

Lemma 1. Let f : J × X → X be a function such that f ∈ C1−γ[J, X]. Then, problem (1) is equivalent to the
problem of the solutions of the integral Equation (2).

Theorem 1 (Schauder fixed point theorem [31,33]). Let B be closed, convex and nonempty subset of a
Banach space E. Let P : B → B be a continuous mapping such that P(B) is a relatively compact subset of E.
Then, P has at least one fixed point in B.

Now, we study the Ulam stability, and we adopt the definitions in [3,30,34] of the
Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability and generalized
Ulam–Hyers–Rassias stability.

Consider the following Hilfer type termistor problem

Dα,β
0+ u(t) =

λ f (u(t))(∫ T
0 f (u(x))dx

)2 , t ∈ J := [0, T], (4)
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and the following fractional inequalities:∣∣∣∣∣∣∣Dα,β
0+ z(t)− λ f (z(t))(∫ T

0 f (z(x))dx
)2

∣∣∣∣∣∣∣ ≤ ε, t ∈ J, (5)

∣∣∣∣∣∣∣Dα,β
0+ z(t)− λ f (z(t))(∫ T

0 f (z(x))dx
)2

∣∣∣∣∣∣∣ ≤ εϕ(t), t ∈ J, (6)

∣∣∣∣∣∣∣Dα,β
0+ z(t)− λ f (z(t))(∫ T

0 f (z(x))dx
)2

∣∣∣∣∣∣∣ ≤ ϕ(t), t ∈ J. (7)

Definition 6. Equation (4) is Ulam–Hyers stable if there exists a real number C f > 0 such that, for each
ε > 0 and for each solution z ∈ Cγ

1−γ[J, X] of Inequality (5), there exists a solution u ∈ Cγ
1−γ[J, X] of

Equation (4) with

|z(t)− u(t)| ≤ C f ε, t ∈ J.

Definition 7. Equation (4) is generalized Ulam–Hyers stable if there exists ψ f ∈ C([0, ∞), [0, ∞)), ψ f (0) = 0
such that, for each solution z ∈ Cγ

1−γ[J, X] of Inequality (5), there exists a solution u ∈ Cγ
1−γ[J, X] of

Equation (4) with
|z(t)− u(t)| ≤ ψ f ε, t ∈ J.

Definition 8. Equation (4) is Ulam–Hyers–Rassias stable with respect to ϕ ∈ C1−γ[J, X] if there exists a real
number C f > 0 such that, for each ε > 0 and for each solution z ∈ Cγ

1−γ[J, X] of Inequality (6), there exists a
solution u ∈ Cγ

1−γ[J, X] of Equation (4) with

|z(t)− u(t)| ≤ C f εϕ(t), t ∈ J.

Definition 9. Equation (4) is generalized Ulam–Hyers–Rassias stable with respect to ϕ ∈ C1−γ[J, X] if there
exists a real number C f ,ϕ > 0 such that, for each solution z ∈ Cγ

1−γ[J, X] of Inequality (7), there exists a
solution u ∈ Cγ

1−γ[J, X] of Equation (4) with

|z(t)− u(t)| ≤ C f ,ϕ ϕ(t), t ∈ J.

Remark 1. A function z ∈ Cγ
1−γ[J, X] is a solution of Inequality (5) if and only if there exist a function

g ∈ Cγ
1−γ[J, X] (which depends on solution z) such that

1. |g(t)| ≤ ε, ∀ t ∈ J.

2. Dα,β
0+ z(t) = λ f (z(t))(∫ T

0 f (z(x))dx
)2 + g(t), t ∈ J.

Remark 2. It is clear that:

1. Definition 6⇒ Definition 7.
2. Definition 8⇒ Definition 9.
3. Definition 8 for ϕ(t) = 1⇒ Definition 6.



Fractal Fract. 2017, 1, 5 7 of 14

Lemma 2 ([2]). Let v : [0, T]→ [0, ∞) be a real function and w(·) is a nonnegative, locally integrable function
on [0, T] and there are constants a > 0 and 0 < α < 1 such that

v(t) ≤ w(t) + a
∫ t

0

v(s)
(t− s)α

ds.

