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1. Introduction


Fractional differential equations (FDEs) occur in many engineering systems and scientific disciplines such as the mathematical modelling of systems and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of complex medium, etc. FDEs also provide as an efficient tool for explanations of hereditary properties of different resources and processes. As a result, the meaning of the FDEs has been of great importance and attention, and one can refer to Kilbas [1], Podlubny [2] and the papers [3,4,5,6,7,8,9]. Recently, the Hilfer fractional derivative [10] for FDEs has become a very active area of research. R. Hilfer initiated the Hilfer fractional derivative. This is used to interpolate both the Riemann–Liouville and the Caputo fractional derivative for the theory and applications of the Hilfer fractional derivative (see, e.g., [6,10,11,12,13,14,15,16] and references cited therein). Analogously, we prefer the Hilfer derivative operator that interpolates both the Riemann–Liouville and the Caputo derivative.



English scientist Michael Faraday first discovered the concept of thermistors in 1833 while reporting on the semiconductor behavior of silver sulfide. From his research work, he noticed that the silver sulfides resistance decreased as the temperature increased. This later leads to the commercial production of thermistors in the 1930s when Samuel Ruben invented the first commercial thermistor. Ever since, technology has improved; this made it possible to improve manufacturing processes along with the availability of advanced quality material.



A thermistor is a thermally sensitive resistor that displays a precise and predictable change in resistance proportional to small changes in body temperature. How much its resistance will change is dependent upon its unique composition. Thermistors are part of a larger group of passive components. Unlike their active component counterparts, passive devices are incapable of providing power gain, or amplification to a circuit. Thermistors can be found everywhere in airplanes, air conditioners, in cars, computers, medical equipment, hair dryers, portable heaters, incubators, electrical outlets, refrigerators, digital thermostats, ovens, stove tops and in all kinds of appliances. Ice sensors and aircraft wings, if ice builds up on the wings, the thermistor senses this temperature drop and a heater will be activated to remove the ice. Flight tests need to be completed on a particular date, hence there may not be enough time to create a flight test technique on that date. However, it is possible to take a number of recommendations on the needs of any future flight plan to examine the nature of thermistor thermometer at high subsonic and supersonic speeds. In general, the unusual behaviour of the thermistor thermometer is caused by the possibility of vortices and an aerodynamic disturbance generating non-uniform flow, happening in the chamber with sensing element. The thermistors are small, which makes them very delicate to such effects [17,18].



A thermistor is a temperature dependent resistor and comes in two varieties, negative temperature coefficient (NTC) and positive temperature coefficient (PTC), although NTCs are most commonly used. With NTC, the resistance variation is inverse to the temperature change i.e.,: as temperature goes up, resistance goes down. NTC Thermistors are nonlinear, and their resistance decreases as temperature increases. A phenomenon called self-heating may affect the resistance of an NTC thermistor. When current flows through the NTC thermistor, it absorbs the heat causing its own temperature to rise. In [19], Khan et al. investigated the coupled p-Laplacian fractional differential equations with nonlinear boundary conditions. Wenjing Song and Wenjie Gao studied the existence of solutions for a nonlocal initial value problem to a p-Laplacian thermistor problems on time scales in [20]. Later, Moulay Rchid Sidi Ammi and Delfim F. M. Torres developed and applied a numerical method for the time-fractional nonlocal thermistor problem in [21]. They investigated the existence and uniqueness of a positive solution to generalized nonlocal thermistor problems with fractional-order derivatives in [22]. Recently, Moulay Rchid Sidi Ammi and Delfim F. M. Torres [23] discussed the existence and uniqueness results for a fractional Riemann–Liouville nonlocal thermistor problem on arbitrary time scales. Interested readers can refer to recent papers [22,23,24,25,26] treating a nonlocal thermistor problem.



Motivated by the aforementioned papers, we study the existence, uniqueness and Ulam–Hyers stability types of solutions for Hilfer type thermistor problem of the form


D0+α,βu(t)=λf(u(t))∫0Tf(u(x))dx2,t∈J:=[0,T],I0+1−γu(0)=u0,γ=α+β−αβ,



(1)




where [image: there is no content] is the Hilfer fractional derivative of order [image: there is no content] and type [image: there is no content], [image: there is no content], [image: there is no content] and let [image: there is no content], X be a Banach space, [image: there is no content] is a given continuous function. The operator [image: there is no content] denotes the left-sided Riemann–Liouville fractional integral of order [image: there is no content]. Choosing [image: there is no content] such that [image: there is no content] is discussed in Section 4.



