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Abstract: In this work, we propose a fractional complex permittivity model of dielectric media with
memory. Debye’s generalized equation, expressed in terms of the phenomenological coefficients,
is replaced with the corresponding differential equation by applying Caputo’s fractional derivative.
We observe how fractional order depends on the frequency band of excitation energy in accordance
with the 2nd Principle of Thermodynamics. The model obtained is validated with respect to the
measurements made on the biological tissues and in particular on the human aorta.
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1. Introduction

The frequency domain response function of a media dielectric, well-known how complex
permittivity, ε(iω), one obtains from spectral measurement of electrical displacement field d(iω)

respect to applied electric field e(iω):

ε (iω) =
d (iω)

e (iω)
, (1)

with ω = 2π f , i =
√
−1, and f being frequency.

The polarization does not follow instantaneous changes of the applied electric field, so the
dielectric material is in a state of non-equilibrium. Dielectric relaxation is a process through which
dielectric media reach the state of equilibrium, with one or more time constants in relation to
corresponding polarization phenomena. In biological tissues, there are five independent polarization
mechanisms corresponding to five dispersion spectrum [1]. Debye [2] has proposed the following
complex permittivity to take into account dielectric relaxation corresponding to a linear differential
equation of the first order, with constant time τ:

ε (iω) = ε∞ +
εs − ε∞

(1 + iωτ) ,
(2)

where ε∞ is the initial permittivity (high frequency), and εs is the static permittivity. Several complex
permittivity models have been proposed, which approximate the experimental values sufficiently with
respect to a given frequency band and for particular dielectrics. In the following order, the Cole–Cole
model [3,4], the Cole–Davidson model [5], and the Havriliak–Negami model [6] are presented:

ε (iω) = ε∞ +
εs − ε∞[

1 + (iωτ)1−α
]

,
(3)
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with 0 ≤ α < 1;

ε (iω) = ε∞ +
εs − ε∞

(1 + iωτ)β
, (4)

with 0 < β ≤ 1;

ε (iω) = ε∞ +
εs − ε∞[

1 + (iωτ)1−α
]β

. (5)

With reference to the measures of complex permittivity, carried out in [7–10] on the biological
tissues, the Cole–Cole model has been proposed to four dispersion spectrum from 10 to 20 GHz:

ε (iω) = ε∞ +
4

∑
n=1

[
∆εn

1 + (iωτn)
1−αn

]
+

σdc
iωε0

, (6)

where ε0 = 8.8542 · 10−12(F/m) is electric permittivity of free space, τn are time constants and
σdc is conductivity in direct current. In these models (3)–(6), the fractional nature of complex
permittivity, due to the presence of the α parameter how power the time’s constant τ, is evident.
From the thermodynamic point of view, the dielectric relaxation phenomenon has been extensively
treated [11–14]. In these works, the use of internal variables called phenomenological coefficients led
to Debye’s generalized equation with two constants of time:

ε0χ(2)Ë + χ
(1)
(ED)

Ė + χ
(0)
(ED)

E = χ(2)D̈ + χ
(1)
(DE)Ḋ + χ

(0)
(DE)D, (7)

where χ(2), χ
(1)
(ED)

, χ
(0)
(ED)

, χ
(1)
(DE), χ

(0)
(DE), are algebraic functions of the phenomenological coefficients.

Putting χ(2) = 0 in (7), one obtains Debye’s equation. The purpose of this paper is to apply
fractional calculus to the phenomenological Equation (7) by obtaining a model of complex permittivity
in accordance with experimental values. There are different definitions of fractional derivatives whose
application depends on the physical meaning that they represent [15–20]. In [21], Caputo and Fabrizio
proposed a direct model of complex permittivity that generalizes the above-mentioned models (3)–(6),
using Caputo’s fractional derivative. In the fractional model proposed here, it is shown that the possible
values of the fractional order α must be in agreement with those that can assume the phenomenological
coefficients in accordance with the 2nd principle of thermodynamics. Compared to [21], the fractional
model here obtained derives from Debye’s generalized Equation (7). In Section 2, Caputo’s fractional
derivative is applied to Debye’s generalized phenomenological equation. In Section 3, by applying
the fractional transformation of Laplace, the fractional model of complex permittivity is obtained. In
Section 4, it is shown that the solution obtained by solving a system of four nonlinear equations, whose
unknowns are the phenomenological coefficients, conforms with the 2nd principle of thermodynamics,
and the fractional model proposed here is valid in accordance with the experimental results.