Then, there exists a constant K = K(α) such that

v(t) ≤ w(t) + Ka
∫ t

0

w(s)
(t− s)α

ds,

for every t ∈ [0, T].

3. Existence Results

The following existence result for Hilfer type thermistor problem (1) is based on Schauder’s fixed
point theorem. Let us consider the following assumptions:

Assumption 1. Function f : J × X → X of problem (1) is Lipschitz continuous with Lipschitz constant L
such that c1 ≤ f (u) ≤ c2, with c1 and c2 two positive constants.

Assumption 2. There exists an increasing function ϕ ∈ C1−γ[J, X] and there exists λϕ > 0 such that, for any
t ∈ J,

Iα
0+ ϕ(t) ≤ λϕ ϕ(t).

Our main result may be presented as the following theorem.

Theorem 2 (existence). Under the above Assumption 1, problem (1) has at least one solution u ∈ X for all
λ > 0.

Proof. Consider the operator P : C1−γ[J, X]→ C1−γ[J, X] is defined by

(Pu)(t) =
u0

Γ(γ)
tγ−1 +

λ

Γ(α)

∫ t

0
(t− s)α−1 f (u(s))(∫ T

0 f (u(x))dx
)2 ds. (8)

Clearly, the fixed points of P are solutions to (1). The proof will be given in several steps.

Step 1: The operator P is continuous. Let un be a sequence such that un → u in C1−γ[J, X]. Then, for
each t ∈ J, ∣∣t1−γ ((Pun)(t)− (Pu)(t))

∣∣
≤ λt1−γ

Γ(α)

∫ t
0 (t− s)α−1

∣∣∣∣∣ f (un(s))(∫ T
0 f (un(x))dx

)2 −
f (u(s))(∫ T

0 f (u(x))dx
)2

∣∣∣∣∣ ds

≤ λt1−γ

Γ(α)

∫ t
0 (t− s)α−1

∣∣∣∣∣ 1(∫ T
0 f (un(x))dx

)2 ( f (un(s))− f (u(s)))

+ f (u(s))

(
1(∫ T

0 f (un(x))dx
)2 − 1(∫ T

0 f (u(x))dx
)2

)∣∣∣∣∣
≤ λt1−γ

Γ(α)

∫ t
0 (t− s)α−1 1(∫ T

0 f (un(x))dx
)2 | f (un(s))− f (u(s))| ds

+ λt1−γ

Γ(α)

∫ t
0 (t− s)α−1 | f (u(s))|

∣∣∣∣∣ 1(∫ T
0 f (un(x))dx

)2 − 1(∫ T
0 f (u(x))dx

)2

∣∣∣∣∣ ds ≤ I1 + I2,

(9)
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where

I1 =
λt1−γ

Γ(α)

∫ t

0
(t− s)α−1 1(∫ T

0 f (un(x))dx
)2 | f (un(s))− f (u(s))| ds,

I2 =
λt1−γ

Γ(α)

∫ t

0
(t− s)α−1 | f (u(s))|

∣∣∣∣∣∣∣
1(∫ T

0 f (un(x))dx
)2 −

1(∫ T
0 f (u(x))dx

)2

∣∣∣∣∣∣∣ ds.

We estimate I1 and I2 terms separately. By Assumption 1, we have

I1 ≤
λt1−γ

Γ(α)

∫ t

0
(t− s)α−1 1(∫ T

0 f (un(x))dx
)2 | f (un(s))− f (u(s))| ds

≤ λt1−γ

(c1T)2Γ(α)

∫ t

0
(t− s)α−1 | f (un(s))− f (u(s))| ds

≤ Lλt1−γ

(c1T)2Γ(α)
‖un − u‖C1−γ

∫ t

0
(t− s)α−1ds

≤ LλTα+1−γ

(c1T)2Γ(α + 1)
‖un − u‖C1−γ

.