It is seen that (1) is equivalent to the following nonlinear integral equation


[image: there is no content]



(2)







The stability of the functional equations were first introduced in a discourse conveyed in 1940 at the University of Wisconsin. The issue made by Ulam is as per the following: Under what conditions does there exist an additive mapping near an approximately additive mapping? [5,27,28,29]. The first reply to the topic of Ulam was given by Hyers in 1941 on account of Banach spaces. Ever since, this type of stability was known as the Ulam–Hyers stability. Rassias [29] gave a generalization of the Hyers theorem for linear mappings. Many mathematicians later extended the issue of Ulam in different ways. Recently, Ulam’s problem was generalized for the stability of differential equations. A comprehensive interest was given to the study of the Ulam and Ulam–Hyers–Rassias stability of all kinds of functional equations [5,8,9,30]. An exhaustive interest was given to the investigation of the Ulam and Ulam–Hyers–Rassias stability of all kinds of functional Equation (1).



The paper is organized as follows. In Section 2, we introduce some definitions, notations, and lemmas that are used throughout the paper. In Section 3, we will prove existence and uniqueness results concerning problem (1). Section 4 is devoted to the Ulam–Hyers stabilities of problem (1).




2. Basic Concepts and Results


In this section, we introduce notations, definitions, and preliminary facts that are used throughout this paper. For more details on Hilfer fractional derivative, interested readers can refer to [6,10,12,13,15,31].



Definition 1.

Let [image: there is no content] denote the Banach space of all continuous functions from [image: there is no content] into X with the norm


[image: there is no content]








We denote [image: there is no content], the space of Lebesgue integrable functions on J.



By [image: there is no content] and [image: there is no content], we denote the weighted spaces of continuous functions defined by


[image: there is no content]








with the norm


[image: there is no content]








and


fCγn=∑k=0n−1fkC+f(n)Cγ,n∈N.








Moreover, [image: there is no content].





Now, we give some results and properties of fractional calculus.



Definition 2

([1,16]). The left-sided mixed Riemann–Liouville integral of order [image: there is no content] of a function [image: there is no content] is defined by


(I0+αh)(t)=1Γ(α)∫0t(t−s)α−1h(s)ds,for a.e.t∈J,








where [image: there is no content] is the (Euler’s) Gamma function defined by


Γ(ξ)=∫0∞tξ−1e−tdt;ξ>0.











Notice that for all [image: there is no content] and each [image: there is no content], we have [image: there is no content], and


(I0+α1I0+α2h)(t)=(I0+α1+α2h)(t);for a.e.t∈J.













Definition 3

([1,16]). The Riemann–Liouville fractional derivative of order [image: there is no content] of a function [image: there is no content] is defined by


(D0+αh)(t)=ddtI0+1−αh(t)=1Γ(1−α)ddt∫0t(t−s)−αh(s)ds;for a.e.t∈J.











Let [image: there is no content], [image: there is no content] and [image: there is no content]. Then, the following expression leads to the left inverse operator as follows:


(D0+αI0+αh)(t)=h(t);for allt∈(0,T].








Moreover, if [image: there is no content], then the following composition


(I0+αD0+αh)(t)=h(t)−(I0+1−αh)(0+)Γ(α)tα−1;for allt∈(0,T].













Definition 4

([1,16]). The Caputo fractional derivative of order [image: there is no content] of a function [image: there is no content] is defined by


(cD0+αh)(t)=(I0+1−αddth)(t)=1Γ(1−α)∫0t(t−s)−αddsh(s)ds;for a.e.t∈J.













In [10], Hilfer studied applications of a generalized fractional operator having the Riemann–Liouville and the Caputo derivatives as specific cases (see also [6,32]).



Definition 5 (Hilfer derivative).

Let [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]. The Hilfer fractional derivative of order α and type β of h is defined as


(D0+α,βh)(t)=I0+β(1−α)ddtI0+(1−α)(1−β)h(t);for a.e.t∈J.



(3)









Properties. Let [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content].



	
The operator [image: there is no content] can be written as


(D0+α,βh)(t)=I0+β(1−α)ddtI0+1−γh(t)=I0+β(1−α)D0+γh(t);for a.e.t∈J.











