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Abstract

Online learning has become increasingly prevalent in real-world applications, where data
streams often comprise heterogeneous feature types—both nominal and numerical—and
labels may not arrive synchronously with features. However, most existing online learning
methods assume homogeneous data types and synchronous arrival of features and labels. In
practice, data streams are typically heterogeneous and exhibit asynchronous label feedback,
making these methods insufficient. To address these challenges, we propose a novel
algorithm, termed Online Asynchronous Learning over Streaming Nominal Data (OALN),
which maps heterogeneous data into a continuous latent space and leverages a model
pool alongside a hint mechanism to effectively manage asynchronous labels. Specifically,
OALN is grounded in three core principles: (1) It utilizes a Gaussian mixture copula in the
latent space to preserve class structure and numerical relationships, thereby addressing the
encoding and relational learning challenges posed by mixed feature types. (2) It performs
adaptive imputation through conditional covariance matrices to seamlessly handle random
missing values and feature drift, while incrementally updating copula parameters to
accommodate dynamic changes in the feature space. (3) It incorporates a model pool and
hint mechanism to efficiently process asynchronous label feedback. We evaluate OALN on
twelve real-world datasets; the average cumulative error rates are 23.31% and 28.28% under
the missing rates of 10% and 50%, respectively, and the average AUC scores are 0.7895 and
0.7433, which are the best results among the compared algorithms. And both theoretical
analyses and extensive empirical studies confirm the effectiveness of the proposed method.

Keywords: online learning; mixed-type feature; asynchronous label; steaming data

1. Introduction
Online learning [1–5] has achieved significant success in recent years across a wide

range of domains, particularly in scenarios involving continuously arriving data streams.
Unlike traditional batch learning methods, which require access to the entire dataset
upfront, online learning incrementally updates models in real time as new data become
available [6]. This characteristic substantially reduces computational and storage overheads,
while providing notable adaptability to complex real-world applications, such as natural
disaster monitoring in ecological systems [7], real-time credit card fraud detection [8], and
skin disease diagnosis [9,10]. As a result, online learning has emerged as a pivotal technique
for data stream analytics in the era of big data.
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Existing online learning techniques are generally categorized into two paradigms:
online static learning [11] and online dynamic learning [12]. Online static methods, having
been developed earlier, have accumulated a substantial body of research and are valued for
their simplicity, computational efficiency, and ease of deployment. By leveraging incremen-
tal gradient updates and regularization, these approaches effectively handle stable data
distributions, particularly in resource-constrained environments [11]. In contrast, online dy-
namic learning emphasizes adaptability to non-stationary data distributions and evolving
feature spaces [13]. Through feature mapping and embedding strategies, these methods
dynamically adjust model parameters, thereby maintaining high predictive performance
even as feature dimensions or data sources grow increasingly complex [14]. Furthermore,
real-world data streams often contain mixed-type variables [15,16], introducing additional
challenges to the learning process.

Nevertheless, despite their individual strengths, existing methods face significant limi-
tations in complex real-world environments, particularly in addressing two key challenges.
First, the dynamic evolution of mixed feature spaces—comprising both numerical and nom-
inal attributes—often leads to changes in feature dimensionality [17,18], making it difficult
for traditional methods to maintain predictive performance. Second, the asynchronous
nature of data streams, in which features and labels arrive at irregular intervals and from
diverse sources, frequently results in incomplete or delayed information that adversely
affects model training [19–21]. Accordingly, the development of an effective online learning
algorithm capable of simultaneously managing mixed-type data, evolving feature spaces,
and asynchronous arrivals of features and labels has become a critical and urgent research
challenge—one that motivates the primary objective of this study.

Our proposed method, Online Asynchronous Learning over Streaming Nominal Data
(OALN), presents a unified framework designed to address missing data and asynchronous
supervision in dynamic data streams through the integration of three key components. First,
it incorporates a real-time imputation module that combines a Gaussian Copula model
with an online expectation-maximization algorithm to jointly estimate feature distributions
and impute missing values for both nominal and numerical attributes, thereby ensuring
statistical consistency and completeness across heterogeneous feature spaces. Second, to
maintain predictive robustness under evolving data characteristics, OALN trains multiple
classifiers on the imputed feature space and integrates their predictions using adaptively
updated ensemble weights. Third, it introduces a simulated delay mechanism to model
the asynchronous arrival of features and labels, substantially enhancing the model’s re-
silience in real-world scenarios characterized by irregular and non-synchronized inputs.
An overview of the proposed framework is presented in Figure 1.

To achieve the aforementioned advantages, this paper makes the following key contri-
butions:

(1) We formally identify and unify the challenges of evolving feature spaces, het-
erogeneous data types, and asynchronous label arrivals within a coherent online
learning framework.

(2) We propose a novel algorithm, termed OALN, which integrates real-time estimation
of mixed-type feature distributions via an Extended Gaussian Copula model, cou-
pled with an adaptive and incremental learning strategy tailored to dynamic and
asynchronous data streams.

(3) We design a comprehensive evaluation framework that jointly simulates evolving
feature dimensions, mixed-type data, and asynchronous label availability, thereby
enabling a rigorous assessment of OALN ’s robustness and practical applicability.

The remainder of this paper is organized as follows: Section 2 reviews the related
work. Section 4 introduces the construction of the latent feature space and the handling of
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asynchronous labels to capture feature preferences. Section 5 presents the experimental
results and discussions. Finally, Section 6 concludes the paper and outlines directions for
future research.
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Figure 1. Flowchart of our OALN model.

2. Related Work
This work is related to online static learning [11], online dynamic learning [12], and

asynchronous learning methods [19,22,23]. As shown in Table 1, although extensive re-
search has been conducted in the field of online learning [24–27], few studies have ad-
dressed scenarios involving incomplete feature spaces and the asynchronous arrival of
mixed-type data streams. In real-world applications, data streams often arrive asyn-
chronously with varying delays [21,28], leading to incomplete and dynamically evolving
feature spaces, where conventional online learning methods demonstrate limited effective-
ness. To tackle these challenges, this study introduces a novel online learning framework,
termed OALN, which integrates the incremental updating capability of online static learn-
ing, the adaptability of online dynamic learning for continuously evolving feature spaces,
and the robustness of asynchronous learning methods for handling irregularly arriving
data. The subsequent sections will provide a comprehensive review of existing studies
on online static learning, online learning in dynamic feature spaces, and asynchronous
learning methods, highlighting their limitations in practical scenarios.

Table 1. Comparison of previous methods with OALN. Blank cell: not mentioned; ✓: mentioned but
no details or weak; ✓✓: mentioned with details or strong.

Type Feature Label

Method Missing Heterogeneous Asynchronous

[12] ✓ ✓

[14,21,29] ✓✓

[30] ✓✓ ✓

[24] ✓✓

[28] ✓ ✓

[25,26,31] ✓✓

Ours ✓✓ ✓✓ ✓✓
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2.1. Online Static Learning

Online static learning is one of the earliest and most extensively studied paradigms in
the field of online learning [11]. It assumes that data arrive sequentially over time while
the underlying distribution remains relatively stable. Based on this assumption, existing
methods employ incremental gradient updates and regularization techniques, allowing
efficient updates to model parameters upon receiving each new data instance, with minimal
computational overhead. For example, in scenarios such as embedded systems or real-
time analytics platforms, online static learning algorithms are well-suited for delivering
low-latency predictions and high throughput due to their inherently incremental nature.

Nonetheless, these methods assume that the data distribution remains unchanged
and that the feature space is fixed and complete—conditions that are often violated in real-
world settings [24,32]. In practice, data may arrive with irregular delays [28,33,34], exhibit
random feature omissions, or involve dynamically evolving feature spaces with mixed data
types [35]. Under such circumstances, traditional online static learning models struggle
to adapt, leading to significant declines in predictive performance. Consequently, these
limitations hinder their ability to meet the stringent requirements for stability and accuracy
in complex real-world scenarios. However, our OALN algorithm integrates mixed-feature
modeling and real-time imputation with incremental updates, thereby ensuring stable
predictive accuracy even in incomplete or evolving feature spaces.

2.2. Online Learning in Dynamic Feature Space

Online learning in dynamic feature spaces focuses on adapting models to feature sets
that expand or contract as new data arrive [36]. Such methods typically employ mapping or
embedding strategies to reconcile discrepancies between old and new feature dimensions,
allowing the learned parameters to be shared or transferred [37]. Some approaches use
linear transformations to align features, while others adopt nonlinear or kernel-based
strategies to handle complex mappings more effectively [12,14]. By dynamically adjusting
model parameters as the feature space evolves [15], these methods aim to maintain strong
predictive accuracy despite shifting or expanding feature sets.

Although current approaches to dynamic feature space learning better accommodate
the variability in incoming data, they often focus primarily on numerical features or
assume a relatively stable marginal distribution [38]. When applied to more heterogeneous
contexts (e.g., nominal features or missing data), these methods may fail to preserve critical
structural information that cannot be captured by linear or simplified mappings [20,28].
Moreover, balancing model complexity with adaptation frequency remains a challenge:
overly frequent model updates can incur high computational costs, while infrequent
updates may result in degraded accuracy as the feature space evolves. Nevertheless,
our OALN algorithm leverages real-time estimation of mixed-feature distributions and
adaptive incremental updates, enabling efficient and accurate learning even under frequent
changes in feature dimensionality.