Then,

I1 ≤
LλTα+1−γ

(c1T)2Γ(α + 1)
‖un − u‖C1−γ

, (10)

I2 =
λt1−γ

Γ(α)

∫ t

0
(t− s)α−1 | f (u(s))|

∣∣∣∣∣∣∣
1(∫ T

0 f (un(x))dx
)2 −

1(∫ T
0 f (u(x))dx

)2

∣∣∣∣∣∣∣ ds

≤ λt1−γ

Γ(α)

∫ t

0
(t− s)α−1 | f (u(s))|

∣∣∣∣(∫ T
0 f (un(x))dx

)2
−
(∫ T

0 f (u(x))dx
)2
∣∣∣∣(∫ T

0 f (un(x))dx
)2 (∫ T

0 f (u(x))dx
)2 ds

≤ λt1−γc2

(c1T)4Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣∣
(∫ T

0
f (un(x))dx

)2

−
(∫ T

0
f (u(x))dx

)2
∣∣∣∣∣ ds

≤ λt1−γc2

(c1T)4Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣(∫ T

0
( f (un(x))− f (u(x)))dx

)(∫ T

0
( f (un(x)) + f (u(x)))dx

)∣∣∣∣ ds

≤
2λc2

2Tt1−γ

(c1T)4Γ(α)

∫ t

0
(t− s)α−1

(∫ T

0
| f (un(x))− f (u(x))| dx

)
ds

≤
2λc2

2TLt1−γ

(c1T)4Γ(α)

∫ t

0
(t− s)α−1

(∫ T

0
|un(x)− u(x)| dx

)
ds

≤
2λc2

2LT2t1−γ

(c1T)4Γ(α)
‖un − u‖C1−γ

∫ t

0
(t− s)α−1ds

≤
2λc2

2LTα+3−γ

(c1T)4Γ(α + 1)
‖un − u‖C1−γ

.

It follows that

I2 ≤
2λc2

2LTα+3−γ

(c1T)4Γ(α + 1)
‖un − u‖C1−γ

. (11)
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To substitute (10) and (11) into (9), we have∣∣∣t1−γ ((Pun)(t)− (Pu)(t))
∣∣∣ ≤ I1 + I2

≤
(

LλTα+1−γ

(c1T)2Γ(α + 1)
+

2λc2
2LTα+3−γ

(c1T)4Γ(α + 1)

)
‖un − u‖C1−γ

.

Then,

‖Pun − Pu‖C1−γ
≤
(

LλTα+1−γ

(c1T)2Γ(α + 1)
+

2λc2
2LTα+3−γ

(c1T)4Γ(α + 1)

)
‖un − u‖C1−γ

.

Here, independently of λ, the right-hand side of the above inequality converges to zero as un → u.
Therefore, Pun → Pu. This proves the continuity of P.

Step 2: The operator P maps bounded sets into bounded sets in C1−γ[J, X].

Indeed, it is enough to show that, for r > 0, there exists a positive constant l such that
u ∈ Br

{
u ∈ C1−γ[J, X] : ‖u‖ ≤ r

}
, we have ‖(Pu)‖C1−γ

≤ l. Set M = supBr

f
(c1T)2 :

∣∣∣t1−γ(Pu)(t)
∣∣∣ ≤ |u0|

Γ(γ)
+

λt1−γ

Γ(α)

∫ t

0
(t− s)α−1 | f (u(s))|(∫ T

0 f (u(x))dx
)2 ds

≤ |u0|
Γ(γ)

+
λMt1−γ

Γ(α)

∫ t

0
(t− s)α−1ds

≤ |u0|
Γ(γ)

+
λMT1−γ+α

Γ(α)
.

Thus,

‖Pu‖C1−γ
≤ |u0|

Γ(γ)
+

λMT1−γ+α

Γ(α)
:≤ l.

Step 3: P maps bounded sets into equicontinuous set of C1−γ[J, X].