2. Fractional Generalized Debye’s Equation

In [11,14], dielectric and magnetic relaxation phenomena are discussed with the aid of the general
theory of non-equilibrium thermodynamics. It was shown that a vectorial internal variable, which
influences the polarization, gives rise to dielectric relaxation phenomena. If one makes linear this
theory and if one neglects cross effects due to electric conduction, heat conduction and viscosity on
electric relaxation, the following relaxation equation may be derived:

Ė + χ
(0)
(EP)E = χ

(2)
PE P̈ + χ

(1)
(PE)Ṗ + χ

(0)
(PE)P, (8)

where
χ
(0)
(EP) = a(1,1)

(P) L(1,1)
(P) , (9)
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χ
(0)
(PE) = a(0,0)

(P)

[
a(1,1)
(P) − a(0,0)

(P)

]
L(1,1)
(P) , (10)

χ
(1)
(PE) = a(0,0)

(P)

[
1 + L(0,1)

(P) − L(1,0)
(P)

]
+ a(1,1)

(P)

[
L(0,0)
(P) L(1,1)

(P) − L(0,1)
(P) L(1,0)

(P)

]
, (11)

χ
(2)
(EP) = L(0,0)

(P) , (12)

where L(0,0)
(P) , L(0,1)

(P) , L(1,0)
(P) , L(1,1)

(P) are the phenomenological coefficients and a(0,0)
(P) , a(1,1)

(P)
are scalar constants.

Replacing the constitutive equation of P:

P = D− ε0E, (13)

in Equation (8), with χ
(2)
PE 6= 0, we obtain:

ε0

{
Ë +

(1+ε0)χ
(1)
PE

ε0χ
(2)
PE

Ė +

[
χ
(0)
(EP)+χ

(0)
(PE)

]
ε0χ

(2)
PE

E

}
= D̈ +

χ
(1)
(PE)

χ
(2)
PE

Ḋ +
χ
(0)
(PE)

χ
(2)
PE

D. (14)

Putting
χ
(0)
ED = χ

(0)
(EP) + χ

(0)
(PE), (15)

χ
(1)
ED = (1 + ε0) χ

(1)
PE , (16)

χ
(0)
(DE) = χ

(0)
(PE), (17)

χ
(1)
(DE) = χ

(1)
(PE), (18)

χ(2) = χ
(2)
PE (19)

one obtains Equation (7) in the form:

ε0
(
Ë + A1Ė + A0E

)
= D̈ + C1Ḋ + C0D, (20)

where

A0 =
χ
(0)
ED

ε0χ(2)
, A1 =

χ
(1)
ED

ε0χ(2)
, (21)

C0 =
χ
(0)
DE

χ(2)
, C1 =

χ
(1)
DE

χ(2)
. (22)

By applying Caputo’s fractional derivative, one obtains:

ε0

{
cD(α)

t

{
cD(α)

t [E (t)]
}
+ Ac

1D(α)
t [E (t)] + A0E (t)

}
= cD(α)

t

{
cD(α)

t [D (t)]
}
+ C1

cD(α)
t [D (t)] + C0D (t) . (23)

Caputo’s fractional derivative of order α (here α has a signified different from than indicated in
Equations (3)–(6) is:

cD(α)
t [φ (t)] =

M (α)

Γ (1− α)

t∫
0

φ̇ (t)
(t− τ)α dτ, (24)

where Γ(1− α) is

Γ (1− α) =

∞∫
0

ν−αe−νdν, (25)
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with 0 ≤ M(α) ≤ 1 for α ∈ (0, 1). Equation (23) is the fractional equation corresponding to Debye’s
generalized equation (14). Caputo’s fractional derivative coincides, at less than one multiplicative
factor M(α)