2.3. Asynchronous Learning Methods

Asynchronous learning methods are designed to handle data streams that arrive at
irregular intervals or with unpredictable delays, allowing the model to update indepen-
dently of a fixed scheduling mechanism [22,39]. These methods often adopt decentralized
or distributed architectures, in which partial updates are accumulated and subsequently
integrated into a global model once the data becomes available [40,41]. By decoupling train-
ing from a synchronized data arrival schedule, asynchronous approaches offer robustness
against real-world contingencies such as network latencies, sensor malfunctions, or uneven
data rates [19,42].
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Despite their robustness to timing irregularities, many asynchronous learning methods
still assume a relatively complete and stable feature set and expect labels to be available in
tandem with the data [43,44]. In practice, delayed or missing labels, along with mixed data
types such as nominal and numerical features, can significantly degrade the performance
of these methods [31,39,45]. Moreover, coordination overhead may become a bottleneck
in large-scale scenarios, where numerous asynchronous model updates must be merged
without losing critical information or introducing inconsistencies [40]. In contrast, our
OALN algorithm integrates asynchronous updates with mixed-feature adaptive modeling,
allowing the model to learn from partial data without requiring full synchronization, while
maintaining predictive robustness under unpredictable conditions.

3. Problem Statement
The main emphasis of our OALN algorithm lies in binary classification, with the

option of straightforward expansion to multiclass scenarios employing One-vs-Rest [46] or
One-vs-One [47] strategies. Define an input sequence {(xt, yt) | t = 1, 2, . . . , T} as instances
arriving in real time, where xt =

[
x1, x2, . . . , xdt

]T denotes a vector of dimension dt recorded
in instance xt, accompanied by a corresponding label yt ∈ {−1,+1}. Moreover, due to
practical constraints in data collection and feedback, the label yt corresponding to xt may
not be revealed until time t + k, where k ≥ 0. For mixed-type streaming data types, we
define xt as (xnom, xnum), where xnom and xnum represent nominal and numerical variables,
respectively. At each round t, the combination of the online learner g(·, ·) and the current
weights β of the model makes a prediction based on the currently available features. Once
the label arrives at time t + k, the loss σ(yt+k, g(ωi, xt)) is computed, and the model is
updated accordingly. Our objective is to identify a sequence of functions {g}T

t=1 that can
effectively handle both the evolving feature space and the asynchronous arrival of labels.
Formally, we define our empirical risk minimization (ERM) objective as:

min R(T) =
1
T

T

∑
t=1

σ(yt+k, g(ωi, xt)), (1)

s.t. xt = (xnom, xnum),

where σ(·, ·) denotes the loss function, measuring the discrepancy between the predicted
output and the ground-truth label. yt+k is the true label corresponding to xt, which is
collected at time step t + k, and xt is the corresponding input feature vector. By contin-
ually updating the online learner, this framework aims to accommodate the dynamic
feature space and asynchronous feedback in data streams, ultimately improving predictive
performance on evolving data sequences.

4. The Proposed Approach
To effectively address the challenges posed by mixed-type, incomplete input features

and delayed label feedback in online learning, our approach is composed of two key mod-
ules. First, we propose a latent feature encoding and imputation mechanism (Section 4.1)
based on the Extended Gaussian Copula, which transforms partially observed, heteroge-
neous inputs into complete and statistically consistent representations. Second, we design
an online learning algorithm (Section 4.2) tailored for asynchronous labels, which utilizes
hint-based updates to adaptively learn even when full supervision is not immediately
available. Together, these components ensure robustness under both input uncertainty and
delayed feedback.
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4.1. Latent Feature Encoding and Imputation

In real-time machine learning systems, data often arrives through streaming and in an
incomplete manner. Such data typically contains mixed-type features, encompassing nomi-
nal (categorical), ordinal, and continuous variables [17,30]. Compounding this challenge is
the fact that data collection in practice is imperfect, frequently leading to missing entries
due to latency, hardware failure, user interruption, or privacy-preserving protocols. These
missing values can occur in both structured input xt ∈ Rd and the associated labels yt.

Our learning objective for OALN is to train an online model that maps a sequence
of input instances xt = (xnom,t, xnum,t) to predictions, even when such instances are in-
complete or partially observed. To support accurate and robust model training, we must
therefore construct a feature representation module that can handle heterogeneous feature
types; missing values in arbitrary dimensions; and statistical dependencies across features.

To address this need, we propose a probabilistic latent encoding framework based
on the Extended Gaussian Copula (EGC) model, which serves as a front-end encoder for
the online learner. We select the Extended Gaussian Copula owing to its formal separa-
tion of marginal distributions from the underlying dependence structure, its closed-form
and bijective CDF transformations that guarantee statistically coherent and semantically
consistent imputations, and its robust covariance estimation amenable to low-rank or
diagonal approximations—substantially reducing storage and computational overhead in
high-dimensional settings. These attributes collectively provide a theoretically sound and
practically efficient encoding mechanism for online learning. This module takes partially
observed mixed-type feature vectors as input and outputs fully specified, semantically
consistent, and distribution-aware representations x̂t, which can be safely used in any
downstream predictive task.
Latent Mapping of Mixed-Type Features. To enable unified modeling of heterogeneous
input data xt = (xt,1, xt,2, . . . , xt,d), which may consist of categorical, ordinal, and contin-
uous variables, we adopt a latent variable framework wherein each observed feature is
represented as a transformation of a latent Gaussian variable. The core assumption is that
there exists a latent vector zt ∼ N (0, Σ), from which the observed values are generated via
a decoding function fi specific to the type of each variable.

For categorical features xt,i ∈ {1, . . . , Ki}, we define a latent sub-vector zt,i ∈ RKi and
apply the Gaussian-max transformation:

xt,i = arg max
k

(z(k)t,i + µ
(k)
i ), zt,i ∼ N (0, I), (2)

where µi ∈ RKi is a learnable shift vector. This operation retains the unordered nature
of nominal variables without imposing an artificial structure, while also allowing the
modeling of arbitrary categorical distributions through the learned biases µi.

For ordinal or continuous features xt,j, we adopt a monotonic transformation based
on the Gaussian Copula [48]:

xt,j = F−1
j (Φ(zt,j)), zt,j ∼ N (0, 1), (3)

where Fj is the empirical cumulative distribution function of the observed data and Φ is the
standard normal CDF [49]. In an offline setting, Fj can be obtained by sorting the full dataset
and directly accumulating quantiles; however, in an online streaming environment where it
is infeasible to retain all historical samples, one typically discretizes the variable’s domain
into bins and maintains the count per bin along with the total sample count. Upon arrival of
each new sample, only the corresponding bin count and the overall count are incrementally
updated, and the empirical CDF at any value is estimated by dividing the cumulative bin
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counts below that value by the current total. This scheme supports constant- or logarithmic-
time updates, satisfying the real-time requirements of high-throughput data streams while
approximately preserving the original marginal distribution. The transformation thus
embeds data into a latent Gaussian space without altering its marginal properties.

By applying these transformations across all variables, we obtain a full latent represen-
tation zt ∈ RD, where D is the sum of the dimensions required for each variable’s encoding.
This provides a consistent and information-rich representation of the instance, regardless
of missing values.
Joint Latent Modeling and Dependency Structure. After constructing the latent represen-
tation for all input variables, we assume the complete latent vector follows a multivariate
Gaussian distribution:

zt ∼ N (0, Σ), (4)

where Σ ∈ RD×D captures all pairwise dependencies among the latent sub-components.
This joint distribution enables the model to learn global correlations between variables of
different types, including cross-type dependencies such as correlations between categorical
and continuous variables.

Unlike heuristic encoding methods that treat features independently or separately
model each type, the EGC framework leverages the joint covariance structure Σ to support
statistical coupling between all dimensions. This is particularly important in the presence
of missing data, as the unobserved variables can be inferred based on their conditional
relationship to the observed ones. Furthermore, the use of empirical marginals in the
decoding process ensures that the generated values maintain fidelity to the original data
distribution, even when imputed.

This formulation bridges the gap between traditional multivariate Gaussian models
(which are not suitable for categorical data) and purely non-parametric imputation methods
(which lack a principled latent structure). The result is a model that is both expressive and
grounded in probabilistic inference, making it especially well-suited for online learning
tasks with noisy, sparse, or mixed-type inputs.
Probabilistic Inference and Feature Imputation. Given an instance xt with observed
entries indexed by Ot ⊆ {1, . . . , d} and missing entries indexed by Mt = {1, . . . , d} \Ot, the
goal is to infer the missing values xt,Mt using the posterior distribution of the corresponding
latent variables zt,Mt , conditioned on the observed latent components zt,Ot .

The first step is to map the observed variables into the latent space. For ordinal
and continuous features, this is achieved by applying the inverse transformation zt,j =

Φ−1(Fj(xt,j)). For categorical variables, the observed value corresponds to an inequality
constraint region in RKi , defined by

z(xt,i)
t,i + µ

(xt,i)
i > z(k)t,i + µ

(k)
i , ∀k ̸= xt,i, (5)

This results in a partially observed latent vector zt,Ot , from which we compute the
posterior of the missing latent dimensions using standard Gaussian conditioning:

zt,Mt | zt,Ot ∼ N (µM|O, ΣM|O), (6)

where µM|O = ΣM,OΣ−1
O,Ozt,O, ΣM|O = ΣM,M − ΣM,OΣ−1

O,OΣO,M.
After obtaining the conditional distribution, we perform imputation by drawing

samples (in the case of multiple imputation) or using the conditional mean (for single
imputation), and mapping the latent variables back to the data space. For continuous
and ordinal features, this is achieved via xt,j = F−1

j (Φ(zt,j)); for categorical variables, the
imputed class is determined by the argmax operation.
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The EGC model thus supports two practical modes: (1) Single imputation, which is ef-
ficient and appropriate for real-time prediction tasks where one consistent input is required.
(2) Multiple imputation, which is valuable when capturing uncertainty is important, such
as in Bayesian learning or ensemble settings.