Let t1, t2 ∈ J, t1 < t2, Br be a bounded set of C1−γ[J, X] and u ∈ Br. Then,∣∣∣t1−γ
2 (Pu)(t2)− t1−γ

1 (Pu)(t1)
∣∣∣

≤ λ

Γ(α)

∣∣∣∣∣∣∣t1−γ
2

∫ t2

0
(t2 − s)α−1 f (u(s))(∫ T

0 f (u(x))dx
)2 ds− t1−γ

1

∫ t1

0
(t1 − s)α−1 f (u(s))(∫ T

0 f (u(x))dx
)2 ds

∣∣∣∣∣∣∣
≤

λt1−γ
2

Γ(α)

∫ t2

t1

(t2 − s)α−1 | f (u(s))|(∫ T
0 f (u(x))dx

)2 ds

+
λ

Γ(α)

∫ t2

0

∣∣∣t1−γ
2 (t2 − s)α−1 − t1−γ

1 (t1 − s)α−1
∣∣∣ | f (u(s))|(∫ T

0 f (u(x))dx
)2 ds

≤
λc2t1−γ

2
(c1T)2Γ(α)

∫ t2

t1

(t2 − s)α−1ds +
λc2

(c1T)2Γ(α)

∫ t2

0

∣∣∣t1−γ
2 (t2 − s)α−1 − t1−γ

1 (t1 − s)α−1
∣∣∣ ds

≤
λc2t1−γ

2
(c1T)2Γ(α + 1)

(t2 − t1)
1−α +

λc2

(c1T)2Γ(α)

∫ t2

0

∣∣∣t1−γ
2 (t2 − s)α−1 − t1−γ

1 (t1 − s)α−1
∣∣∣ ds.



Fractal Fract. 2017, 1, 5 10 of 14

Beacause the right-hand side of the above inequality does not depend on u and tends to zero
when t2 → t1, we conclude that P(Br) is relatively compact. Hence, B is compact by the Arzela–Ascoli
theorem. Consequently, since P is continuous, it follows by Theorem 1 that problem (1) has a solution.
The proof is completed.

4. The Ulam–Hyers–Rassias Stability

In this section, we investigate generalized Ulam–Hyers–Rassias stability for problem (1). The
stability results are based on the Banach contraction principle.

Lemma 3 (Uniqueness). Assume that the Assumption 1 is hold. If(
LλTα+1−γ

(c1T)2Γ(α + 1)
+

2λc2
2LTα+3−γ

(c1T)2Γ(α + 1)

)
< 1, (12)

then problem (1) has a unique solution.

Proof. Consider the operator P : C1−γ[J, X]→ C1−γ[J, X]:

(Pu)(t) =
u0

Γ(γ)
tγ−1 +

λ

Γ(α)

∫ t

0
(t− s)α−1 f (u(s))(∫ T

0 f (u(x))dx
)2 ds. (13)

It is clear that the fixed points of P are solutions of problem (1).
Letting u, v ∈ C1−γ[J, X] and t ∈ J, then we have

∣∣∣t1−γ ((Pv)(t)− (Pu)(t))
∣∣∣ ≤ λt1−γ

Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣∣∣∣
f (v(s))(∫ T

0 f (v(x))dx
)2 −

f (u(s))(∫ T
0 f (u(x))dx

)2

∣∣∣∣∣∣∣ ds

≤
(

LλTα+1−γ

(c1T)2Γ(α + 1)
+

2λc2
2LTα+3−γ

(c1T)2Γ(α + 1)

)
‖v− u‖C1−γ

.

Then,

‖Pv− Pu‖C1−γ
≤
(

LλTα+1−γ

(c1T)2Γ(α + 1)
+

2λc2
2LTα+3−γ

(c1T)2Γ(α + 1)

)
‖v− u‖C1−γ

.

Choosing λ such that 0 < λ <

(
LTα+1−γ

(C1T)2Γ(α+1) +
2C2

2 LTα+3−γ

(C1T)2Γ(α+1)

)−1
, the map

P : C1−γ[J, X]→ C1−γ[J, X] is a contraction. From (12), it follows that P has a unique fixed
point, which is a solution of problem (1).

Theorem 3. In Assumption 1 and (12), problem (1) is Ulam–Hyers stable.