Moreover, the parameter [image: there is no content] satisfies


0<γ≤1,γ≥α,γ>β,1−γ<1−β(1−α).











	
The generalization (3) for [image: there is no content] coincides with the Riemann–Liouville derivative and for [image: there is no content] with the Caputo derivative


D0+α,0=D0+α,andD0+α,1=cD0+α.











	
If [image: there is no content] exists and in [image: there is no content], then


(D0+α,βI0+αh)(t)=I0+β(1−α)D0+β(1−α)h(t);for a.e.t∈J.











Furthermore, if [image: there is no content] and [image: there is no content], then


(D0+α,βI0+αh)(t)=h(t);for a.e.t∈J.











	
If [image: there is no content] exists and in [image: there is no content], then


I0+αD0+α,βh(t)=I0+γD0+γh(t)=h(t)−I0+1−γh(0+)Γ(γ)tγ−1;for a.e.t∈J.














In order to solve our problem, the following spaces are presented


[image: there is no content]








and


[image: there is no content]











It is obvious that


[image: there is no content]











Corollary 1

([31]). Let [image: there is no content]. Then, the linear problem


D0+α,βx(t)=h(t),t∈J=[0,T],I0+1−γx(0)=x0,γ=α+β−αβ,








has a unique solution [image: there is no content] given by


[image: there is no content]













From the above corollary, we conclude the following lemma.



Lemma 1.

Let [image: there is no content] be a function such that [image: there is no content]. Then, problem (1) is equivalent to the problem of the solutions of the integral Equation (2).





Theorem 1

(Schauder fixed point theorem [31,33]). Let B be closed, convex and nonempty subset of a Banach space E. Let [image: there is no content] be a continuous mapping such that [image: there is no content] is a relatively compact subset of E. Then, P has at least one fixed point in B.





Now, we study the Ulam stability, and we adopt the definitions in [4,30,34] of the Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability and generalized Ulam–Hyers–Rassias stability.



Consider the following Hilfer type termistor problem


D0+α,βu(t)=λf(u(t))∫0Tf(u(x))dx2,t∈J:=[0,T],



(4)




and the following fractional inequalities:


D0+α,βz(t)−λf(z(t))∫0Tf(z(x))dx2≤ϵ,t∈J,



(5)






D0+α,βz(t)−λf(z(t))∫0Tf(z(x))dx2≤ϵφ(t),t∈J,



(6)






D0+α,βz(t)−λf(z(t))∫0Tf(z(x))dx2≤φ(t),t∈J.



(7)







Definition 6.

Equation (4) is Ulam–Hyers stable if there exists a real number [image: there is no content] such that, for each [image: there is no content] and for each solution [image: there is no content] of Inequality (5), there exists a solution [image: there is no content] of Equation (4) with


z(t)−u(t)≤Cfϵ,t∈J.













Definition 7.

Equation (4) is generalized Ulam–Hyers stable if there exists [image: there is no content] such that, for each solution [image: there is no content] of Inequality (5), there exists a solution [image: there is no content] of Equation (4) with


z(t)−u(t)≤ψfϵ,t∈J.













Definition 8.

Equation (4) is Ulam–Hyers–Rassias stable with respect to [image: there is no content] if there exists a real number [image: there is no content] such that, for each [image: there is no content] and for each solution [image: there is no content] of Inequality (6), there exists a solution [image: there is no content] of Equation (4) with


z(t)−u(t)≤Cfϵφ(t),t∈J.













Definition 9.

Equation (4) is generalized Ulam–Hyers–Rassias stable with respect to [image: there is no content] if there exists a real number [image: there is no content] such that, for each solution [image: there is no content] of Inequality (7), there exists a solution [image: there is no content] of Equation (4) with


z(t)−u(t)≤Cf,φφ(t),t∈J.













Remark 1.

A function [image: there is no content] is a solution of Inequality (5) if and only if there exist a function [image: there is no content] (which depends on solution z) such that

	1. 

	
g(t)≤ϵ,∀t∈J.




	2. 

	
D0+α,βz(t)=λf(z(t))∫0Tf(z(x))dx2+g(t),t∈J.











Remark 2.

It is clear that:

	1. 

	
Definition 6⇒ Definition 7.




	2. 

	
Definition 8⇒ Definition 9.