By combining expressive latent modeling with exact Gaussian inference, our approach
provides a principled and effective mechanism for handling missing features in online
learning scenarios. This imputed feature vector x̂t will serve as the input to the label-
delayed learning module described in the next section.

4.2. Handling Asynchronous Labels

The central challenge in asynchronous online learning lies in the absence of immedi-
ate supervision [31]. Instead of deferring updates until true labels arrive, we propose a
paradigm shift: enable timely model updates by constructing informative surrogate gradi-
ents using whatever partial information is currently available. This simple but powerful
idea—learning through approximate signals—forms the foundation of our OALN and
enables provably effective learning even under severely delayed or missing labels.
Hint-Driven Online Learning under Delayed Supervision. In many practical online
learning scenarios, full instance–label pairs are not observed synchronously. Specifically,
at time step t, the learner receives a (possibly imputed) feature vector x̂t ∈ Rd, while the
corresponding ground-truth label yt ∈ {−1,+1}may only arrive after an unknown delay
δt ∈ Z≥0, or may be missing entirely due to supervision dropout. This asynchronous label
setting violates the standard assumption of immediate feedback, rendering conventional
update rules such as

ωt+1 = ωt − η∇ℓ( f (ωt, x̂t), yt), (7)

inapplicable when yt is unavailable [50]. Here, ωt ∈ Rm denotes the model parameter at
time t, η > 0 is the learning rate, f (ωt, x̂t) ∈ R is the prediction function, and ℓ(·, ·) is a
convex loss function, such as logistic or hinge loss.

To overcome this limitation, we propose a general-purpose solution based on gradient
hint construction,the general principle of which is shown in Figure 2. At each time t, the
learner forms a surrogate gradient vector ht ∈ Rm, which approximates the true gradient
∇ℓt(ωt) = ∇ωℓ( f (ωt, x̂t), yt) using partially observed information. The model is then
updated via a proximal step:

ω∗t+1 = arg min
ω∈W

⟨ht, ω⟩+ 1
2η
|ω−ωt|2, (8)

where W ⊂ Rm is a compact convex feasible set, and ⟨·, ·⟩ denotes the standard inner
product.

This update can be interpreted as an implicit Euler step over a linearized surrogate loss,
balancing descent direction ht with proximity to the current model ωt. When the actual
label yt becomes available, the learner can retroactively refine ht, or use it to update future
hints. This mechanism naturally interpolates between different feedback regimes: when
ht = ∇ℓt(ωt), it recovers full-information gradient descent; when ht = 0, it performs no
update. Such flexibility enables learning under irregular, delayed, and partial supervision,
which are common in streaming and edge intelligence settings.
Construction and Regret Analysis of Hint Gradients. The construction of the hint vector
ht ∈ Rm is the core mechanism that enables learning under delayed supervision in the
OALN algorithm. At each time step t, the learner must determine how to approximate
the true loss gradient ∇ℓt(ωt), despite potentially missing parts of the instance–label pair
(x̂t, yt). The strategy for computing ht depends on which elements are currently available.



Big Data Cogn. Comput. 2025, 9, 177 9 of 24

When the feature vector x̂t is observed but the label yt has not yet arrived, we estimate a
soft pseudo-label ỹt ∈ [−1,+1] using an ensemble of previously deployed models {ωs}s<t,
such as via confidence-weighted majority voting or exponential decay averaging [51].
Concretely, each model ωs is assigned a confidence weight:

ws,t ∝ exp
(
−γ Ls(t)

)
, (9)

where Ls(t) denotes the cumulative loss of model s over a sliding window up to time t, and
γ > 0 is a decay parameter. These weights are then normalized, and updated online after
each labeled feedback via exponential smoothing:

ws,t ← α ws,t−1 + (1− α) exp
(
−γ ℓ( f (ωs, x̂t), yt)

)
, α ∈ (0, 1) (10)

where α is a smoothing coefficient that governs the trade-off between the prior confi-
dence ws,t−1 and the newly observed loss-based weight. This scheme ensures that higher-
performing models contribute more strongly to ỹt, while poor performers are gradually
down-weighted.

.

...

Data Streams with Asynchronous Labels

Feature Space

A
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. L
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Model 1

Model 2

t=1 t=2 t=3 t=4 t=5 t=T
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Construction

Figure 2. Handling asynchronous labels via hint-driven base learners in OALN. The data stream is
divided into sub-sequences based on the availability of features and labels. Each base learner updates
using surrogate gradients constructed from partial observations, enabling timely learning under
delayed or missing supervision.

The surrogate gradient is then computed using

h ∗ t = ∇ℓ∗( f (ωt, x̂t), ỹt), (11)

where f (ω, x̂) ∈ R is the prediction function, and ℓ : R× {−1,+1} → R+ is a convex loss.
Alternatively, when only the label yt is received and the corresponding features x̂t are

missing, we approximate the input using a class-wise prototype:

µ ∗ yt =
1

|H ∗ yt| ∑
s∈Hyt

x̂s, (12)

whereHy = {s < t | ys = y} denotes the historical index set for label y. The hint gradient
is computed as

h ∗ t = ∇ℓ( f (ω ∗ t, µ ∗ yt), yt). (13)

In the case where both x̂t and yt are unavailable at time t, the learner defers the update
entirely, or adopts a temporal smoothing strategy such as reusing the previous update
direction ht = ht−1. This ensures continuity in learning while awaiting supervision.
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To formally analyze the performance impact of hint-based updates, we consider the
cumulative regret after T steps:

Rt =
T

∑
t=1

ℓt(ω ∗ t)− min
ω∈W

T

∑
t=1

ℓt(ω), (14)

where ℓt(ω) = ℓ( f (ω, x̂t), yt) if the label is eventually received, andW ⊂ Rm is a convex,
bounded parameter space.

We assume that (i) the loss ℓt is convex and L-Lipschitz in ω; (ii) each hint satisfies
∥ht −∇ℓt(ωt)∥ ≤ εt; and (iii) the hypothesis space has the following diameter:

D = max
ω,ω′
|ω−ω′|. (15)

Then, the expected regret is bounded by

E[RT ] ≤
D2

2η
+

η

2

T

∑
t=1
|ht|2 + D

T

∑
t=1

εt. (16)

Choosing η = O(1/
√

T) and εt = O(1/
√

T) yields E[RT ] = O(
√

T), confirming that
the OALN algorithm achieves no-regret learning even with approximate supervision.

This result demonstrates that as long as hint gradients approximate the true gradients
with bounded error, the model remains competitive. Coupled with the latent feature
imputation from Section 4.1, our framework provides a principled approach to online
learning under dual uncertainty: incomplete inputs and delayed feedback.

4.3. Discussion

Algorithm Design and Analysis. The OALN algorithm addresses incomplete mixed nom-
inal–numeric inputs and asynchronous label feedback in real-time streams by combin-
ing Gaussian Copula-based latent encoding, conditional imputation, adaptive gradient
updates, and hint-guided model refinement within a unified streaming framework,the
schematic diagram is shown in the Algorithm 1. At each time step t, a partially observed
instance xt = (xnom

t , xnum
t ) is mapped into a latent representation zt ∈ RD. Missing en-

tries are filled via conditional expectation under current copula parameters (µ, Σ), and
the completed vector is inverted back to the original feature space. OALN maintains two
queues—Qall (model pool) and Qready (ready-to-update models). Upon arrival of delayed
labels yt−d, corresponding historical models execute supervised proximal gradient updates;
otherwise, OALN synthesizes surrogate gradients from an ensemble-derived hint vector,
ensuring uninterrupted learning despite feedback latency. Our theoretical analysis bounds
per-step time complexity by O(D3 + NtD) and memory by O(D2 + NmaxD + BD). In
practical settings where the number of missing values M ≪ D, imputation cost reduces
to O(M3 + M2 + MD). Scalability is further enhanced through rank-one copula updates,
low-rank (r ≪ D) or diagonal copula approximations that reduce storage to O(Dr), dy-
namic pruning of stale models to bound Nt, and parallel hint generation across multi-core
resources. Low-rank copula approximation compresses the full covariance matrix by
keeping only its principal directions, cutting both memory and computation costs while
retaining the essential correlation structure—this makes online copula updates much faster
and more scalable without sacrificing accuracy. These optimizations render OALN both
memory-efficient and computationally tractable in high-dimensional, irregularly delayed
streaming environments.For more details on algorithm design and analysis, please refer to
Appendix B.
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Edge Deployment and Model Slimming. To support deployment on resource-constrained
edge devices, we apply a combination of techniques: compressing the copula covariance
via low-rank or diagonal approximations to reduce storage from O(D2) to O(Dr); pruning
stale models to limit the model pool memory to O(NtD); performing incremental rank-one
updates at O(Dr) per step instead of full matrix recomputations; and tuning the delayed-
label buffer to a small window b ≪ B, yielding O(bD) overhead. With r, b ≪ D and
aggressively pruned Nt, total memory can shrink to O(Dr + NtD + bD), making OALN
feasible within typical edge budgets. We believe this concrete guidance will facilitate
real-world, on-device deployment of OALN.