Proof. Let ε > 0 and let z ∈ Cγ
1−γ[J, X] be a function that satisfies Inequality (5) and let u ∈ Cγ

1−γ[J, X]

be the unique solution of the following Hilfer type thermistor problem

Dα,β
0+ u(t) =

λ f (u(t))(∫ T
0 f (u(x))dx

)2 , t ∈ J := [0, T],

I1−γ
0+ u(t) = I1−γ

0+ z(t) = u0,
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where α ∈ (0, 1), β ∈ [0, 1]. From Lemma 1, we have

u(t) =
u0

Γ(γ)
tγ−1 +

λ

Γ(α)

∫ t

0
(t− s)α−1 f (u(s))(∫ T

0 f (u(x))dx
)2 ds.

By integration of (5), we obtain∣∣∣∣∣∣∣z(t)−
u0

Γ(γ)
tγ−1 − λ

Γ(α)

∫ t

0
(t− s)α−1 f (z(s))(∫ T

0 f (z(x))dx
)2 ds

∣∣∣∣∣∣∣ ≤
εTα

Γ(α + 1)
, (14)

for all t ∈ J. From the above, it follows:

|z(t)− u(t)|

≤

∣∣∣∣∣∣∣z(t)−
u0

Γ(γ)
tγ−1 − λ

Γ(α)

∫ t

0
(t− s)α−1 f (z(s))(∫ T

0 f (z(x))dx
)2 ds

∣∣∣∣∣∣∣
+

λ

Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣∣∣∣
f (z(s))(∫ T

0 f (z(x))dx
)2 −

f (u(s))(∫ T
0 f (u(x))dx

)2

∣∣∣∣∣∣∣ ds (15)

≤ εTα

Γ(α + 1)
+

λ

Γ(α)

∫ t

0
(t− s)α−1 1(∫ T

0 f (z(x))dx
)2 | f (z(s))− f (u(s))| ds

+
λ

Γ(α)

∫ t

0
(t− s)α−1 | f (u(s))|

∣∣∣∣∣∣∣
1(∫ T

0 f (z(x))dx
)2 −

1(∫ T
0 f (u(x))dx

)2

∣∣∣∣∣∣∣ ds.

For computational convenience, we set

K1 =
λ

Γ(α)

∫ t

0
(t− s)α−1 1(∫ T

0 f (z(x))dx
)2 | f (z(s))− f (u(s))| ds,

K2 =
λ

Γ(α)

∫ t

0
(t− s)α−1 | f (u(s))|

∣∣∣∣∣∣∣
1(∫ T

0 f (z(x))dx
)2 −

1(∫ T
0 f (u(x))dx

)2

∣∣∣∣∣∣∣ ds.

We estimate K1, K2 terms separately. By Assumption 1, we have

K1 ≤
λ

Γ(α)

∫ t

0
(t− s)α−1 1(∫ T

0 f (z(x))dx
)2 | f (z(s))− f (u(s))| ds

≤ λ

(c1T)2Γ(α)

∫ t

0
(t− s)α−1 | f (z(s))− f (u(s))| ds (16)

≤ λL
(c1T)2Γ(α)

∫ t

0
(t− s)α−1 |z(s)− u(s)| ds,
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K2 ≤ λ
Γ(α)

∫ t
0 (t− s)α−1 | f (u(s))|

∣∣∣∣(∫ T
0 f (z(x))dx

)2
−
(∫ T

0 f (u(x))dx
)2
∣∣∣∣(∫ T

0 f (z(x))dx
)2(∫ T

0 f (u(x))dx
)2 ds

≤ 2λc2
2TL

(c1T)4Γ(α)

∫ t
0 (t− s)α−1

(∫ T
0 |z(x)− u(x)| dx

)
ds

≤ 2λc2
2TL

(c1T)4Γ(α) ‖z− u‖C1−γ

∫ t
0 (t− s)α−1ds

≤ 2λc2
2TL

(c1T)4Γ(α)

∫ t
0 (t− s)α−1 |z(s)− u(s)| ds.