Γ(1−α)
, with the convolution operator:

Φ (ν) =

ν∫
0

φ̇ (τ)

(ν− τ)α dτ = φ̇ (t) ∗ t−α. (26)

This property is utilized to determine the Laplace’s transform of the fractional derivative:

LT {Φ (ν)} = LT {φ̇ (t)} LT
{

t−α
}

, (27)

where

LT {φ (ν)} =
∞∫

0

φ (ν) e−sνdν, (28)

and, assuming φ(0) = 0,

LT {φ̇ (ν)} =
∞∫

0

φ̇ (ν) e−sνdν = sLT {φ (ν)} , (29)

with s = a+ iω and a ∈ R+ ∪ 0. If a = 0, then LT {◦} is coincident with the Fourier’s transform FT {◦}.
From Equation (29), Equation (27) becomes:

LT {Φ (ν)} = LT {φ (t)} sLT {t−α} = LT {φ (t)} s
∞∫
0

t−αe−stdt

= sαLT {φ (t)}
∞∫
0
(st)−α e−std (st) = sαLT {φ (t)} Γ (1− α) .

(30)

From Equations (24) and (30), Laplace’s transform of Caputo’s fractional derivative is

LT
{

cD(α)
t [φ (t)]

}
=

M (α)

Γ (1− α)
LT {Φ (ν)} = M (α) sαLT {φ (t)} . (31)

It can be demonstrated similarly that

LT
{

cD(α)
t

{
cD(α)

t [φ (t)]
}}

= M2 (α) s2αLT {φ (t)} . (32)

M(α) will be placed at 1 subsequently.

3. The Fractional Model

By applying the Laplace’s transform to both members of (23), one obtains from (31) and (32):

ε0

(
s2α + A1sα + A0

)
LT {E (t)} =

(
s2α + C1sα + C0

)
LT {D (t)} . (33)

Putting s = iω, we have that (33) becomes:

ε0

[
(iω)2α + A1 (iω)α + A0

]
e (iω) =

[
(iω)2α + C1 (iω)α + C0

]
d (iω) , (34)

i.e., from (1)

cε(α) (iω) = ε0

[
(iω)2α + A1 (iω)α + A0

(iω)2α + C1 (iω)α + C0

]
. (35)
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Equation (35) can be rewritten as

cε(α) (iω) = ε0

[
1 +

F1 (iω)α + F0

(iω)2α + C1 (iω)α + C0

]
, (36)

with

F0 = A0 − C0 =

[
χ
(0)
EP+(1−ε0)χ

(0)
PE

ε0χ(2)

]
> 0,

F1 = A1 − C1 =
χ
(0)
PE

ε0χ(2) > 0.
(37)

Observing that: (i)α = eiπ( α
2 ) = cos[π(α

2 )] + i sin[π(α
2 )] and place cε(α)(iω) = cε

′′(α)(ω)− i cε
′′(α)(ω),

Equation (36) can be rewritten in two real components:

cε
′(α)(ω) = ε0

[
1+

ψ3ω3α + ψ2ω2α + ψ1ωα + ψ0

ω4α + ξ3ω3α + ξ2ω2α + ξ1ωα + ξ0

]
, (38)

cε
′′(α)(ω) = ε0

[
ϕ3ω3α + ϕ2ω2α + ϕ1ωα

ω4α + ξ3ω3α + ξ2ω2α + ξ1ωα + ξ0

]
, (39)

with
ψ3 = F1 cos

[
π
(

α
2
)]

, ψ2 = F1C1 + F0 cos (πα) ,
ψ1 = (F0C1 + F1C0) cos

[
π
(

α
2
)]

, ψ0 = F0C0,
(40)

ϕ3 = F1 sin
[
π
(

α
2
)]

, ϕ2 = −F0 sin (πα) ,
ϕ1 = (F0C1− F1C0) sin

[
π
(

α
2
)]

,
(41)

ξ3 = 2C1 cos
[
π
(

α
2
)]

, ξ2 = C2
1 + 2C0 cos (πα) ,

ξ1 = 2C1C0 cos
[
π
(

α
2
)]

, ξ0 = C2
0.