Algorithm 1: The OALN Algorithm
Initialize : Copula parameters Σ, µ

Input : Model queues Qall,Qready, with both initially empty
Output : ŷt

1 for t = 1 to T do
2 Receive input xt = (xnom

t , xnum
t );

3 Update copula statistics Σ, µ using xt;
4 Encode into latent space: zt ← f (xnom

t , xnum
t );

5 if zt contains missing entries then
6 Extract observed components: zobs

t ;
7 Compute conditional expectation of missing components:
8 zmis

t ← µmis + Σmis,obs · Σ−1
obs,obs · (z

obs
t − µobs);

9 Fill zmis
t back into zt;

10 Recover full input via inverse mapping: x̂t ← f−1(zt);
11 Enqueue index t into Qall;
12 if any delayed labels yt−d arrive then
13 for each d do
14 if t− d ∈ Qall then
15 Compute supervised gradient: gt−d ← ∇ℓ(wt−d; zt−d, yt−d);
16 Qready.enqueue(t− d, gt−d);

17 if Qready is empty then
18 Initialize model wt randomly;

19 else
20 Dequeue from ready queue: (i, gi)← Qready.dequeue();
21 Update model: wt ← wi − η · gi;
22 Remove i from Qall;

23 Output the predict label: ŷt ← sign(w⊤t zt);
24 Compute ensemble size: Nt ← |Qall|;
25 Generate hint vector: ht ← generateHint(Qall, Nt);
26 Perform hint-based model refinement: wt ← wt − η · ∇ℓ(wt; zt, ht);
27 Enqueue t back into Qall;

Algorithm Limitation. OALN still relies on fixed-width bins to incrementally update
the empirical CDF and to estimate the Gaussian Copula correlation matrix. Under high
missingness or when most feature values are zero, many bins remain empty, producing
a coarse, step-like CDF and highly noisy correlation estimates. This noise undermines
the stability of the latent variables and degrades the accuracy of subsequent online model
updates. Moreover, once bin boundaries are fixed they cannot adapt to distributional drift,
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limiting OALN’s effectiveness on high-cardinality or rapidly changing sparse features.
OALN’s model pool scheduling and weighting depend solely on the “old” labels that
have arrived. When label delays are heavy-tailed, bursty, or excessively long, the noise in
performance estimates rises sharply, causing incorrect model switches and accumulated
prediction errors. At the same time, feedback latency severely impairs the algorithm’s
ability to detect and adapt to concept drift, constraining real-time responsiveness and
robustness in live streaming environments.

5. Experiments
This section presents the experiments conducted to address the following research

questions, which collectively evaluate the effectiveness of the OALN algorithm:

• RQ1: Under varying missing rates, does OALN outperform other methods?
• RQ2: How does the performance of OALN and baseline algorithms change as the

missing rate increases?
• RQ3: Under different levels of asynchronous label arrival, how does OALN perform,

and what performance trends emerge in comparison to other methods?

5.1. General Setting

Dataset. We evaluate OALN on twelve real-world datasets spanning a wide range of
application domains [52]. To simulate dynamic feature spaces, we introduce random
missingness at varying rates. Table 2 summarizes the key characteristics of these datasets.

Table 2. Characteristics of the studied datasets (Inst. and Feat. are short names for Instance and
Feature; Nominal Feat. and Numerical Feat. are short names for Nominal Feature and Numerical
Feature; and Class Ratios represents the ratio of positive labels to negative labels in the dataset).

Dataset Inst. Feat. Nominal Feat. Numerical Feat. Class Ratios Domain

ckd 400 24 3 21 0.63/0.37 Health and Medicine
australian 690 14 3 11 0.44/0.56 Business
credit-a 690 14 4 10 0.44/0.56 Business
wbc 699 9 2 7 0.34/0.66 Health and Medicine
diabetes 768 8 1 7 0.35/0.65 Health and Medicine
credit-g 1000 20 3 17 0.70/0.30 Social Science
german 1000 23 3 20 0.63/0.37 Business
splice 1000 60 4 56 0.52/0.48 Biology
qsar-bio 1055 41 1 40 0.34/0.66 Biology
osi 12,330 17 1 16 0.15/0.85 Business
nursery 12,960 8 1 7 0.67/0.33 Business
bank-marketing 45,211 16 3 13 0.12/0.88 Business

Evaluation Metrics. We adopt the cumulative error rate (CER) as one of the evaluation
metrics to quantify classification errors in online learning. CER is widely used in prior
work [17,35] and is defined as

CER =
1
N ∑

j<N
⟨yj ̸= sign(ỹj)⟩, (17)

where N denotes the total number of samples, and the angle-bracket notation ⟨·⟩ evaluates
to 1 if the condition inside is true, and to 0 otherwise. A lower CER indicates better
model performance.
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We use the Area Under the Receiver Operating Characteristic Curve (AUC) to evaluate
the ability of a binary classifier to distinguish between positive and negative samples [53].
AUC is widely applied in domains such as medical diagnosis, credit scoring, and other
decision-critical tasks [54]. It is defined as

AUC =
∫ 1

0
TPR

(
FPR−1(x)

)
dx, (18)

where FPR (false-positive rate) is the ROC curve’s horizontal axis and TPR (true-positive
rate) is its vertical axis. AUC equals the area under this curve; values closer to 1 indicate
stronger discriminative power and better model performance.

Compared Methods. We compare OALN with five related algorithms. Brief descriptions
of each are provided below:

• OLI2DS [14]: An online learning algorithm that operates over varying feature subsets
by adaptively weighting incomplete subspaces. It integrates dynamic cost strategies
and sparse online updates to enhance model performance on complex data streams.

• OLD3S [55]: A deep learning-based method that employs parallel dual models,
dynamic fusion, and autoencoder-based regularization to improve robustness and
stability under streaming conditions.

• OLD3S-L [55]: A lightweight variant of OLD3S that retains the dynamic fusion mecha-
nism while reducing encoding depth and fusion dimensionality, significantly decreasing
model size and online update complexity for resource-constrained environments.

• OGD [56]: A classical online learning algorithm that updates model weights based
on the gradient of each incoming sample, using a time-decaying step size to ensure
simplicity and efficiency.

• FOBOS [57]: An online method that combines gradient descent with regularization,
enabling incremental updates while encouraging model sparsity through penalization
of irrelevant features.

Implementation Details. To ensure fairness in our experiments, we employ a random-
removal strategy, independently removing 10% and 50% of instances from each of the
eleven datasets. Simultaneously, we set the learning rate to 0.3, the number of training
epochs to 30, and the optimizer’s weight factors to β1 = 0.1 and β2 = 0.9. The batch
size is defined as one-thirtieth of the feature dimensionality, the test set size is 1024, and
the number of solver iterations is set to 200. At the same time, we also set the random
seed = 2025. This procedure generates nonstationary data streams while ensuring that all
models receive identical input sequences. We assume a Missing Completely At Random
(MCAR) mechanism for all removals [48].

5.2. Performance Comparison (RQ1)

Based on the results in Tables 3–6, which report the cumulative error rate (CER) and
AUC scores for each algorithm under 10% and 50% missing rates (with label delay T = 5 for
OALN), we perform statistical analyses utilizing the win/loss ratio, alongside the Wilcoxon
signed-rank test (p-value) [58]. First, our algorithm demonstrates consistently strong per-
formance: at a 10% missing rate, the average CER across the eleven datasets is 23.31%,
and at a 50% missing rate, it is 28.28%—both lower than the corresponding averages of
the baseline methods. Moreover, across the 60 total evaluation scenarios, OALN achieves
a lower CER than all competing algorithms in 57 scenarios at 10% missingness and in
52 scenarios at 50% missingness. Second, regarding AUC scores in the same 60 scenarios,
OALN outperforms all competitors in 57 scenarios at 10% missingness and in 58 scenarios
at 50% missingness. The mean AUC values achieved by OALN are 0.7895 at 10% missing-
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ness and 0.7433 at 50% missingness, both higher than the corresponding averages of the
comparison methods. These results indicate that by constructing a hybrid feature space
combining nominal and numerical data, OALN maintains high predictive accuracy and
stability under nonstationary data streams and asynchronous label feedback. Furthermore,
our experiments confirm that the use of a mixed Gaussian Copula—through online esti-
mation of joint nominal–numerical distributions and conditional imputation of missing
values—significantly enhances predictive performance under various missingness patterns.

Table 3. The comparison results for cumulative error rate. We repeated the experiment 5 times with
label delay T = 5 for each dataset, averaged the cumulative error rate (CER), and calculated the
standard variance of the 5 values. Experimental results (CER ± standard variance) for 12 datasets in
the case of missing rate 10%. The best results are in bold. • indicates the cases in our method that
lose the comparison. * shows the total number of wins and losses for OALN.