(17)

To substitute (16) and (17) into (15), we get

|z(t)− u(t)| ≤ εTα

Γ(α + 1)
+

λL
(c1T)2Γ(α)

∫ t

0
(t− s)α−1 |z(s)− u(s)| ds

+
2λc2

2T2L
(c1T)4Γ(α)

∫ t

0
(t− s)α−1 |z(s)− u(s)| ds

≤ εTα

Γ(α + 1)
+

(
λL

(c1T)2 +
2λc2

2T2L
(c1T)4

)
1

Γ(α)

∫ t

0
(t− s)α−1 |z(s)− u(s)| ds,

and, to apply Lemma 2, we have

|z(t)− u(t)| ≤ Tα

Γ(α + 1)

[
1 +

νTα

Γ(α + 1)

(
λL

(c1T)2 +
2λc2

2T2L
(c1T)4

)]
ε := C f ε,

where ν = ν(α) is a constant, which completes the proof of the theorem. Moreover, if we set ψ(ε) = C f ε;
ψ(0) = 0, then problem (1) is generalized Ulam–Hyers stable.

Theorem 4. In Assumptions 1, 2 and (12), problem (1) is Ulam–Hyers–Rassias stable.

Proof. Let z ∈ Cγ
1−γ[J, X] be solution of Inequality (6) and let z ∈ Cγ

1−γ[J, X] be the unique solution of
the following Hilfer type thermistor problem

Dα,β
0+ u(t) =

λ f (u(t))(∫ T
0 f (u(x))dx

)2 , t ∈ J := [0, T],

I1−γ
0+ u(t) = I1−γ

0+ z(t) = u0,

where α ∈ (0, 1), β ∈ [0, 1]. From Lemma 1, we have

u(t) =
u0

Γ(γ)
tγ−1 +

λ

Γ(α)

∫ t

0
(t− s)α−1 f (u(s))(∫ T

0 f (u(x))dx
)2 ds.

By integration of (6) and Assumption 2, we obtain∣∣∣∣∣∣∣z(t)−
u0

Γ(γ)
tγ−1 − λ

Γ(α)

∫ t

0
(t− s)α−1 f (z(s))(∫ T

0 f (z(x))dx
)2 ds

∣∣∣∣∣∣∣ ≤ ελϕ ϕ(t), (18)

for all t ∈ J. From the above, it follows:
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|z(t)− u(t)| ≤
∣∣∣∣∣z(t)− u0

Γ(γ) tγ−1 − λ
Γ(α)

∫ t
0 (t− s)α−1 f (z(s))(∫ T

0 f (z(x))dx
)2 ds

∣∣∣∣∣
+ λ

Γ(α)

∫ t
0 (t− s)α−1

∣∣∣∣∣ f (z(s))(∫ T
0 f (z(x))dx

)2 −
f (u(s))(∫ T

0 f (u(x))dx
)2

∣∣∣∣∣ ds

≤ ελϕ ϕ(t) + λ
Γ(α)

∫ t
0 (t− s)α−1 1(∫ T

0 f (z(x))dx
)2 | f (z(s))− f (u(s))| ds

+ λ
Γ(α)

∫ t
0 (t− s)α−1 | f (u(s))|

∣∣∣∣∣ 1(∫ T
0 f (z(x))dx

)2 − 1(∫ T
0 f (u(x))dx

)2

∣∣∣∣∣ ds.

(19)

To substitute (16) and (17) into (19), we get

|z(t)− u(t)| ≤ ελϕ ϕ(t) +
λL

(c1T)2Γ(α)

∫ t

0
(t− s)α−1 |z(s)− u(s)| ds

+
2λc2

2T2L
(c1T)4Γ(α)

∫ t

0
(t− s)α−1 |z(s)− u(s)| ds

≤ ελϕ ϕ(t) +

(
λL

(c1T)2 +
2λc2

2T2L
(c1T)4

)
1

Γ(α)

∫ t

0
(t− s)α−1 |z(s)− u(s)| ds,

and, to apply Lemma 2, we have

|z(t)− u(t)| ≤
[(

1 + ν1λϕ

(
λL

(c1T)2 +
2λc2

2T2L
(c1T)4

))
λϕ

]
εϕ(t) = C f εϕ(t),

where ν1 = ν1(α) is a constant. It completes the proof of Theorem 4.
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