(42)

For α = 1, one obtains a Ciancio–Kluitenberg model of the complex permittivity:

lim
α→1

[
cε
′(α)(ω)

]
= ε

′
(ω) = ε0

[
1+

(F1C1− F0)ω2 + F0C0

ω4 +
(
C2

1 − 2C0
)

ω2 +C2
0

]
, (43)

lim
α→1

[
cε
′′(α)(ω)

]
= ε

′′
(ω) = ε0

[
F1ω3 + (F0C1− F1C0)ω

ω4 +
(
C2

1 − 2C0
)

ω2 +C2
0

]
, (44)

with C0 = [rad/s]2, F0 = [rad/s]2, C1 = [rad/s], F1 = [rad/s].

4. Numerical Results

The fractional model of the complex permittivity (36) is determined uniquely from the possible
values of the parameters C0, F0, C1, F1 that satisfaction (36) with C0 > 0, C1 > 0; this is in
accordance with the fact that entropy variation is positive, reference [11], for the 2nd principle of
the thermodynamics. The fractional order α depends on the frequency and parameters by means of
undefined function. In [3], the Debye’s ordinary model is in accordance with experimental measures
at low frequencies. We can formulate the problem in this way:

Let x = (C0, C1, F0, F1) ∈ C4, ω ∈ B = (ωmin, ωmax) ⊆ R+ and let S ⊆ C4 be the solutions set of the
system nonlinear equations: 

ε
′
min(ωmin) = ζ1 (x; ωmin, α̂) ,

ε
′′
min(ωmin) = ζ2 (x; ωmin, α̂) ,

ε
′
max(ωmax) = ζ3 (x; ωmax, α̂) ,

ε
′′
max(ωmax) = ζ4 (x; ωmax, α̂) ,

(45)
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with x unknown and ε
′
min, ε

′′
min, ε

′
max, ε

′′
max, known experimental, while α̂ ∈ (0, 1) is value of α such that

solution of system (45) indicated with x̂ satisfaction (36), and it provides the best predictive model of
complex permittivity.

In other words, if α = g(x, ω), where g(x, ω) is unknown function of α, denoting with
R̂ = (R+ ×R+ ×R+ ×R+), we have that α̂ is:

α̂ = min
[x ∈ Σ , ω ∈ B]

{g(x, ω)} , (46)

with Σ = S∩ R̂ 6= ∅.
We propose the following algorithm (Figure 1) to determine the abovementioned parameters

of (36).

Figure 1. Flow-chart.

Step 1 one chooses a frequency range (ωmin, ωmax) and a test value for α;
one read the correspondent permittivity experimental values:
ε
′(α)(ωmin), ε

′′(α)(ωmin), ε
′(α)(ωmax), ε

′′(α)(ωmax);
one initializes n = 0 and m = 0.

Step 2 one resolves the system at frequencies ωmin and ωmax.
Step 3 If there is a real and positive solution, then if m is not null go to end; otherwise, one puts:

n = n + 1; m = 0; αn = α; (C0)n = C0; (F0)n = F0; (C1)n = C1; (F1)n = F1;
it reduces α = α - 0.001 and go back to step 2.

Step 4 If n is null, one puts αn = α and α = α + 0.001 and go back to step 2; otherwise, one puts
m = m + 1, n = 0 and goes back to step 2.