Dataset OLI2DS OLD3S OLD3S-L OGD FOBOS OALN

ckd 0.3445± 0.005 0.3861± 0.010 0.4111± 0.001 0.5063± 0.008 0.4684± 0.028 0.1249± 0.003
australian 0.2894± 0.004 0.3865± 0.001 0.3881± 0.021 0.4088± 0.013 0.4162± 0.002 0.2824± 0.001
credit-a 0.3440± 0.012 0.4106± 0.004 0.4622± 0.011 0.3504± 0.007 0.3723± 0.022 0.2509± 0.008
wbc 0.1474± 0.004 0.1714± 0.006 0.2016± 0.001 0.1594± 0.012 0.5652± 0.003 0.1074± 0.001
diabetes 0.3605± 0.005 0.4480± 0.014 0.3460± 0.003 0.4130± 0.001 0.5099± 0.004 0.2940± 0.013
credit-g 0.4886± 0.013 0.4467± 0.002 0.4156± 0.015 0.3065± 0.023 • 0.3066± 0.017 • 0.3809± 0.023
german 0.5140± 0.010 0.4333± 0.021 0.4922± 0.013 0.3116± 0.011 • 0.3819± 0.009 0.3450± 0.013
splice 0.4100± 0.004 0.5033± 0.020 0.5156± 0.009 0.3367± 0.003 0.5226± 0.011 0.3225± 0.007
qsar-bio 0.5103± 0.013 0.3284± 0.005 0.4484± 0.002 0.2952± 0.026 0.3190± 0.014 0.2460± 0.003
osi 0.2983± 0.002 0.1709± 0.014 0.2398± 0.019 0.2008± 0.007 0.1988± 0.013 0.1601± 0.010
nursery 0.5027± 0.003 0.2585± 0.012 0.4127± 0.008 0.3300± 0.002 0.3732± 0.016 0.1441± 0.004
bank-marketing 0.3742± 0.007 0.2395± 0.009 0.2930± 0.011 0.3118± 0.006 0.3286± 0.003 0.1380± 0.002

loss/win 0/12 0/12 0/12 2/10 1/11 3/57 *
p-value 0.0005 0.0005 0.0005 .0122 0.0034 −−
F-rank 4.167 3.583 4.417 3.167 4.417 1.250

Table 4. The comparison results for Area Under Curve. We repeated the experiment 5 times with
label delay T = 5 for each dataset, averaged the Area Under Curve (AUC), and calculated the standard
variance of the 5 values. Experimental results (AUC ± standard variance) for 12 datasets in the case
of missing rate 10%.The best results are in bold. • indicates the cases in our method that lose the
comparison. * shows the total number of wins and losses for OALN.

Dataset OLI2DS OLD3S OLD3S-L OGD FOBOS OALN

ckd 0.7207± 0.002 0.5656± 0.013 0.5260± 0.002 0.4558± 0.004 0.8378± 0.002 0.9227± 0.001
australian 0.7801± 0.005 0.5836± 0.001 0.5970± 0.011 0.6318± 0.013 0.6146± 0.001 0.8214± 0.006
credit-a 0.7000± 0.013 0.5779± 0.002 0.4703± 0.006 0.6726± 0.011 0.6268± 0.020 0.7964± 0.005
wbc 0.9161± 0.012 0.7304± 0.007 0.6216± 0.002 0.9284± 0.021 0.9844± 0.003 0.9861± 0.009
diabetes 0.6869± 0.005 0.5284± 0.013 0.5833± 0.005 0.6323± 0.003 0.4194± 0.012 0.7226± 0.007
credit-g 0.5186± 0.014 0.4993± 0.003 0.4920± 0.012 0.4455± 0.009 0.4304± 0.004 0.6072± 0.014
german 0.4833± 0.016 0.5874± 0.008 0.5020± 0.010 0.7317± 0.008 • 0.5365± 0.013 0.7112± 0.011
splice 0.6207± 0.008 0.5013± 0.012 0.5123± 0.007 0.7712± 0.004 • 0.5964± 0.011 0.7522± 0.004
qsar-bio 0.4705± 0.015 0.5938± 0.008 0.5323± 0.012 0.7507± 0.009 0.6392± 0.003 0.8253± 0.002
osi 0.7712± 0.004 • 0.6785± 0.013 0.5318± 0.021 0.3249± 0.011 0.3193± 0.003 0.6925± 0.005
nursery 0.4992± 0.019 0.7612± 0.004 0.5340± 0.007 0.7139± 0.016 0.4950± 0.005 0.8977± 0.003
bank-marketing 0.7233± 0.003 0.6316± 0.006 0.6277± 0.006 0.5094± 0.003 0.4801± 0.003 0.7387± 0.001

loss/win 1/11 0/12 0/12 2/10 0/12 3/57 *
p-value 0.0049 0.0005 0.0005 0.0024 0.0005 −−
F-rank 3.167 4.083 4.750 3.333 4.417 1.250
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Table 5. The comparison results for cumulative error rate. We repeated the experiment 5 times with
label delay T = 5 for each dataset, averaged the cumulative error rate (CER), and calculated the
standard variance of the 5 values. Experimental results (CER ± standard variance) for 12 datasets in
the case of missing rate 50%.The best results are in bold. • indicates the cases in our method that lose
the comparison. * shows the total number of wins and losses for OALN.

Dataset OLI2DS OLD3S OLD3S-L OGD FOBOS OALN

ckd 0.4190± 0.007 0.4361± 0.011 0.4528± 0.020 0.4810± 0.013 0.4937± 0.030 0.1660± 0.004
australian 0.3600± 0.012 0.3800± 0.008 0.4058± 0.019 0.4599± 0.003 0.4380± 0.021 0.3089± 0.008
credit-a 0.3990± 0.013 0.4348± 0.005 0.4573± 0.011 0.3431± 0.008 0.3869± 0.010 0.3237± 0.006
wbc 0.1532± 0.013 0.3810± 0.006 0.2603± 0.015 0.4275± 0.003 0.6667± 0.003 0.1439± 0.001
diabetes 0.4051± 0.013 0.3497± 0.022 0.3295± 0.005 0.3252± 0.0017 0.4967± 0.009 0.2803± 0.011
credit-g 0.5005± 0.015 0.4456± 0.011 • 0.4489± 0.009 • 0.3065± 0.022 • 0.3065± 0.014 • 0.4635± 0.020
german 0.5162± 0.003 0.4333± 0.009 • 0.4333± 0.011 • 0.3467± 0.009 • 0.3719± 0.010 • 0.4341± 0.017
splice 0.4786± 0.005 0.4900± 0.016 0.5078± 0.004 0.4271± 0.008 0.4774± 0.011 0.4005± 0.003
qsar-bio 0.5103± 0.009 0.3337± 0.022 0.4747± 0.013 0.2905± 0.009 0.3048± 0.009 0.2599± 0.005
osi 0.3405± 0.009 0.3299± 0.013 0.4209± 0.007 0.1935± 0.015 0.1927± 0.004 0.1836± 0.002
nursery 0.5302± 0.010 0.3693± 0.007 0.5073± 0.015 0.3250± 0.006 0.6665± 0.004 0.2840± 0.013
bank-marketing 0.4001± 0.005 0.3342± 0.006 0.3573± 0.009 0.3236± 0.013 0.3614± 0.003 0.1356± 0.004

loss/win 0/12 2/10 2/10 2/10 2/10 8/52 *
p-value 0.0005 0.0024 0.0024 0.0771 0.0210 −−
F-rank 4.333 3.792 4.292 2.792 4.042 1.750

Table 6. The comparison results for Area Under Curve. We repeated the experiment 5 times with
label delay T = 5 for each dataset, averaged the Area Under Curve (AUC), and calculated the standard
variance of the 5 values. Experimental results (AUC ± standard variance) for 12 datasets in the case
of missing rate 50%.The best results are in bold. • indicates the cases in our method that lose the
comparison. * shows the total number of wins and losses for OALN.

Dataset OLI2DS OLD3S OLD3S-L OGD FOBOS OALN

ckd 0.6414± 0.004 0.5944± 0.003 0.6422± 0.010 0.6167± 0.009 0.6340± 0.003 0.9387± 0.002
australian 0.6798± 0.008 0.5621± 0.003 0.6220± 0.009 0.5524± 0.010 0.5661± 0.004 0.7721± 0.003
credit-a 0.6220± 0.011 0.5372± 0.004 0.5247± 0.006 0.7285± 0.002 0.7300± 0.008 0.7302± 0.006
wbc 0.8740± 0.009 0.6029± 0.003 0.7361± 0.004 0.7986± 0.010 0.9179± 0.002 0.9659± 0.001
diabetes 0.6131± 0.003 0.5233± 0.004 0.4895± 0.008 0.4537± 0.009 0.5075± 0.011 0.7708± 0.003
credit-g 0.5167± 0.013 0.4889± 0.004 0.5129± 0.008 0.4926± 0.010 0.4920± 0.007 0.5434± 0.012
german 0.4884± 0.013 0.5534± 0.006 0.5155± 0.012 0.5740± 0.002 0.5199± 0.011 0.6081± 0.011
splice 0.5341± 0.008 0.5047± 0.003 0.4992± 0.011 0.6743± 0.005 0.5526± 0.015 0.6789± 0.004
qsar-bio 0.4641± 0.016 0.6009± 0.010 0.5590± 0.006 0.6398± 0.005 0.5639± 0.010 0.8252± 0.008
osi 0.6619± 0.003 • 0.5539± 0.006 0.6287± 0.011 • 0.4006± 0.014 0.3775± 0.016 0.6234± 0.003
nursery 0.4769± 0.004 0.6472± 0.008 0.6658± 0.010 0.5666± 0.016 0.6891± 0.004 0.7568± 0.002
bank-marketing 0.6726± 0.004 0.5842± 0.003 0.5422± 0.006 0.4672± 0.009 0.4754± 0.003 0.7064± 0.002

loss/win 1/11 0/12 1/11 0/12 0/12 2/58 *
p-value 0.0024 0.0005 0.0010 0.0005 0.0005 −−
F-rank 3.417 4.417 4.083 4.167 3.750 1.167

5.3. Trend Comparison (RQ2)

By comparing OLI2DS, OLD3S, OLD3S-L, OGD, and FOBOS, we draw the following
conclusions. To analyze how each algorithm’s performance varies with different missing
rates, Figure 3 presents the CER curves for all methods under the nonstationary setting,
with label delay T = 5 for OALN.