	3. 

	
Definition 8 for [image: there is no content]⇒ Definition 6.











Lemma 2

([3]). Let [image: there is no content] be a real function and [image: there is no content] is a nonnegative, locally integrable function on [image: there is no content] and there are constants [image: there is no content] and [image: there is no content] such that


[image: there is no content]








Then, there exists a constant [image: there is no content] such that


[image: there is no content]








for every [image: there is no content].






3. Existence Results


The following existence result for Hilfer type thermistor problem (1) is based on Schauder’s fixed point theorem. Let us consider the following assumptions:



Assumption 1.

Function [image: there is no content] of problem (1) is Lipschitz continuous with Lipschitz constant L such that [image: there is no content], with [image: there is no content] and [image: there is no content] two positive constants.





Assumption 2.

There exists an increasing function [image: there is no content] and there exists [image: there is no content] such that, for any [image: there is no content]


[image: there is no content]













Our main result may be presented as the following theorem.



Theorem 2 (existence).

Under the above Assumption 1, problem (1) has at least one solution [image: there is no content] for all [image: there is no content].





Proof. 

Consider the operator [image: there is no content] is defined by


[image: there is no content]



(8)







Clearly, the fixed points of P are solutions to (1). The proof will be given in several steps.



Step 1: The operator P is continuous. Let [image: there is no content] be a sequence such that [image: there is no content] in [image: there is no content]. Then, for each [image: there is no content],


t1−γ(Pun)(t)−(Pu)(t)≤λt1−γΓ(α)∫0t(t−s)α−1f(un(s))∫0Tf(un(x))dx2−f(u(s))∫0Tf(u(x))dx2ds≤λt1−γΓ(α)∫0t(t−s)α−11∫0Tf(un(x))dx2f(un(s))−f(u(s))+f(u(s))1∫0Tf(un(x))dx2−1∫0Tf(u(x))dx2≤λt1−γΓ(α)∫0t(t−s)α−11∫0Tf(un(x))dx2f(un(s))−f(u(s))ds+λt1−γΓ(α)∫0t(t−s)α−1f(u(s))1∫0Tf(un(x))dx2−1∫0Tf(u(x))dx2ds≤I1+I2,



(9)




where


[image: there is no content]











We estimate [image: there is no content] and [image: there is no content] terms separately. By Assumption 1, we have


I1≤λt1−γΓ(α)∫0t(t−s)α−11∫0Tf(un(x))dx2f(un(s))−f(u(s))ds≤λt1−γ(c1T)2Γ(α)∫0t(t−s)α−1f(un(s))−f(u(s))ds≤Lλt1−γ(c1T)2Γ(α)un−uC1−γ∫0t(t−s)α−1ds≤LλTα+1−γ(c1T)2Γ(α+1)un−uC1−γ.











Then,


[image: there is no content]



(10)






I2=λt1−γΓ(α)∫0t(t−s)α−1f(u(s))1∫0Tf(un(x))dx2−1∫0Tf(u(x))dx2ds≤λt1−γΓ(α)∫0t(t−s)α−1f(u(s))∫0Tf(un(x))dx2−∫0Tf(u(x))dx2∫0Tf(un(x))dx2∫0Tf(u(x))dx2ds≤λt1−γc2(c1T)4Γ(α)∫0t(t−s)α−1∫0Tf(un(x))dx2−∫0Tf(u(x))dx2ds≤λt1−γc2(c1T)4Γ(α)∫0t(t−s)α−1∫0T(f(un(x))−f(u(x)))dx∫0T(f(un(x))+f(u(x)))dxds≤2λc22Tt1−γ(c1T)4Γ(α)∫0t(t−s)α−1∫0Tf(un(x))−f(u(x))dxds≤2λc22TLt1−γ(c1T)4Γ(α)∫0t(t−s)α−1∫0Tun(x)−u(x)dxds≤2λc22LT2t1−γ(c1T)4Γ(α)un−uC1−γ∫0t(t−s)α−1ds≤2λc22LTα+3−γ(c1T)4Γ(α+1)un−uC1−γ.











It follows that


[image: there is no content]



(11)







To substitute (10) and (11) into (9), we have


t1−γ(Pun)(t)−(Pu)(t)≤I1+I2≤LλTα+1−γ(c1T)2Γ(α+1)+2λc22LTα+3−γ(c1T)4Γ(α+1)un−uC1−γ.