End The solution so determined is compared with the predictive permittivity model in [10],
at a temperature of 37 ◦C with reference to the human aorta. This method is equally
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applicable to biological tissues. From Figures 2–8 (horizontal axis rad/s), we observe that a
predictive fractional model of the complex permittivity is in accordance with experimental
data with good approximation. The experimental data are those relating to measure
campaign published in [10]. In particular from Figure 9, we see that percentage error
relative permittivity and conductivity to experimental data is, respectively, almost always
lower and thorough than that of the Ciancio–Kluitenberg model and Cole–Cole extended
model [7–10]. In the frequency range 2.5 × 103 @ 9.29 × 1010, the maximum relative
error to experimental data of permittivity fractional model is −21% at 1.58 × 105 rad/s;
of Ciancio–Kluitenberg’s model is +25% at 1.58 × 107 rad/s and extended of Cole–Cole’s
model is +35% at 1.58 × 107 rad/s; in the same frequency range, the maximum relative
error to experimental data of conductivity fractional model is +15% at 1.95 × 1010 rad/s;
of Ciancio–Kluitenberg’s model is +41% at 1.95 × 1010 rad/s and extended of Cole–Cole’s
model is −37% at 2.5 × 103 rad/s. In Figure 10, we show the trend of fractional order with
respect to the frequency.

(a) (b)

Figure 2. (a) Permittivity and (b) conductivity at frequencies 100 Hz @ 1 KHz. Line dot-dashed
fractional model α = 0.983, line continue ordinary model, line dotted extensive Cole–Cole’s model,
points experimental data.

(a) (b)

Figure 3. (a) Permittivity and (b) conductivity at frequencies 1 KHz @ 9 KHz. Line dot-dashed
fractional model α = 0.985, line continue ordinary model, line dotted extensive Cole–Cole’s model,
points experimental data.
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(a) (b)

Figure 4. (a) Permittivity and (b) conductivity at frequencies 9 KHz @ 224 KHz. Line dot-dashed
fractional model α = 0.990, line continue ordinary model, line dotted extensive Cole–Cole’s model,
points experimental data.

(a) (b)

Figure 5. (a) Permittivity and (b) conductivity at frequencies 224KHz@1MHz. Line dot-dashed
fractional model α = 1, line continue ordinary model, line dotted extensive Cole–Cole’s model,
points experimental data.

(a) (b)

Figure 6. (a) Permittivity and (b) conductivity at frequencies 1 MHz @ 10 MHz. Line dot-dashed
fractional model α = 0.975, line continue ordinary model, line dotted extensive Cole–Cole’s model,
points experimental data.
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(a) (b)

Figure 7. (a) Permittivity and (b) conductivity at frequencies 10 MHz @ 100 MHz. Line dot-dashed
fractional model α = 0.936, line continue ordinary model, line dotted extensive Cole–Cole’s model,
points experimental data.

(a) (b)

Figure 8. (a) Permittivity and (b) conductivity 100 MHz @ 20 GHz. Line dot-dashed fractional
model α = 0.983, line continue ordinary model, line dotted extensive Cole–Cole’s model, points
experimental data.

(a)

(b)

Figure 9. Relative percentage error (a) permittivity and (b) conductivity. Line dot-dashed fractional
model, line continue Ciancio–Kluitenberg model, line dotted extensive Cole–Cole’s model, points
experimental data.
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5. Conclusions

It is emphasized that this fractional model derives from a physical theory that justifies the
phenomenon of polarization on biological tissues. In particular, the Ciancio–Kluitenberg model has
shown how the two time constants are related to strain and rotation of the cells that constitute the
polarized biological tissue. Models like that of extended Cole–Cole are characterized by parameters
whose values are empirically obtained i.e., without a justification of a physical nature. The transition
to the fractional calculation was possible by replacing the ordinary derivative with Caputo’s fractional
derivative to write the corresponding phenomenological equation of media with dielectric relaxation.
From the complex permittivity model obtained, it has been seen (Figure 10) how the topology of
the memory operator has fractional dimension frequency dependency and also that this tends to a
minimum value in accordance with the 2nd Principle of Thermodynamics. The fractional model of the
complex permittivity is in accordance with experimental data with good approximation. The reason
why permittivity and conductivity deviates from experimental data at a given frequency ranges is
not known, but this probably depends on the type of fractional derivative considered. A possible
development of the proposed method is to determine the fixed fractional operator, the optimal
fractional order functional with respect to frequency that minimizes the relative percentage error.

Figure 10. Trend fractional order respect to frequency.
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