As the missing rate increases, OALN’s CER remains lower than that of the other
algorithms in most cases; in Figure 3a, OALN outperforms its competitors in over 55% of
the scenarios. Overall, the CER values for all methods tend to increase as the missingness
rate rises. Furthermore, Figure 3e,f,j reveal that OLD3S-L exhibits large CER oscillations on
certain datasets as the missing rate grows. This behavior arises because OLD3S-L employs
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only a shallow autoencoder, which can marginally recover major features at low missing
rates; however, when the missing rate reaches 30%, 40%, or higher, essential feature infor-
mation is severely lost, and the shallow network fails to accurately reconstruct or denoise
the data. Consequently, noise in the imputed features is directly propagated to the classifier,
resulting in pronounced fluctuations in CER. In Figure 3d, we observe that FOBOS’s CER
is markedly higher than that of the other methods. This is because FOBOS assumes a fixed
and complete feature space and lacks a mechanism for adapting to dynamically changing
feature dimensions. When features are missing, its parameter updates rely on incomplete or
erroneous input distributions, leading to rapid error accumulation. Moreover, in missing-
data scenarios, leveraging the covariance structure among observed features is critical
for effective imputation. FOBOS, however, applies regularization only in the parameter
space and entirely disregards feature-level correlations, rendering it incapable of inferring
missing values from the available features. Similarly, in Figure 3j–k, OLI2DS exhibits higher
CER than the other algorithms in most cases, suggesting that its accuracy degrades on
larger or more complex datasets.
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Figure 3. The cumulative error rate (CER) of 12 datasets under different algorithms and missing rates
with label delay T = 5. As the missing rate increases across the datasets, the cumulative error rate
(CER) of all algorithms exhibits an overall upward trend; notably, OALN maintains a lower average
CER than the other methods, demonstrating its superior performance.

To assess whether OALN encounters similar issues, we present in Figure 4 bar charts
showing OALN’s CER at different missing rates (with label delay T = 5), in order to further
analyze its robustness under increasing missingness. As shown in Figure 4, the CER values
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for all datasets increase steadily with rising missing rates, yet remain relatively stable without
significant oscillations, and outperform the competing methods in most cases. Notably, on
large-scale datasets such as osi and nursery, OALN maintains consistently strong performance.
These findings demonstrate that our conditional covariance-based adaptive imputation mech-
anism, combined with incremental copula parameter updates for dynamic feature space
adaptation, effectively addresses both feature missingness and large-sample scenarios, thereby
ensuring the model’s accuracy, robustness, and overall superiority.
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Figure 4. Cumulative error rate (CER) for each dataset under varying missing rates at delay T = 5
in the OALN algorithm (the dataset “bank” is the abbreviation of the dataset “bank-marketing”).
As the missing rate of the dataset increases, the cumulative error rate (CER) generally shows an
upward trend.

5.4. Asynchronous Label Processing (RQ3)

To answer RQ3, we fix the missing rate at 50% and simulate asynchronous label feed-
back by varying the delay intensity T ∈ {0, 5, 10, 15, 20, 25, 30}. Figure 5 shows that as
the label delay T increases, the cumulative error rate (CER) decreases initially and then
increases, with an inflection point at approximately T = 20. When labels are delayed,
OALN continues to receive and process additional feature samples before the true label
yt becomes available, performing incremental updates of the copula parameters µ and
Σ at each step. Longer delays incorporate more samples into the covariance estimation
and feature imputation processes, yielding more stable estimates of both the covariance
matrix and the mean vector, as well as higher-quality imputations. This leads to more
accurate input features for the classifier, reduces misclassification, and lowers the overall
CER. Furthermore, for T > 0, each incoming sample—even without an associated true
label—triggers a hint update: a pseudo-label generated by the ensemble of existing sub-
models in the model pool, followed by a gradient update. With longer delays, the number
of hint-based updates increases, offering the model additional opportunities to smooth
ensemble weights and correct predictive biases. By the time the true label arrives, the
model has already transitioned to a better parameter region, rendering subsequent gradient
updates more robust.

However, as the delay intensity T continues to increase, its adverse impact on the
model gradually outweighs the mechanisms described above, causing the cumulative error
rate (CER) to halt its decline and begin to increase.
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Figure 5. Cumulative error rates (CERs) across datasets under various label delays at a 50% miss-
ing rate using the OALN algorithm (the dataset “bank” is the abbreviation of the dataset “bank-
marketing”). As the delay intensity increases, the cumulative error rate (CER) generally shows a
trend of first decreasing and then increasing. It reaches an inflection point when the delay intensity
T = 20, and the cumulative error rate changes from decreasing to increasing.

In summary, appropriate label delays act as a “warm-up” mechanism for OALN,
enabling comprehensive covariance estimation, improved imputation, and pseudo-label
refinement prior to receiving true-label feedback. However, as the delay intensity T
continues to increase, the model begins to suffer from the negative effects of the delay,
leading to a decline in performance. Consequently, there exists an “equilibrium point”
between model performance and delay intensity: before this point, the model can maintain
a low cumulative error rate (CER) when the true labels eventually arrive; after this point,
the model’s CER gradually increases.

6. Conclusions
In this study, we address the modeling challenges posed by nominal and numerical

features under conditions of feature missingness and asynchronous label feedback in online
learning. Data streams arrive in real time with heterogeneous and dynamically evolving
feature types, which can significantly impair model accuracy and robustness. To mitigate
these issues, we propose the Online Asynchronous Learning over Streaming Nominal Data
(OALN) algorithm. OALN leverages a mixed Gaussian Copula to dynamically capture
correlations among features and incorporates a model pool with a hint mechanism to
ensure data integrity, stability, and accuracy in the presence of missing values, heteroge-
neous features, and delayed labels. Experimental results show that OALN consistently
achieves high predictive accuracy across varying missing rates and delay intensities, out-
performing competing methods. These advances highlight OALN’s potential for effectively
handling heterogeneous, incomplete, and asynchronously labeled data in real-time online
learning scenarios.

By virtue of its robust handling of incomplete mixed-type data and asynchronous
feedback, OALN is well suited for real-time streaming applications such as industrial
IoT, smart grids, energy management, and online financial risk control. Although OALN
handles moderate missingness and fixed delays, its reliance on static, bin-based CDF
updates produces step-like distributions and noisy copula correlations under high feature
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sparsity, while depending solely on delayed labels for model selection introduces estimation
noise and impairs concept-drift adaptation. In this work, we simulate feature dropout
under the MCAR assumption, where missingness is independent of both observed and
unobserved data. While simplifying the evaluation, this may overestimate imputation
and learning performance. Future work will consider MAR and MNAR settings to more
fully assess robustness under realistic missing-data mechanisms. We will also investigate
adaptive distribution summaries (e.g., sketch-based or dynamic binning), develop delay-
aware weighting schemes and integrated drift-detection mechanisms, and design robust,
adaptive techniques to handle non-MCAR missing data, all aimed at improving robustness
and real-time responsiveness in highly sparse, irregularly delayed streaming environments.
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Appendix A
As shown in Tables A1–A8, even at missing rates of 0%, 20%, 30%, and 40% with

label delay T = 5, our OALN algorithm consistently delivers superior performance in both
cumulative error rate (CER) and AUC. Compared to all baseline methods, OALN achieves
the lowest average CER and the highest average AUC score across these missingness levels.

Table A1. Cumulative error rate (CER) under the missing rate 0% with label delay T = 5. The best
results are in bold. • indicates the cases in our method that lose the comparison. * shows the total
number of wins and losses for OALN.

Dataset OLI2DS OLD3S OLD3S-L OGD FOBOS OALN

ckd 0.3276± 0.003 0.3655± 0.012 0.3821± 0.002 0.4933± 0.006 0.4316± 0.022 0.1138± 0.002
australian 0.2832± 0.005 0.3551± 0.003 0.3575± 0.019 0.3826± 0.011 0.3974± 0.004 0.2766± 0.001
credit-a 0.3213± 0.014 0.3899± 0.003 0.4218± 0.009 0.3414± 0.004 0.3549± 0.020 0.2382± 0.006
wbc 0.1324± 0.003 0.1538± 0.007 0.1782± 0.001 0.1421± 0.010 0.4982± 0.004 0.1033± 0.002
diabetes 0.3392± 0.004 0.4231± 0.015 0.3166± 0.003 0.4008± 0.002 0.4733± 0.004 0.2871± 0.010
credit-g 0.4587± 0.010 0.4210± 0.003 0.3994± 0.011 0.2958± 0.019 • 0.2977± 0.015 • 0.3551± 0.020
german 0.4983± 0.008 0.4226± 0.022 0.4780± 0.014 0.3048± 0.010 • 0.3556± 0.006 0.3283± 0.014
splice 0.3982± 0.003 0.4779± 0.021 0.4987± 0.006 0.3240± 0.004 0.5082± 0.010 0.3021± 0.006
qsar-bio 0.4882± 0.014 0.3025± 0.003 0.4169± 0.005 0.2733± 0.023 0.2846± 0.014 0.2295± 0.002
osi 0.2583± 0.003 0.1636± 0.012 0.2118± 0.016 0.1939± 0.008 0.1790± 0.011 0.1577± 0.009
nursery 0.4977± 0.004 0.2374± 0.010 0.3962± 0.007 0.3188± 0.001 0.3348± 0.013 0.1356± 0.002
bank-marketing 0.3688± 0.005 0.2282± 0.007 0.2643± 0.010 0.3313± 0.005 0.3018± 0.005 0.1261± 0.003

loss/win 0/12 1/11 1/11 2/10 1/11 5/55 *
p-value 0.0005 0.0005 0.0005 0.0122 0.0034 −−
F-rank 4.167 3.583 4.417 3.250 4.333 1.250

https://github.com/Rrrrr920/OALN
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Table A2. AUC under missing rate 0% with label delay T = 5. The best results are in bold. • indicates
the cases in our method that lose the comparison. * shows the total number of wins and losses
for OALN.