Then,


[image: there is no content]











Here, independently of [image: there is no content], the right-hand side of the above inequality converges to zero as [image: there is no content]. Therefore, [image: there is no content]. This proves the continuity of P.



Step 2: The operator P maps bounded sets into bounded sets in [image: there is no content].



Indeed, it is enough to show that, for [image: there is no content], there exists a positive constant l such that [image: there is no content], we have [image: there is no content]. Set [image: there is no content]:


t1−γ(Pu)(t)≤u0Γ(γ)+λt1−γΓ(α)∫0t(t−s)α−1f(u(s))∫0Tf(u(x))dx2ds≤u0Γ(γ)+λMt1−γΓ(α)∫0t(t−s)α−1ds≤u0Γ(γ)+λMT1−γ+αΓ(α).











Thus,


[image: there is no content]











Step 3:P maps bounded sets into equicontinuous set of [image: there is no content].



Let [image: there is no content], [image: there is no content] be a bounded set of [image: there is no content] and [image: there is no content]. Then,


t21−γ(Pu)(t2)−t11−γ(Pu)(t1)≤λΓ(α)t21−γ∫0t2(t2−s)α−1f(u(s))∫0Tf(u(x))dx2ds−t11−γ∫0t1(t1−s)α−1f(u(s))∫0Tf(u(x))dx2ds≤λt21−γΓ(α)∫t1t2(t2−s)α−1f(u(s))∫0Tf(u(x))dx2ds+λΓ(α)∫0t2t21−γ(t2−s)α−1−t11−γ(t1−s)α−1f(u(s))∫0Tf(u(x))dx2ds≤λc2t21−γ(c1T)2Γ(α)∫t1t2(t2−s)α−1ds+λc2(c1T)2Γ(α)∫0t2t21−γ(t2−s)α−1−t11−γ(t1−s)α−1ds≤λc2t21−γ(c1T)2Γ(α+1)(t2−t1)1−α+λc2(c1T)2Γ(α)∫0t2t21−γ(t2−s)α−1−t11−γ(t1−s)α−1ds.











Beacause the right-hand side of the above inequality does not depend on u and tends to zero when [image: there is no content], we conclude that [image: there is no content] is relatively compact. Hence, B is compact by the Arzela–Ascoli theorem. Consequently, since P is continuous, it follows by Theorem 1 that problem (1) has a solution. The proof is completed. ☐






4. The Ulam–Hyers–Rassias Stability


In this section, we investigate generalized Ulam–Hyers–Rassias stability for problem (1). The stability results are based on the Banach contraction principle.



Lemma 3 (Uniqueness).

Assume that the Assumption 1 is hold. If


[image: there is no content]



(12)




then problem (1) has a unique solution.





Proof. 

Consider the operator [image: there is no content]:


[image: there is no content]



(13)







It is clear that the fixed points of P are solutions of problem (1).



Letting [image: there is no content] and [image: there is no content], then we have


t1−γ(Pv)(t)−(Pu)(t)≤λt1−γΓ(α)∫0t(t−s)α−1f(v(s))∫0Tf(v(x))dx2−f(u(s))∫0Tf(u(x))dx2ds≤LλTα+1−γ(c1T)2Γ(α+1)+2λc22LTα+3−γ(c1T)2Γ(α+1)v−uC1−γ.











Then,


[image: there is no content]











Choosing [image: there is no content] such that [image: there is no content], the map [image: there is no content] is a contraction. From (12), it follows that P has a unique fixed point, which is a solution of problem (1). ☐





Theorem 3.

In Assumption 1 and (12), problem (1) is Ulam–Hyers stable.





Proof. 

Let [image: there is no content] and let [image: there is no content] be a function that satisfies Inequality (5) and let [image: there is no content] be the unique solution of the following Hilfer type thermistor problem


D0+α,βu(t)=λf(u(t))∫0Tf(u(x))dx2,t∈J:=[0,T],I0+1−γu(t)=I0+1−γz(t)=u0,








where [image: there is no content], [image: there is no content]. From Lemma 1, we have


[image: there is no content]











By integration of (5), we obtain


[image: there is no content]



(14)




for all [image: there is no content]. From the above, it follows:


z(t)−u(t)≤z(t)−u0Γ(γ)tγ−1−λΓ(α)∫0t(t−s)α−1f(z(s))∫0Tf(z(x))dx2ds+λΓ(α)∫0t(t−s)α−1f(z(s))∫0Tf(z(x))dx2−f(u(s))∫0Tf(u(x))dx2ds≤ϵTαΓ(α+1)+λΓ(α)∫0t(t−s)α−11∫0Tf(z(x))dx2f(z(s))−f(u(s))ds+λΓ(α)∫0t(t−s)α−1f(u(s))1∫0Tf(z(x))dx2−1∫0Tf(u(x))dx2ds.