Dataset OLI2DS OLD3S OLD3S-L OGD FOBOS OALN

ckd 0.7382± 0.003 0.5922± 0.011 0.5484± 0.003 0.4796± 0.005 0.8566± 0.003 0.9330± 0.002
australian 0.7924± 0.004 0.5980± 0.003 0.6133± 0.014 0.6569± 0.010 0.6331± 0.002 0.8353± 0.004
credit-a 0.7210± 0.014 0.5832± 0.005 0.4921± 0.004 0.6883± 0.010 0.6521± 0.018 0.8069± 0.003
wbc 0.9233± 0.009 0.7508± 0.006 0.6582± 0.003 0.9433± 0.023 0.9859± 0.004 0.9877± 0.007
diabetes 0.7036± 0.006 0.5599± 0.011 0.5743± 0.004 0.6582± 0.004 0.4931± 0.011 0.7535± 0.005
credit-g 0.5262± 0.012 0.5004± 0.005 0.5136± 0.010 0.4823± 0.010 0.4592± 0.005 0.6321± 0.011
german 0.4973± 0.014 0.6032± 0.009 0.5421± 0.009 0.7432± 0.006 • 0.5721± 0.014 0.7328± 0.008
splice 0.6392± 0.006 0.5273± 0.013 0.5329± 0.009 0.7904± 0.005 • 0.6053± 0.013 0.7642± 0.003
qsar-bio 0.4921± 0.013 0.6125± 0.006 0.5583± 0.013 0.7849± 0.010 0.6656± 0.005 0.8377± 0.003
osi 0.7913± 0.004 • 0.7013± 0.013 0.5681± 0.021 0.3677± 0.011 0.3585± 0.003 0.7182± 0.005
nursery 0.5182± 0.017 0.7811± 0.005 0.5635± 0.009 0.7399± 0.014 0.5291± 0.006 0.9038± 0.004
bank-marketing 0.7607± 0.002 0.6634± 0.004 0.6321± 0.005 0.6207± 0.006 0.4441± 0.002 0.7685± 0.001

loss/win 1/10 0/11 0/11 1/10 0/11 2/53 *
p-value 0.0049 0.0005 0.0005 0.0024 0.0005 −−
F-rank 3.250 4.167 4.667 3.250 4.250 1.417

Table A3. Cumulative error rate (CER) under missing rate 20% with label delay T = 5. The best results
are in bold. • indicates the cases in our method that lose the comparison. * shows the total number of
wins and losses for OALN.

Dataset OLI2DS OLD3S OLD3S-L OGD FOBOS OALN

ckd 0.3503± 0.010 0.4056± 0.008 0.5611± 0.005 0.5063± 0.008 0.3924± 0.022 0.1015± 0.005
australian 0.3130± 0.007 0.3253± 0.005 0.3269± 0.023 0.3869± 0.011 0.4307± 0.005 0.2808± 0.003
credit-a 0.3750± 0.013 0.4074± 0.003 0.4638± 0.012 0.3869± 0.005 0.4015± 0.018 0.2577± 0.005
wbc 0.1773± 0.005 0.1190± 0.004 • 0.1159± 0.003 • 0.2464± 0.010 0.7174± 0.004 0.1213± 0.002
diabetes 0.3949± 0.004 0.3439± 0.016 0.3483± 0.005 0.3301± 0.003 0.4901± 0.002 0.3074± 0.011
credit-g 0.4901± 0.011 0.4389± 0.003 0.5933± 0.017 0.3065± 0.021 • 0.3065± 0.018 • 0.3954± 0.025
german 0.5312± 0.011 0.4067± 0.018 0.5167± 0.012 0.3166± 0.014 • 0.3668± 0.007 • 0.3723± 0.011
splice 0.4385± 0.005 0.5111± 0.014 0.5056± 0.007 0.3568± 0.005 0.4774± 0.008 0.3526± 0.005
qsar-bio 0.5138± 0.011 0.3274± 0.003 0.3558± 0.001 0.3095± 0.019 0.2810± 0.010 0.2714± 0.002
osi 0.3126± 0.003 0.1582± 0.011 • 0.1656± 0.016 • 0.1984± 0.008 0.1959± 0.010 0.1845± 0.006
nursery 0.5080± 0.004 0.2743± 0.008 0.4948± 0.009 0.3219± 0.004 0.3879± 0.013 0.1836± 0.003
bank-marketing 0.3846± 0.004 0.2733± 0.002 0.3182± 0.003 0.3138± 0.008 0.3339± 0.003 0.1303± 0.002

loss/win 0/12 2/10 2/10 2/10 2/10 8/52 *
p-value 0.0005 0.0024 0.0024 0.0269 0.0049 −−
F-rank 4.333 3.500 4.417 3.208 3.958 1.583

Table A4. AUC under missing rate 20% with label delay T = 5. The best results are in bold. • indicates
the cases in our method that lose the comparison. * shows the total number of wins and losses
for OALN.

Dataset OLI2DS OLD3S OLD3S-L OGD FOBOS OALN

ckd 0.7194± 0.002 0.5479± 0.013 0.4946± 0.002 0.3756± 0.004 0.7192± 0.002 0.9387± 0.001
australian 0.7426± 0.004 0.6854± 0.002 0.6660± 0.009 0.6325± 0.014 0.5853± 0.004 0.7873± 0.005
credit-a 0.6580± 0.011 0.5647± 0.005 0.4681± 0.004 0.6614± 0.010 0.6674± 0.015 0.7970± 0.003
wbc 0.8774± 0.008 0.9169± 0.005 0.9002± 0.003 0.7623± 0.016 0.9788± 0.005 0.9809± 0.004
diabetes 0.6401± 0.006 0.5211± 0.009 0.5602± 0.007 0.5446± 0.005 0.3857± 0.013 0.6785± 0.005
credit-g 0.5150± 0.023 0.4994± 0.006 0.4805± 0.010 0.4455± 0.007 0.4538± 0.008 0.6025± 0.011
german 0.4631± 0.016 0.6065± 0.008 0.5062± 0.010 0.6613± 0.008 0.4916± 0.013 0.6743± 0.011
splice 0.5823± 0.008 0.4953± 0.011 0.4851± 0.009 0.7617± 0.007 • 0.5987± 0.014 0.7312± 0.003
qsar-bio 0.4659± 0.013 0.6306± 0.006 0.5616± 0.014 0.6981± 0.006 0.6186± 0.005 0.8333± 0.001
osi 0.7442± 0.007 • 0.5849± 0.010 0.5155± 0.020 0.3545± 0.014 0.3394± 0.002 0.6985± 0.003
nursery 0.4926± 0.015 0.6709± 0.006 0.5444± 0.009 0.6677± 0.011 0.5757± 0.003 0.8693± 0.005
bank-marketing 0.7116± 0.005 0.6022± 0.003 0.5933± 0.006 0.5044± 0.007 0.4984± 0.002 0.7376± 0.002

loss/win 1/11 0/12 0/12 1/11 0/12 2/58 *
p-value 0.0034 0.0005 0.0005 0.0015 0.0005 −−
F-rank 3.500 3.500 4.500 4.000 4.333 1.167
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Table A5. Cumulative error rate (CER) under missing rate 30% with label delay T = 5. The best results
are in bold. • indicates the cases in our method that lose the comparison. * shows the total number of
wins and losses for OALN.

Dataset OLI2DS OLD3S OLD3S-L OGD FOBOS OALN

ckd 0.3660± 0.013 0.4194± 0.007 0.5583± 0.003 0.5063± 0.010 0.3291± 0.018 0.1273± 0.005
australian 0.3184± 0.009 0.3736± 0.003 0.3833± 0.020 0.4015± 0.012 0.4015± 0.004 0.2920± 0.004
credit-a 0.3920± 0.009 0.4783± 0.004 0.5217± 0.013 0.3796± 0.007 0.3723± 0.020 0.2982± 0.003
wbc 0.1170± 0.003 0.1254± 0.007 0.2175± 0.005 0.3333± 0.007 0.7464± 0.008 0.1104± 0.001
diabetes 0.4128± 0.005 0.3512± 0.015 0.3468± 0.005 0.3512± 0.005 0.4834± 0.003 0.3269± 0.012
credit-g 0.4887± 0.011 0.4033± 0.003 • 0.4144± 0.017 0.3065± 0.021 • 0.3166± 0.018 • 0.4046± 0.025
german 0.5217± 0.009 0.4167± 0.019 • 0.4333± 0.007 0.3467± 0.016 • 0.4221± 0.005 • 0.4287± 0.010
splice 0.4447± 0.006 0.4989± 0.012 0.5144± 0.009 0.3518± 0.006 • 0.5226± 0.007 0.3559± 0.003
qsar-bio 0.5211± 0.013 0.3411± 0.002 0.5011± 0.001 0.3000± 0.018 0.2952± 0.012 0.2642± 0.001
osi 0.3235± 0.004 0.1577± 0.010 • 0.1694± 0.015 • 0.1968± 0.011 0.1951± 0.006 0.1898± 0.005
nursery 0.5149± 0.004 0.3889± 0.007 0.4154± 0.010 0.3200± 0.006 0.3474± 0.015 0.2211± 0.002
bank-marketing 0.3901± 0.004 0.2916± 0.005 0.3361± 0.004 0.3163± 0.006 0.4311± 0.003 0.1345± 0.003

loss/win 0/12 3/9 1/11 3/9 2/10 9/51 *
p-value 0.0005 0.0122 0.0034 0.0522 0.0093 −−
F-rank 4.500 3.292 4.333 3.167 3.958 1.750

Table A6. AUC under missing rate 30% with label delay T = 5. The best results are in bold. • indicates
the cases in our method that lose the comparison. * shows the total number of wins and losses
for OALN.

Dataset OLI2DS OLD3S OLD3S-L OGD FOBOS OALN

ckd 0.7037± 0.004 0.6079± 0.011 0.6970± 0.003 0.4026± 0.005 0.7333± 0.004 0.9374± 0.002
australian 0.7336± 0.004 0.5578± 0.004 0.7187± 0.010 0.5788± 0.012 0.6117± 0.003 0.8227± 0.006
credit-a 0.6370± 0.010 0.5086± 0.006 0.5829± 0.002 0.6229± 0.008 0.5652± 0.012 0.7892± 0.004
wbc 0.9143± 0.009 0.9151± 0.002 0.6810± 0.005 0.9165± 0.014 0.9811± 0.007 0.9843± 0.003
diabetes 0.6092± 0.008 0.5189± 0.006 0.5019± 0.003 0.5017± 0.006 0.4077± 0.015 0.6652± 0.003
credit-g 0.5180± 0.019 0.5046± 0.008 0.5312± 0.011 0.4454± 0.005 0.4451± 0.004 0.5929± 0.009
german 0.4733± 0.014 0.5898± 0.009 0.5563± 0.011 0.6510± 0.005 • 0.5315± 0.013 0.6064± 0.010
splice 0.5750± 0.009 0.5040± 0.013 0.5017± 0.004 0.7231± 0.008 • 0.6205± 0.013 0.7177± 0.006
qsar-bio 0.4607± 0.011 0.5578± 0.009 0.5727± 0.016 0.6522± 0.009 0.5906± 0.004 0.8181± 0.002
osi 0.7144± 0.005 • 0.6252± 0.013 0.6037± 0.017 0.3849± 0.016 0.3682± 0.005 0.6488± 0.002
nursery 0.4873± 0.013 0.6618± 0.008 0.8048± 0.005 0.6197± 0.013 0.4881± 0.006 0.8442± 0.003
bank-marketing 0.6988± 0.006 0.6007± 0.002 0.5829± 0.006 0.4658± 0.003 0.5266± 0.003 0.7340± 0.002

loss/win 1/11 0/12 0/12 2/10 0/12 3/57 *
p-value 0.0024 0.0005 0.0005 0.0024 0.0005 −−
F-rank 3.500 4.250 3.833 3.833 4.333 1.250

Table A7. Cumulative error rate (CER) under missing rate 40% with label delay T = 5. The best results
are in bold. • indicates the cases in our method that lose the comparison. * shows the total number of
wins and losses for OALN.

Dataset OLI2DS OLD3S OLD3S-L OGD FOBOS OALN

ckd 0.3960± 0.013 0.4278± 0.005 0.4611± 0.007 0.5063± 0.010 0.4430± 0.020 0.1310± 0.003
australian 0.3484± 0.009 0.3366± 0.002 0.3591± 0.021 0.4380± 0.007 0.4672± 0.008 0.3102± 0.002
credit-a 0.3960± 0.011 0.4348± 0.002 0.4461± 0.008 0.3869± 0.007 0.4015± 0.011 0.3816± 0.003
wbc 0.1385± 0.007 0.1302± 0.002 0.2349± 0.006 0.4348± 0.013 0.7246± 0.007 0.1261± 0.004
diabetes 0.4312± 0.007 0.4465± 0.013 0.4725± 0.007 0.3382± 0.002 0.4238± 0.004 0.3020± 0.009
credit-g 0.4981± 0.010 0.4522± 0.005 0.5922± 0.014 0.3065± 0.016 • 0.3116± 0.018 • 0.3804± 0.020
german 0.5197± 0.009 0.5456± 0.020 0.4722± 0.010 0.3266± 0.012 • 0.3668± 0.007 0.3594± 0.012
splice 0.4690± 0.007 0.4900± 0.012 0.4978± 0.004 0.3769± 0.002 0.4422± 0.004 0.3765± 0.005
qsar-bio 0.5147± 0.014 0.3295± 0.005 0.4968± 0.002 0.3050± 0.016 0.3381± 0.012 0.3020± 0.001
osi 0.3301± 0.005 0.1656± 0.010 • 0.1642± 0.014 • 0.1939± 0.004 0.2178± 0.013 0.1708± 0.005
nursery 0.5232± 0.003 0.3490± 0.005 0.4484± 0.010 0.3180± 0.005 0.3829± 0.011 0.2509± 0.004
bank-marketing 0.3977± 0.002 0.3129± 0.001 0.3481± 0.005 0.3176± 0.003 0.3485± 0.002 0.1394± 0.002

loss/win 0/12 1/11 1/11 2/10 1/11 5/55 *
p-value 0.0005 0.0015 0.0010 0.0425 0.0068 −−
F-rank 4.417 3.500 4.667 2.917 4.083 1.417
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Table A8. AUC under missing rate 40% with label delay T = 5. The best results are in bold. • indicates
the cases in our method that lose the comparison. * shows the total number of wins and losses
for OALN.

Dataset OLI2DS OLD3S OLD3S-L OGD FOBOS OALN

ckd 0.6579± 0.005 0.6033± 0.008 0.5224± 0.003 0.4859± 0.004 0.6962± 0.001 0.9544± 0.001
australian 0.6989± 0.003 0.6371± 0.005 0.6215± 0.006 0.5888± 0.016 0.5594± 0.003 0.8173± 0.003
credit-a 0.6380± 0.010 0.5540± 0.007 0.5112± 0.003 0.6056± 0.007 0.6224± 0.013 0.7596± 0.004
wbc 0.8903± 0.005 0.8996± 0.003 0.6106± 0.007 0.7423± 0.012 0.9022± 0.002 0.9826± 0.003
diabetes 0.5921± 0.004 0.5150± 0.006 0.5235± 0.004 0.4763± 0.007 0.5741± 0.015 0.6729± 0.004
credit-g 0.5097± 0.016 0.4944± 0.005 0.4848± 0.011 0.4708± 0.005 0.4650± 0.0010 0.5816± 0.007
german 0.4769± 0.013 0.4929± 0.009 0.4977± 0.012 0.5837± 0.005 0.5400± 0.011 0.6220± 0.007
splice 0.5461± 0.005 0.5109± 0.010 0.4905± 0.011 0.7199± 0.005 • 0.6145± 0.011 0.6829± 0.003
qsar-bio 0.4578± 0.008 0.5754± 0.007 0.5040± 0.012 0.6387± 0.007 0.5823± 0.005 0.8287± 0.002
osi 0.6921± 0.005 • 0.5843± 0.006 0.5129± 0.016 0.4026± 0.015 0.3763± 0.003 0.6483± 0.002
nursery 0.4821± 0.013 0.6967± 0.005 0.5488± 0.011 0.5876± 0.010 0.4942± 0.003 0.8045± 0.004
bank-marketing 0.6772± 0.004 0.5901± 0.002 0.5538± 0.003 0.4867± 0.002 0.4639± 0.002 0.6879± 0.003

loss/win 1/11 0/12 0/12 1/11 0/12 2/58 *
p-value 0.0015 0.0005 0.0005 0.0010 0.0005 −−
F-rank 3.333 3.750 4.667 4.083 4.000 1.167

Appendix B
For the algorithm and analysis, in detail, at each time step t, a mixed-type instance

xt = (xnom
t , xnum

t ) is first encoded into zt ∈ RD via a Gaussian Copula. Missing entries
are imputed by the conditional expectation under the current copula parameters (µ, Σ)
and then mapped back to the original feature space. OALN maintains two queues: Qall

stores all models, and Qready holds models awaiting label feedback. When a delayed label
yt−d arrives, the corresponding historical model is retrieved to compute the supervised
gradient ∇ℓ(wt−d; zt−d, yt−d), which is applied via a stochastic proximal update. If no
label is available, OALN generates a surrogate gradient from an ensemble of models in
Qall, using a hint vector to continue learning. Complexity per iteration includes O(D2)

for copula updates, O(D2 + M3 + M2 + MD) for encoding and imputation, O(D) for
supervised updates, and O(NtD) plus O(Nt) for hint generation and queue operations,
totaling O(D3 + NtD). Memory usage combines O(D2 + NmaxD+ BD), reducible to O(Dr)
with low-rank copula approximations and further optimized by rank-one updates, model
pruning, and parallel hint computation.
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