(15)







For computational convenience, we set


[image: there is no content]











We estimate [image: there is no content], [image: there is no content] terms separately. By Assumption 1, we have


K1≤λΓ(α)∫0t(t−s)α−11∫0Tf(z(x))dx2f(z(s))−f(u(s))ds≤λ(c1T)2Γ(α)∫0t(t−s)α−1f(z(s))−f(u(s))ds≤λL(c1T)2Γ(α)∫0t(t−s)α−1z(s)−u(s)ds,



(16)






K2≤λΓ(α)∫0t(t−s)α−1f(u(s))∫0Tf(z(x))dx2−∫0Tf(u(x))dx2∫0Tf(z(x))dx2∫0Tf(u(x))dx2ds≤2λc22TL(c1T)4Γ(α)∫0t(t−s)α−1∫0Tz(x)−u(x)dxds≤2λc22TL(c1T)4Γ(α)z−uC1−γ∫0t(t−s)α−1ds≤2λc22TL(c1T)4Γ(α)∫0t(t−s)α−1z(s)−u(s)ds.



(17)







To substitute (16) and (17) into (15), we get


z(t)−u(t)≤ϵTαΓ(α+1)+λL(c1T)2Γ(α)∫0t(t−s)α−1z(s)−u(s)ds+2λc22T2L(c1T)4Γ(α)∫0t(t−s)α−1z(s)−u(s)ds≤ϵTαΓ(α+1)+λL(c1T)2+2λc22T2L(c1T)41Γ(α)∫0t(t−s)α−1z(s)−u(s)ds,








and, to apply Lemma 2, we have


[image: there is no content]








where [image: there is no content] is a constant, which completes the proof of the theorem. Moreover, if we set [image: there is no content]; [image: there is no content], then problem (1) is generalized Ulam–Hyers stable. ☐





Theorem 4.

In Assumptions 1, 2 and (12), problem (1) is Ulam–Hyers–Rassias stable.





Proof. 

Let [image: there is no content] be solution of Inequality (6) and let [image: there is no content] be the unique solution of the following Hilfer type thermistor problem


D0+α,βu(t)=λf(u(t))∫0Tf(u(x))dx2,t∈J:=[0,T],I0+1−γu(t)=I0+1−γz(t)=u0,








where [image: there is no content], [image: there is no content]. From Lemma 1, we have


[image: there is no content]











By integration of (6) and Assumption 2, we obtain


[image: there is no content]



(18)




for all [image: there is no content]. From the above, it follows:


z(t)−u(t)≤z(t)−u0Γ(γ)tγ−1−λΓ(α)∫0t(t−s)α−1f(z(s))∫0Tf(z(x))dx2ds+λΓ(α)∫0t(t−s)α−1f(z(s))∫0Tf(z(x))dx2−f(u(s))∫0Tf(u(x))dx2ds≤ϵλφφ(t)+λΓ(α)∫0t(t−s)α−11∫0Tf(z(x))dx2f(z(s))−f(u(s))ds+λΓ(α)∫0t(t−s)α−1f(u(s))1∫0Tf(z(x))dx2−1∫0Tf(u(x))dx2ds.



(19)







To substitute (16) and (17) into (19), we get


z(t)−u(t)≤ϵλφφ(t)+λL(c1T)2Γ(α)∫0t(t−s)α−1z(s)−u(s)ds+2λc22T2L(c1T)4Γ(α)∫0t(t−s)α−1z(s)−u(s)ds≤ϵλφφ(t)+λL(c1T)2+2λc22T2L(c1T)41Γ(α)∫0t(t−s)α−1z(s)−u(s)ds,








and, to apply Lemma 2, we have


[image: there is no content]








where [image: there is no content] is a constant. It completes the proof of Theorem 4. ☐
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